L. M. Arriola, Department of Mathematical \& Computer Sciences, University of Wisconsin-Whitewater, Whitewater, WI, 53190-1790. email: arriolal@uww.edu
W. A. Beyer, Theoretical Division, T7-Mathematical Modeling \& Analysis, Los Alamos National Laboratory, Los Alamos, NM 87545.
email: beyer@lanl.gov

STABILITY OF THE CAUCHY FUNCTIONAL EQUATION OVER p-ADIC FIELDS

Dedicated to the memory of S. M. Ulam.

Abstract

This paper corrects some errors found in [2], which discusses an extension of Lorentz transformations over a non-Archimedean valued field; namely, the p-adic field \mathbb{Q}_{p}. The paper [2] is based on the results given by Hyers [7] which showed that for a continuous function f defined on \mathbb{R}, the Cauchy functional equation $f(x+y)=f(x)+f(y)$ is stable. By stable we mean that if there exists $\epsilon>0$ such that $\| f(x+y)-f(x)-$ $f(y) \|<\epsilon, \forall x, y$, then there exists a unique and continuous \mathcal{L} such that $\|\mathcal{L}(x)-f(x)\| \leq \epsilon, \forall x$ and $\mathcal{L}(x+y)=\mathcal{L}(x)+\mathcal{L}(y)$. In this paper, we show this result is true on the p-adic field \mathbb{Q}_{p}.

1 Introduction.

In 1908, K. Hensel [6] introduced the concept of p-adic numbers as a tool for solving problems in algebra and number theory. Specifically, his idea was to extend the analogies between the ring of integers \mathbb{Z} and the field of rational numbers \mathbb{Q} to the field of rational functions and Laurent series. The way this was accomplished was by expressing any rational number $x \in \mathbb{Q}$ as the sum

$$
x=\sum_{n \geq n_{0}}^{\infty} a_{n} p^{n}
$$

[^0]where $n_{0} \in \mathbb{Z}, p$ is a prime number, and $a_{n} \in \mathbb{Z}$ where $a_{n} \leq p-1$. For a fixed value of p, we denote the complete field of p-adic numbers as $\mathbb{Q}_{p}[5]$.

In 1941, Hyers [7] showed that if a continuous function was "nearly" linear; that is, there exists an $\epsilon>0$ such that $\|f(x+y)-f(x)-f(y)\|<\epsilon, \forall x, y \in \mathbb{R}$, then there exists a unique and continuous \mathcal{L} such that $\|\mathcal{L}(x)-f(x)\| \leq \epsilon$, and $\mathcal{L}(x+y)=\mathcal{L}(x)+\mathcal{L}(y)$. Interest in this problem arose from the question of the stability of the Cauchy functional equation $f(x+y)=f(x)+f(y)$. For a comprehensive survey of the origins and evolution of this problem see $[4,8,11,12]$.

Later, Everett and Ulam [3] presented results on generalizing Lorentz groups over p-adic fields. More recently, p-adic fields have become of considerable interest to physicists. A key property of p-adic fields is that they do not satisfy the Archimedean axiom; $\forall a, b>0$, there exists an integer n, such that $a<n b$. This property has been found to be useful in theoretical physics. In quantum mechanics $[10,9]$ it has long been recognized that fundamental limitations on measuring conjugate quantities such as position-momentum or energy-time exist because of the Heisenberg uncertainty principle. For example, any attempt at taking gravitational measurements at sub-Planck domains, say of the order of $l=10^{-35} \mathrm{~m}$, would change the underlying geometry and introduce distortions to l. Introducing a p-adic space-time could provide a means of quantifying the non-localization affects.

In this paper, we correct the mistakes in the proof given in [2]; namely, we prove the stability of the functional equation $f(x+y)=f(x)+f(y)$, where x, y are in the p-adic field \mathbb{Q}_{p}.

2 Basic Definitions.

In this section, we recall some definitions and results that will be needed later when discussing ϵ-linear transformations over p-adic fields.

Definition 1 (Non-Archimedean Valuation). Let \mathbb{K} denote a scalar field, and let $|\cdot|$ denote the usual absolute value (valuation) where $|\cdot|: \mathbb{K} \rightarrow \mathbb{R}$. A non-Archimedean valuation is a function $|\cdot|_{p}$ that satisfies the strong triangle inequality; namely,

$$
|x+y|_{p} \leq \max \left\{|x|_{p},|y|_{p}\right\} \leq|x|_{p}+|y|_{p}
$$

$\forall x, y \in \mathbb{K}$. The associated field \mathbb{K} is referred to as a non-Archimedean field.
Lemma 1 (p-adic Valuation). Given any nonzero rational number $x \in \mathbb{Q}$, there exists a unique integer $n \in \mathbb{Z}$, such that $x=\frac{a}{b} p^{n}$, where a and b are integers not divisible by p [5]. The p-adic valuation is defined as $|x|_{p}:=p^{-n}$.

Definition 2 (p-adic Field). For each prime p, define the p-adic field \mathbb{Q}_{p} to be the set of all p-adic expansions

$$
\mathbb{Q}_{p}:=\left\{x \mid x=\sum_{k \geq n_{0}}^{\infty} a_{k} p^{k}\right\},
$$

where $a_{k} \leq p-1$ are integers.
Definition 3 (ϵ-Linear Function). The function $f: \mathbb{Q}_{p} \rightarrow \mathbb{R}$ is said to be ϵ-linear if there exists an $\epsilon \in \mathbb{R}^{+}$, such that

$$
\begin{equation*}
\|f(x+y)-f(x)-f(y)\|<\epsilon, \forall x, y \in \mathbb{Q}_{p} \tag{1}
\end{equation*}
$$

3ϵ-Linear Functions.

The results of this section will show that given a continuous, ϵ-linear function $f: \mathbb{Q}_{p} \rightarrow \mathbb{R}$, there exists a unique, additive and continuous function $\mathcal{L}: \mathbb{Q}_{p} \rightarrow$ \mathbb{R} such that

$$
\|\mathcal{L}(x)-f(x)\| \leq \epsilon, \forall x \in \mathbb{Q}_{p} .
$$

Lemma 2. Every ϵ-linear function f satisfies the inequality

$$
\begin{equation*}
\|f(m x)-m f(x)\| \leq(m-1) \epsilon, \forall x \in \mathbb{Q}_{p}, \forall m \in \mathbb{Z} \tag{2}
\end{equation*}
$$

Furthermore,

$$
\begin{equation*}
\left\|f\left(p^{-n} x\right)-p^{-n} f(x)\right\| \leq\left(1-p^{-n}\right) \epsilon, \forall x \in \mathbb{Q}_{p}, \forall n \in \mathbb{Z}, \tag{3}
\end{equation*}
$$

where p prime.
Proof. Since the proof for $m \in \mathbb{Z}^{-}$is the same as for $m \in \mathbb{N}$, we only need to show the latter case. Substituting $y=x$ into inequality (1) gives the result for $m=2$.

$$
\|f(2 x)-f(x)-f(x)\|=\|f(2 x)-2 f(x)\|<(2-1) \epsilon
$$

Using induction, assume (2) is true for some m. For the $m+1$ case we have

$$
\begin{aligned}
\|f((m+1) x)-(m+1) f(x)\|= & \| f((m+1) x)-f(m x) \\
& +f(m x)-m f(x)-f(x) \| \\
\leq & \|f((m+1) x)-f(m x)-f(x)\| \\
& +\|f(m x)-m f(x)\| \\
\leq & \epsilon+(m-1) \epsilon=m \epsilon .
\end{aligned}
$$

To show that f satisfies inequality (3), substitute $m=p^{n}$ and replace x with $p^{-n} x$ in inequality (2) and divide by p^{n} to obtain the stated result.

Lemma 3. The sequence $\left\{q_{k}(x)\right\}_{k=1}^{\infty}$, where $q_{k}(x):=p^{-k} f\left(p^{k} x\right), x \in \mathbb{Q}_{p}$ is a Cauchy sequence.

Proof. Let $l \geq k$, where $l, k \in \mathbb{N}$. Consider the difference

$$
\begin{aligned}
\left\|q_{k}(x)-q_{l}(x)\right\| & =\left\|p^{-k} f\left(p^{k} x\right)-p^{-l} f\left(p^{l} x\right)\right\| \\
& =p^{-k}\left\|f\left(p^{k-l} p^{l} x\right)-p^{k-l} f\left(p^{l} x\right)\right\|
\end{aligned}
$$

Using inequality (3), this difference can be made arbitrarily small because

$$
\left\|q_{k}(x)-q_{l}(x)\right\|=p^{-k}\left\|f\left(p^{k-l} p^{l} x\right)-p^{k-l} f\left(p^{l} x\right)\right\| \leq p^{-k}\left(1-p^{k-l}\right) \epsilon
$$

Hence $\left\{q_{k}(x)\right\}$ is a Cauchy sequence.

Lemma 4. Let

$$
\begin{equation*}
\mathcal{L}(x):=\lim _{k \rightarrow \infty} q_{k}(x) . \tag{4}
\end{equation*}
$$

Then there exists an $\epsilon>0$, such that $\forall x \in \mathbb{Q}_{p},\|\mathcal{L}(x)-f(x)\| \leq \epsilon$.

Proof. In inequality (3) make the replacement $x \leftrightarrow p^{n} x$ to get

$$
\left\|f(x)-p^{-n} f\left(p^{n} x\right)\right\| \leq\left(1-p^{-n}\right) \epsilon
$$

Taking the limit as $n \rightarrow \infty$ gives the desired result.
We now show that the function \mathcal{L} is unique, additive, and assuming f continuous, \mathcal{L} is also continuous.

Lemma 5. For $n \in \mathbb{Z}, \mathcal{L}(n x)=n \mathcal{L}(x)$.

Proof.

$$
\begin{aligned}
\left\|p^{-k} f\left(p^{k} n x\right)-n p^{-k} f\left(p^{k} x\right)\right\| & =p^{-k}\left\|f\left(n p^{k} x\right)-n f\left(p^{k} x\right)\right\| \\
& \leq p^{-k}(n-1) \epsilon
\end{aligned}
$$

in which case

$$
\begin{aligned}
\|\mathcal{L}(n x)-n \mathcal{L}(x)\| & =\left\|\lim _{k \rightarrow \infty} p^{-k} f\left(p^{k} n x\right)-\lim _{k \rightarrow \infty} n p^{-k} f\left(p^{k} x\right)\right\| \\
& =\lim _{k \rightarrow \infty} p^{-k}\left\|f\left(p^{k} n x\right)-n p^{-k} f\left(p^{k} x\right)\right\| \\
& \leq \lim _{k \rightarrow \infty} p^{-k}(n-1) \epsilon=0
\end{aligned}
$$

and therefore $\mathcal{L}(n x)=n \mathcal{L}(x)$.
This result will be needed in order to show that the function \mathcal{L} is unique. The next theorem will prove this fact by contradiction.

Theorem 1. The limiting function \mathcal{L} is unique.

Proof. Seeking a contradiction, suppose that the limiting function \mathcal{L} is not unique; i.e., there exists an $\hat{\mathcal{L}}$, such that

$$
\|\hat{\mathcal{L}}(x)-f(x)\| \leq \epsilon \forall x \in \mathbb{Q}_{p}
$$

however, for some $a \in \mathbb{Q}_{p}, \hat{\mathcal{L}}(a) \neq \mathcal{L}(a)$. Since $\|\hat{\mathcal{L}}(a)-\mathcal{L}(a)\| \neq 0$ and ϵ specified, choose the smallest $n \in \mathbb{N}$ such that

$$
n>\frac{3 \epsilon}{\|\hat{\mathcal{L}}(a)-\mathcal{L}(a)\|}
$$

in which case $\|\hat{\mathcal{L}}(n a)-\mathcal{L}(n a)\|>3 \epsilon$. Furthermore,

$$
\|\hat{\mathcal{L}}(n a)-\mathcal{L}(n a)\| \leq\|\hat{\mathcal{L}}(n a)-f(n a)\|+\|\mathcal{L}(n a)-f(n a)\| \leq 2 \epsilon
$$

in which case $3 \epsilon<\|\hat{\mathcal{L}}(n a)-\mathcal{L}(n a)\| \leq 2 \epsilon$, which is clearly a contradiction. Therefore the limiting function \mathcal{L} is unique.

Lemma 6. The limiting function \mathcal{L} is additive; that is,

$$
\mathcal{L}(x+y)=\mathcal{L}(x)+\mathcal{L}(y), \forall x, y \in \mathbb{Q}_{p} .
$$

Proof. Since f is ϵ-linear, $\forall x, y \in \mathbb{Q}_{p}$ and $k \in \mathbb{N}$,

$$
\left\|f\left(p^{k} x+p^{k} y\right)-f\left(p^{k} x\right)-f\left(p^{k} y\right)\right\|<\epsilon
$$

Multiplying by p^{-k} and taking the limit as $k \rightarrow \infty$ gives

$$
\begin{aligned}
\|\mathcal{L}(x+y)-\mathcal{L}(x)-\mathcal{L}(y)\|= & \lim _{k \rightarrow \infty} \| p^{-k} f\left(p^{k} x+p^{k} y\right) \\
& -p^{-k} f\left(p^{k} x\right)-p^{-k} f\left(p^{k} y\right) \| \\
\leq & \lim _{k \rightarrow \infty} p^{-k} \epsilon=0
\end{aligned}
$$

Theorem 2. If f is continuous on \mathbb{Q}_{p}, then \mathcal{L} is continuous on \mathbb{Q}_{p}.

Proof. Seeking a contradiction, suppose that \mathcal{L} is not continuous at some point $a \in \mathbb{Q}_{p}$. Specifically, assume there exists a sequence $\left\{x_{n}\right\}_{n=0}^{\infty}$, such that $x_{n} \rightarrow a$ but $\lim _{n \rightarrow \infty} \mathcal{L}\left(x_{n}\right) \neq \mathcal{L}(a)$. By the additivity property,

$$
\mathcal{L}\left(x_{n}-a\right)=\mathcal{L}\left(x_{n}\right)-\mathcal{L}(a)
$$

in which case

$$
\lim _{n \rightarrow \infty} \mathcal{L}\left(x_{n}-a\right)=\lim _{n \rightarrow \infty}\left(\mathcal{L}\left(x_{n}\right)-\mathcal{L}(a)\right)
$$

Using the limit definition of \mathcal{L} given in (4) we obtain

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \mathcal{L}\left(x_{n}-a\right) & =\lim _{n \rightarrow \infty} \lim _{k \rightarrow \infty} p^{-k} f\left(p^{k}\left(x_{n}-a\right)\right) \\
& =\lim _{k \rightarrow \infty} p^{-k} \lim _{n \rightarrow \infty} f\left(p^{k}\left(x_{n}-a\right)\right)
\end{aligned}
$$

Since f is everywhere continuous on \mathbb{Q}_{p} and $x_{n} \rightarrow a$,

$$
\lim _{n \rightarrow \infty} f\left(p^{k}\left(x_{n}-a\right)\right)=f(0)
$$

in which case

$$
\lim _{n \rightarrow \infty} \mathcal{L}\left(x_{n}-a\right)=\lim _{n \rightarrow \infty}\left(\mathcal{L}\left(x_{n}\right)-\mathcal{L}(a)\right)=\mathcal{L}(0)
$$

Using the additivity property $\mathcal{L}(0+0)=\mathcal{L}(0)+\mathcal{L}(0)$, which implies that $\mathcal{L}(0)=0$. This produces the contradiction

$$
\lim _{n \rightarrow \infty} \mathcal{L}\left(x_{n}\right)-\mathcal{L}(a)=0
$$

and therefore \mathcal{L} is continuous on \mathbb{Q}_{p}.

4 Summary and Future Directions.

We have shown that if $f: \mathbb{Q}_{p} \rightarrow \mathbb{R}$ is ϵ-linear, then there exists a unique, continuous and additive function \mathcal{L}, such that

$$
\|\mathcal{L}(x)-f(x)\| \leq \epsilon, \forall x \in \mathbb{Q}_{p}
$$

where additivity means $\mathcal{L}(x+y)=\mathcal{L}(x)+\mathcal{L}(y)$. Future work will be to determine the stability of the logarithmic functional equation $f(x y)=f(x)+f(y)$, and the exponential functional equation $f(x+y)=f(x) f(y)$ over the p-adic field.

References

[1] G. Bachman, Introduction to p-adic Numbers and Valuation Theory, Academic Press, (1964).
[2] W. A. Beyer, Approximately Lorentz Transformations and p-adic Fields, LA-DC-9486, Los Alamos National Laboratory, (1968).
[3] C. J. Everett and S. M. Ulam, On Some Possibilities of Generalizing the Lorentz Group in the Special Relativity Theory, J. of Comb. Theory, 1 (1966), 248-270.
[4] G. Forti, Hyers-Ulam Stability of Functional Equations in Several Variables, Aequationes Mathematicae, 50 (1995), 143-190.
[5] F. Q. Gouvêa, p-adic Numbers, Springer-Verlag, (1997).
[6] K. Hensel, Theorie der Algeraischen Zahlen, Tuebner, Leipzig and Berlin, (1908).
[7] D. H. Hyers, On the stability of the linear functional equation, Proc. N.A.S., 27 (1941), 222-224.
[8] D. H. Hyers and T. Rassias, Approximate Homomorphisms, Aequationes Mathematicae, 44 (1992), 125-153.
[9] A. Khrennikov, p-adic Valued Distributions in Mathematical Physics, Kluwer Academic Publishers, (1994).
[10] A. Khrennikov, Non-Archimedean Analysis: Quantum Paradoxes, Dynamical Systems and Biological Models, Kluwer Academic Publishers, (1997).
[11] L. Székelyhidi, Ulam's Problem, Hyers Solution-and to Where they led, Stability of Functional Equations, Kluwer Academic Publishers, (2000), 259-285.
[12] S. M. Ulam, A Collection of Mathematical Problems, Interscience Publishers, Inc., (1960) (2000), 63-69.

[^0]: Key Words: Cauchy functional equation, p-adic field, stability
 Mathematical Reviews subject classification: 11S80, 39B22
 Received by the editors December 30, 2004
 Communicated by: Udayan B. Darji

