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ON NON-EQUILIBRATED ALMOST
MONOTONIC FUNCTIONS OF THE

ZYGMUND-BARY-STECHKIN CLASS

Abstract

We study quasi-monotonic functions of the Zygmund-Bary-Stechkin
class Φ with the main emphasis on properties of the index numbers of
functions in this class. A special attention is paid to functions whose
lower and upper index numbers do not coincide with each other (non-
equilibrated functions). It is proved that the bounds for functions in
Φ known in terms of these indices, are exact in a certain sense. We
also single out some special family of none-equilibrated functions in Φ
which oscillate in a certain way between two power functions. Given two
numbers 0 < α ≤ β < 1, we explicitly construct examples of functions
in Φ for which α and β serve as the index numbers.

The investigation of properties of non-equilibrated functions in Φ
was evoked by applications of these properties in problems of the nor-
mal solvability of some singular integral operators in the spaces with
prescribed modulus of continuity.

1 Introduction.

The famous A. Zygmund’s estimate (see [22], [23]) of modulus of continuity of
the conjugate function f̃ (singular integral) via that of the function f has the
form

ω(f̃ , h) ≤ c

∫ h

0

ω(f, x)
x

dx + ch

∫ `

h

ω(f, x)
x2

dx
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where c > 0 does not depend on f , so that the singular integral preserves the
generalized Hölder behavior

|f(t)− f(τ)| ≤ cω(|t− τ |)

of a function f , if the continuous, increasing function ω(x) positive for x > 0
and vanishing at the origin: ω(0) = 0, satisfies the conditions∫ h

0

ω(x)
x

dx ≤ cω(h) (Z0)

and ∫ `

h

ω(x)
x2

dx ≤ c
ω(h)

h
. (Z`)

Monotonic functions satisfying conditions (Z0) and (Z`) were extensively
studied together with some related conditions known as Lozinskii condition,
Stechkin condition and others in the paper by N. Bary and S. Stechkin [1].
Thereafter the class of functions satisfying conditions (Z0) and (Z`) was usu-
ally referred to as the Bary-Stechkin class (often denoted as Φ).

Such a class or its modification or generalizations proved to be of impor-
tance in the investigation of mapping properties of various operators in spaces
of continuous functions with prescribed behavior of the modulus of continu-
ity (the generalized Hölder space Hω), such as the singular integral operator

Sf(x) = 1
π

b∫
a

f(t) dt
t−x , see for instance the papers [20], [21], or fractional integra-

tion operators [19], [7] (see also [18], Section 13.6).
In [14], in connection with the study of singular integral operators in the

generalized Hölder spaces, the so called index numbers (or indices) mω and
Mω of an almost increasing function ω were introduced, which play the same
role as, for example, the Boyd indices play for the Orlicz spaces. These indices
are similar to indices known for submultiplicative functions, see [8], p. 75; [9],
or [2], p. 149. In terms of the indices mω and Mω in [14], [15], [17] there were
obtained criterions of normal solvability of certain classes of integral equations.

Functions ω with equal indices mω = Mω were called equilibrated.
New applications required new properties of functions in the Zygmund-

Bary-Stechkin class Φ. Some of them were developed in [14], [15], [17]. In this
paper we give some new properties of functions in the class Φ, mainly related
to the index numbers, with an emphasis on better understanding of the nature
of non-equilibrated functions ω ∈ Φ.

In particular, we show that the known fact [14] that every function ω
satisfying conditions (Z0) and (Z`) oscillates between xMω+ε and xmω−ε is
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precise, in a certain sense (Theorem 4.3), but the main aspect of this paper
is rather related to the question of explicit construction of non-equilibrated
functions in the class Φ. Namely, given numbers 0 < α < β < 1, how can
one explicitly construct increasing, continuous functions ω oscillating between
xα and xβ and having the indices mω = α and Mω = β? Such kind of
constructions are studied in Section 5.

The present study of the class Φ was motivated by applications of proper-
ties of functions from the class Φ in the theory of singular integral operators,
see [15], [16], [17], and fractional and potential operators, see [6]. In particu-
lar, in Fredholmness results for singular operators, massive spectrum appears
when the characteristic ω of the space is non-equilibrated. The existence of
non-equilibrated characteristics satisfying the Zygmund condition was not an
obvious fact (and usually disputable). We construct a family of such charac-
teristics. This construction shows that there exist generalized Hölder spaces
with “nice” characteristics (that is, belonging to Φ), whose indices mω and
Mω may be two à priori given numbers in the interval (0, 1); in applications
to the spectrum properties of singular operators this means the existence of
the corresponding “ lunes” defining the massiveness of the essential spectrum
of the operator.

In Sections 2-3 we provide necessary definitions and known facts for func-
tions from Φ which we need in the sequel. New results are given in Sections
4-5, the main statements being Theorem 4.3, which states that the bounds for
characteristics ω given in terms of power functions are exact in a certain sense,
and Theorem 5.10 in which the above mentioned family of non-equilibrated
characteristics is constructed.

2 Definitions.

2.1 Zygmund-Bary-Stechkin Class Φ.

First we recall that a non-negative function ϕ on [0, `] is said to be almost
increasing (or almost decreasing) if there exists a constant C ≥ 1 such that
ϕ(x) ≤ Cϕ(y) for all x ≤ y (or x ≥ y, respectively). This notion is due to
S.Bernstein [3]. Let

W = {ϕ ∈ C([0, `]) : ϕ(0) = 0, ϕ(x) > 0for x > 0, ϕ(x) is almost increasing}.
(2.1)

Definition 2.1. A function ω ∈ W is said to be in the Zygmund-Bary-
Stechkin class Φ if it satisfies conditions (Z0) and (Z`).
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Remark 2.2. In the notation Φ for the class introduced in Definition 2.1, we
follow the book [5], p. 54, while in the original paper [1] Φ denoted the class
which we denote as W .

2.2 Index Numbers of Functions ω ∈ Φ.

Definition 2.3. Let ω ∈ W . The numbers

mω = sup
x>1

ln
[
limh→0

ω(xh)
ω(h)

]
ln x

Mω = inf
x>1

ln
[
limh→0

ω(xh)
ω(h)

]
ln x

introduced in such a form in [12], [14], will be referred to as the lower and
upper index numbers of a function ω(x) ∈ Φ. Compare these indices with
the Matuszewska-Orlicz indices, see [10], p. 20, introduced for increasing,
unbounded functions f defined on (0,∞), in the context of the Orlicz type
spaces. We deal with characteristics ω of the generalized Hölder spaces; they
are of the type of the Boyd indices, see [8], p. 75; [9], or [2], p. 149 about the
Boyd indices.

We call a characteristic ω(x) equilibrated, if Mω = mω.
It is easily seen that for ωλ(x) = ω(x)

xλ one has

mωλ
= mω − λ and Mωλ

= Mω − λ. (2.2)

Remark 2.4. Note that the lower index mω may be expressed in terms of
the upper limit

Ω(x) = lim
h→0

ω(xh)
ω(h)

.

Namely,

mω = sup
0<x<1

lnΩ(x)
ln x

. (2.3)

(This fact was drawn to our attention by A. Karlovich.) Since the function
Ω(x) is submultiplicative; i.e., Ω(xy) ≤ Ω(x)Ω(y), one may use properties of
such functions (see [8], p. 75, or [4], p. 13, or [11], p. 84), which yield the
following representation of the index numbers mω and Mω.

mω = sup
0<x<1

lnΩ(x)
ln x

= lim
x→0

lnΩ(x)
ln x

, (2.4)

Mω = sup
x>1

lnΩ(x)
ln x

= lim
x→∞

lnΩ(x)
ln x

. (2.5)
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Thus always 0 ≤ mω ≤ Mω ≤ ∞ for ω ∈ W (compare this with (3.1)), the
inequality mω ≤ Mω following from (2.4)-(2.5) by properties of submultiplica-
tive functions ([8], p. 75).

3 Preliminaries about the Class Φ.

It is known that the class Φ is also characterized in some other terms. We
introduce the conditions

∞∑
k=n+1

1
k

ϕ

(
1
k

)
≤ cϕ

(
1
n

)
, (B)

n∑
k=1

ϕ

(
1
k

)
≤ cnϕ

(
1
n

)
, (B`)

there exists a ξ > 1 such that limh→0

ϕ(ξh)
ϕ(h)

> 1, (L)

there exists a ξ > 1 such that limh→0
ϕ(ξh)
ϕ(h)

< ξ, (L`),

known as the Bary and Lozinskii conditions, see [1].

Lemma 3.1. Let ϕ(x) ∈ W . Conditions (B), (L) and (Z) are equivalent.
Similarly, conditions (B`),(L`) and (Z`) are also equivalent.

This lemma is known (see [1]) when the class W is defined by assuming
that ϕ(t) is increasing; not almost increasing. However, the lemma remains
true in this more general case (see the proof in [12], [13]).

The following statement proved in [14], p. 125 (see also [12]), characterizes
the class Φ in terms of the indices mω and Mω.

Theorem 3.2. A function ω(x) ∈ W is in the class Φ if and only if

0 < mω ≤ Mω < 1, (3.1)

and for ω ∈ Φ and any ε > 0 there exist constants c1 = c1(ε) > 0 and
c2 = c2(ε) > 0 such that

c1x
Mω+ε ≤ ω(x) ≤ c2x

mω−ε, for 0 ≤ x ≤ `. (3.2)

Besides this, condition (Z) is equivalent to mω > 0 while condition (Z`) is
equivalent to Mω < 1.
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A statement similar to (3.1) was known in another situation - for similar
indices of increasing unbounded functions ω defined on (0,∞), in the context
of the Orlicz type spaces, see [11], p. 90. We deal here with (Z) and (Z`)-
conditions of characteristics ω of the generalized Hölder spaces.

In this paper we show in particular, that bounds (3.2) for ω ∈ Φ are exact
in a certain sense, see Theorem 4.3.

The following statement is known ([1], Lemmas 2 and 3).

Lemma 3.3. For a non-decreasing function ω ∈ W the following equivalences
are valid:

(Z) ⇐⇒ there exists a δ1 > 0 such that
ω(x)
xδ1

is almost increasing, (3.3)

(Z`) ⇐⇒ there exists a δ2 ∈ (0, 1) such that
ω(x)
xδ2

is almost decreasing.

(3.4)

The following statement was also proved in [14], p. 125, see also [12].

Theorem 3.4. Let ω ∈ W . If ω(x) satisfies condition (Z0), then x−δ1ω(x)
is almost increasing for any δ1 < mω, while fulfillment of (Z`) implies that
x−δ2ω(x) is almost decreasing for any δ2 > Mω.

4 Some Properties of the Zygmund-Bary-Stechkin Class
Φ.

We show that the bounds for ω ∈ Φ given in (3.2) are exact in the following
sense. For any ε > 0, there exist sequences xn → 0 and yn → 0 and positive
constants c3 and c4 not depending on ε such that

ω(xn) ≥ c3x
mω+ε
n , (4.1)

ω(yn) ≤ c4y
Mω−ε
n . (4.2)

The following lemma shows that the bounds δ1 < mω and δ2 > Mω in
Theorem 3.4, cannot be improved.

Lemma 4.1. Let a nondecreasing function ω belong to Φ. If ω(x)
xα is almost

increasing and ω(x)
xβ is almost decreasing for some 0 < α ≤ β < 1, then mω ≥ α

and Mω ≤ β.
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Proof. Suppose to the contrary that mω < α. Then the function ω1(x) =
ω(x)
xmω is also almost increasing and ω1(0) = 0 since mω < α. Therefore, ω1 ∈ W .
But also the function

ω1(x)
xδ1

=
ω(x)
xα

, δ1 = α−mω

is almost increasing. Then, by Lemma 3.3, the function ω1(x) satisfies the
(Z0)-condition. Therefore, by Theorem 3.2, its lower index mω1 is positive
mω1 > 0 which is impossible since mω1 = mω −mω = 0 by (2.2).

The statement Mω ≤ β is proved similarly.

We need also the following statement.

Lemma 4.2. For any ω ∈ Φ the existence of a sequence xn with property
(4.1) is equivalent to

mω = sup
{

δ ∈ (0, 1) :
ω(x)
xδ

is almost increasing
}

, (4.3)

and the existence of a sequence yn with property (4.2) is equivalent to

Mω = inf
{

δ ∈ (0, 1) :
ω(x)
xδ

is almost decreasing
}

. (4.4)

Proof. The set
{

δ ∈ (0, 1) : ω(x)
xδ is almost increasing

}
is a closed or semi-

closed interval [0, a] or [0, a) for some 0 < a < 1. Similarly, the set{
δ ∈ (0, 1) : ω(x)

xδ is almost decreasing
}

is either [b, 1] or (b, 1] with a ≤ b < 1.
By Theorem 3.4, mω ≤ a and Mω ≥ b. We have to prove that

(4.1) ⇐⇒ mω = a and (4.2) ⇐⇒ Mω = b.

1. The Proof of the Implication (4.1) =⇒ mω = a. Suppose that
mω < a. Then for any ε ∈

(
0, α−mω

2

)
the function f(x)

xmω+2ε is almost increasing
and consequently bounded, which is impossible since for a sequence xn from
(4.1) we have f(xn)

xmω+2ε
n

≥ c3
xmω+ε

xmω+2ε
n

= c3
xε

n
→∞. Therefore, mω = a.

2. The Proof of the Implication mω = a =⇒ (4.1). Since mω = a, the
function ωε = ω(x)

xmω+ε is not almost increasing for any ε > 0. Any non almost
increasing function in W is unbounded; that is,

sup
0<x≤y≤`

ωε(x)
ωε(y)

= ∞ =⇒ sup
0<x≤`

ωε(x)
ωε(`)

= ∞.
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Since the function ωε(x) is continuous for x > 0, it may be unbounded only
when x → 0. Therefore, there exists a sequence xn → 0 such that ωε(xn) ≥ 1,
which is (4.1).

The equivalence (4.2) ⇐⇒ Mω = b is proved similarly.

Theorem 4.3. For any ω ∈ W satisfying condition (Z0) the upper bound
ω(x) ≤ c2x

mω−ε given in (3.2) is exact (in the sense defined in (4.1)). Simi-
larly, for an ω ∈ W satisfying condition (Z`) the lower bound ω(x) ≥ c2x

Mω+ε

is exact (in the sense defined in (4.2).

Proof. By Lemma 4.2, it suffices to show that equalities (4.3)–(4.4) are valid.
Suppose to the contrary that the equality in (4.3) doesn’t hold. Then the
function ω2ε(x) = ω(x)

xmω+2ε is almost increasing for any small ε > 0. Then
ω2ε(x) is a bounded function and therefore the function ωε(x) = xεω2ε(x) is
in W and moreover, ωε(x) satisfies condition (Z0) by Lemma 3.3, since the
function ωε(x)

xε = ω2ε(x) is almost increasing. Then mωε > 0 by Theorem 3.2.
But on the other hand by (2.2) we obtain mωε = mω − (mω + ε) = −ε < 0.
Consequently, (4.3) must hold.

Property (4.4) is proved similarly.

5 Construction of a Family of Non-Equilibrated Func-
tions ω ∈ Φ.

It is easy to give examples of equilibrated characteristics ω. Besides the trivial
examples ω(x) = xλ, ω(x) = xλ

(
ln 1

x

)α
, xλ

(
ln ln 1

x

)α
, etc, 0 < λ < 1, for

which mω = Mω = λ, we may also mention that the condition

lim
h→0

ω(th)
ω(h)

= tγ , γ = const,

is sufficient for ω(x) to be equilibrated. For example, the function x
λ+ c

lnα 1
x ,

α ≥ 1, satisfies this condition. One may also take ω(x) = xγ(x) with γ(x)

satisfying the Dini condition |γ(x + h)− γ(x)| = o

(
1

| ln |h||

)
.

Examples of non-equilibrated characteristics are much less trivial. Accord-
ing to (3.2) any function in the class Φ is dominated from above and from below
by power functions. Clearly, this is not a characterization of the class Φ. It is
easy to give sufficient conditions for a function ω ∈ W to be non-equilibrated;
for instance,

c1x
β ≤ ω(x) ≤ c2x

α, for 0 < α < β < 1, (5.1)
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ω(bn) = c1b
β
n, ω(an) = c2a

α
n for some an → 0, bn → 0. (5.2)

Under conditions (5.1)–(5.2) we have mω ≤ α and Mω ≥ β, so that ω(x) is
certainly non-equilibrated. However, conditions (5.1)–(5.2) do not guarantee
yet that ω ∈ Φ, because it may happen that mω = 0 and/or Mω ≥ 1. The
membership in Φ of a function ω(x) oscillating between c1x

β and c2x
α implies

certain restrictions on the character of the oscillation of ω.
There arises the problem of finding easily verified sufficient conditions for

a function ω ∈ W to be non-equilibrated and belong to Φ. Or, given 0 <
α < β < 1, how can one explicitly construct an oscillation of ω(x) between
c1x

β and c2x
α so that ω is certainly in Φ? Or in a more restricted way; given

0 < α < β < 1, what should be the construction of a function ω ∈ Φ oscillating
between c1x

β and c2x
α such that mω = α and Mω = β?

We construct a family of non-equilibrated such functions in the next sub-
sections.

5.1 On a Class of Functions Oscillating between xβ and xα.

For simplicity we assume that [0, `] = [0, 1]. Let

P = {. . . , an, an−1, . . . , a1, a0}

be an arbitrary partition of [0, 1] by a sequence of points such that

· · · < an < an−1 < · · · < a1 < a0 = 1 and lim
n→∞

an = 0. (5.3)

We introduce a function ω(x) = ωP(x) depending on the partition P, which
is equal to xβ on subintervals I2n+1 = [a2n+2, a2n+1] and is equal to xα on
subintervals I2n = [a2n+1, a2n], up to a multiplicative constant. Namely, we
put

ω(x) =

{
c2n+1x

β , if x ∈ I2n+1

c2nxα, if x ∈ I2n

n = 0, 1, 2, . . . (5.4)

where we take c0 = 1 and afterwards the coefficients are chosen, step by step,
in such a way that the resulting function ω(x) is continuous.

Definition 5.1. Any continuous function on [0, 1] having the form (5.4) will
be referred to for brevity as an (α, β)-function.

Given a partition P = {. . . , an, an−1, . . . , a1, a0}, for n = 1, 2, . . . the coef-
ficients c2n and c2n+1 of an (α, β)-function are calculated by the formulas

c2n =
(

a0a2a4 · · · a2n

a1a3 · · · a2n−1

)β−α

, c2n+1 =
(

a0a2a4 · · · a2n

a1a3 · · · a2n+1

)β−α

, (5.5)
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so that the coefficients cm and the partition points am are related to each
other by the formulas

c2n = aβ−α
2n c2n−1, c2n = aβ−α

2n+1c2n+1. (5.6)

Lemma 5.2. Let 0 < α < β < 1. The even coefficients c2n of an (α, β)-
function are decreasing; i.e., c2n+2 < c2n, while the odd ones are increasing;
i.e., c2n+1 > c2n−1.

Proof. It suffices to note that

c2n

c2n−2
=

(
a2n

a2n−1

)β−α

< 1,
c2n+1

c2n−1
=

(
a2n

a2n+1

)β−α

> 1, (5.7)

which follows from (5.5) and (5.3).

Examples.

1) an = 1
(n+1)λ =⇒ c2n =

[
√

π Γ(n+1)

Γ(n+ 3
2 )

]λ(β−α)

, c2n+1 =
[
√

π Γ(n+2)

Γ(n+ 3
2 )

]λ(β−α)

,

so that c2n ∼
(

π
n

)λ(β−α)
2 and c2n+1 ∼ (πn)

λ(β−α)
2 as n →∞;

2) an = 2−λn =⇒ c2n = 2−λ(β−α)n, c2n+1 = 2λ(β−α)(n+1).

Lemma 5.3. Let 0 < α ≤ β < 1. Any (α, β)-function ω belongs to Φ and has
the properties

aα−β
1 xβ ≤ ω(x) ≤ xα, 0 ≤ x ≤ 1, (5.8)

and
mω ≥ α, Mω ≤ β. (5.9)

Proof. First we show that ω ∈ W . Since the function ω(x) is increasing on
any one of the subintervals I2n and I2n+1 and is continuous under the choice
(5.5), it is increasing on the whole interval [0, 1]. Obviously, ω(x) > 0 for x > 0.
We have to show that

lim
x→0

ω(x) = 0. (5.10)

By Lemma 5.2 we have c2n ≤ c0 = 1. Consequently, ω(x) ≤ xα for x ∈ I2n

according to (5.4). For x ∈ I2n+1, by (5.5) we have ω(x) = c2n+1x
β−α · xα ≤

c2n+1a
β−α
2n+1x

α = c2nxα. Therefore,

ω(x) ≤
{

c2nxα, x ∈ I2n+1

xα, x ∈ I2n
≤ xα

from which (5.10) follows.
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To show that ω ∈ Φ, we observe that the function

ω(x)
xα

=
{

c2n+1x
β−α x ∈ I2n+1

c2n x ∈ I2n
n = 0, 1, 2, . . . (5.11)

is non-decreasing and the function

ω(x)
xβ

=
{

c2n+1 x ∈ I2n+1

c2nxα−β , x ∈ I2n
n = 0, 1, 2, . . . (5.12)

is non-increasing. Then ω ∈ Φ by Lemma 3.3.
From (5.12) we also derive that ω(x) ≥ aα−β

1 xβ .

5.2 Finding a Partition by a Given Sequence of Coefficients.

Given any decreasing sequence c2n > 0 and an increasing sequence c2n+1 > 0,
one can calculate the partition {. . . , an, an−1 . . . , a1, a0}, for which the cor-
responding (α, β)-function has these prescribed coefficients c2n and c2n+1.
Namely, the following lemma holds.

Lemma 5.4. Given 0 < α < β < 1 and sequences

1 = c0 > c2 > c4 > · · · > c2n > c2n+2 > · · ·

and
1 < c1 < c3 < c5 < · · · < c2n−1 < c2n+1 < · · ·

with the property

lim
n→∞

c2n

c2n−1
= 0, (5.13)

there exists an (α, β)-function (that is, there exists a partition {· · · < an <
an−1 < · · · a1 < a0 = 1} of the interval [0, 1] with an → 0), for which the num-
bers c2n and c2n+1 serve as the corresponding coefficients in definition (5.4)
of (α, β)-function. The points an are calculated from the given coefficients via
the formulas

a2n =
(

c2n

c2n−1

) 1
β−α

, a2n+1 =
(

c2n

c2n+1

) 1
β−α

. (5.14)

Proof. The fact itself that the numbers c2n and c2n+1 serve as coefficients
when the numbers an are given by (5.14), is verified directly by substituting
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(5.14) into (5.5). The only point we have to check then is to guarantee that
an+1 < an for any n and lim

n→∞
an = 0. The first follows from the relations

a2n+1

a2n
=

(
c2n−1

c2n+1

) 1
β−α

< 1,
a2n

a2n−1
=

(
c2n

c2n−2

) 1
β−α

< 1 (5.15)

in view of the monotonicity of cn, while the second is consequence of (5.13)
according to (5.14).

Examples.
1) c2n = 1

(n+1)a , c2n+1 = (n+1)b ⇐⇒ a2n = 1

[(n+1)anb]
1

β−α
, a2n+1 = 1

(n+1)
a+b
β−α

;

2) c2n = 2−an, c2n+1 = 2bn ⇐⇒ a2n = 2
b

β−α 2−
a+b
β−α n, a2n+1 = 2−

a+b
β−α n;

3) c2n = A−aT n

, c2n+1 = AbT n ⇐⇒ a2n = A−
a+ b

T
β−α T n

, a2n+1 = A−
a+b
β−α T n

;
where a > 0, b > 0, A > 1, T > 1.

Examples of the type 3) will be essentially used below.

5.3 A Finer Estimation of ω(x) When x → 0.

According to Lemma 5.3 any (α, β)-function oscillates between aα−β
1 xβ and

xα. Its oscillation, when x → 0, between power functions may be described in
terms of finer exponents as given in the following lemma.

Lemma 5.5. Let 0 < α ≤ β < 1. Any (α, β)-function ω satisfies the estimate

xµn ≤ ω(x) ≤ xνn , x ∈ I2n+1 ∪ I2n, (5.16)

where µn, νn ∈ [α, β] and

µn =
α ln c2n+1 + β ln 1

c2n+2

ln c2n+1 + ln 1
c2n+2

and νn =
α ln c2n+1 + β ln 1

c2n

ln c2n+1 + ln 1
c2n

. (5.17)

Proof. For x ∈ I2n+1 the inequalities in (5.16) become xµn ≤ c2n+1x
β ≤ xνn .

This will certainly be valid if

max
I2n+1

xµn−β ≤ c2n+1 ≤ min
I2n+1

xνn−β ;

that is, aµn−β
2n+2 ≤ c2n+1 ≤ aνn−β

2n+1 . By formulas (5.14) we get(
c2n+2

c2n+1

)µn−β

≤ cβ−α
2n+1 ≤

(
c2n

c2n+1

)νn−β
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whence we obtain that the best exponents for (5.16) to be valid are given by
(5.17).

The case when x ∈ I2n is treated similarly and gives the same values of µn

and νn.

The estimate obtained in (5.16) leads to the following statement providing a
more exact estimation of an (α, β)-function in terms of power function behavior
near the origin

Lemma 5.6. Let 0 < α ≤ β < 1. Suppose that for an (α, β)-function ω(x)
the limits

B = lim
n→∞

ln 1
c2n+2

ln c2n+1
and A = lim

n→∞

ln 1
c2n

ln c2n+1
(5.18)

exist so that 0 ≤ A ≤ B ≤ ∞. Then for any ε > 0 there exists a neighborhood
[0, δ] of the origin where

xβ1+ε ≤ ω(x) ≤ xα1−ε, 0 ≤ x ≤ δ, (5.19)

with α1 = α+βA
1+A and β1 = α+βB

1+B , α ≤ α1 ≤ β1 ≤ β.

Proof. The statement of the lemma follows immediately from Lemma 5.5
since µn = α1 + ξn and νn = β1 + ηn where |ξn| < ε and |ηn| < ε for large
n.

Corollary. Under the assumption that limits (5.18) exist, a more exact es-
timate of the index numbers of an (α, β)-function holds than given in (5.9);
namely,

mω ≥
α + βA
1 +A

and Mω ≤
α + βB
1 + B

. (5.20)

5.4 Construction of an (α, β)-Characteristic ω ∈ Φ with Prescribed
Index Numbers mω,Mω ∈ [α, β] .

In general, the index numbers mω and Mω of an (α, β)-function ω lie in the
interval [α, β] according to (5.9). Since we are interested in constructive ex-
amples of non-equilibrated functions in Φ, we aim to show that there exist
explicit examples of (α, β)-functions with mω < Mω.

We give constructions which provide a variety of examples of non-equi-
librated (α, β)-functions. First in Lemma 5.7 and Theorem 5.9 we give con-
structions of (α, β)-functions which certainly have different index numbers
mω and Mω, and even more, given ε > 0, we indicate such (α, β)-functions
for which mω ∈ [α, α + ε] and Mω ∈ [β − ε, β]. Then in Theorem 5.10 we give
constructions of (α, β)-functions for which mω = α and Mω = β.
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Lemma 5.7. Given 0 < α < β < 1 and any λ1 and λ2 such that 0 < α <
λ1 < λ2 < β < 1, there exists an (α, β)-function ω(x) such that

ω(x)
xλ1

is not almost increasing and
ω(x)
xλ2

is not almost decreasing. (5.21)

Such a function is given by (5.4) with the choice, for instance, of

c2n = A−T n

, c2n+1 = AbT n

, b =
β − λ1

2(λ1 − α)
+

β − λ2

2(λ2 − α)
T, (5.22)

where A > 1 and T > (λ2−α)(β−λ1)
(λ1−α)(β−λ2)

(> 1), and the partition {an} is calculated
according to (5.14).

Proof. To obtain an example of an (α, β)-function ω(x) with property (5.21),
it suffices to construct such an (α, β)-function ω(x), for which there exist
sequences xn → 0 and yn → 0 such that ω(xn)

x
λ1
n

→∞ and ω(yn)

y
λ2
n

→ 0. We shall

construct such an example of an (α, β)-function ω that

max
x∈I2n+1∩I2n

ω(x)
xλ1

→∞ and min
x∈I2n+1∩I2n

ω(x)
xλ1

→ 0 as n →∞. (5.23)

(Recall that I2n+1 = [a2n+2, a2n+1], I2n = [a2n+1, a2n].) To this end, we ob-
serve that for any λ ∈ (α, β)

max
x∈I2n

ω(x)
xλ

= max
x∈I2n+1

ω(x)
xλ

= cθ
2n+1c

1−θ
2n , (5.24)

min
x∈I2n

ω(x)
xλ

= cθ
2n−1c

1−θ
2n , min

x∈I2n+1

ω(x)
xλ

= cθ
2n+1c

1−θ
2n+2, (5.25)

where θ = λ−α
β−α which follows from (5.4) and (5.5). Therefore, to get (5.23),

we must have
lim

n→∞
cθ
2n+1c

1−θ
2n = lim

n→∞
cθ
2n+1c

1−θ
2n+2 = 0, (5.26)

where θk = λk−α
β−α , k = 1, 2; 0 < θ1 < θ2 < 1. To obtain (5.26), we choose the

odd coefficients c2n+1 via the even ones in the following way

c2n+1 =
ξn

cν1
2n

and at the same time c2n+1 =
ηn

cν1
2n+2

, (5.27)

where
νk =

1− θk

θk
=

β − λk

λk − α
, k = 1, 2,
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and ξn and ηn are arbitrary sequences monotonically tending to ∞ and 0,
respectively, lim

n→∞
ξn = ∞, lim

n→∞
ηn = 0. To make both the relations in (5.27)

be concordant with each other, we restrict the choice of the even coefficients
c2n by

cν2
2n+2

cν1
2n

=
ηn

ξn
→ 0. (5.28)

(Recall that ν2 < ν1.) This restriction implies that the coefficients c2n and
consequently the partition points an must rapidly tend to zero as n → ∞.
Among examples 1)–3) given above, only example 3) satisfies (5.28). We
choose c2n = A−T n

with A > 1, T > 1 and then

cν2
2n+2

cν1
2n

= A−(ν2T−ν1)T
n

(5.29)

where we have ν2T − ν1 > 0 under the choice T > ν1
ν2

= θ2−θ1θ2
θ1−θ1θ2

. Therefore,
the only restriction put on the choice of the sequences ξn → ∞ and ηn → 0
up to now is that ξn

ηn
= B−T n

, where B = Aν2T−ν1 > 1. We may choose for

example, ξn =
√

BT n →∞ and ηn =
√
−BT n → 0. Then we arrive at (5.22).

We also observe that according to (5.14) the corresponding partition points
an are easily calculated as a2n = A−T n

1 and a2n+1 = A−T n

2 , where A1 =
AB , A2 − AC , C = 2+ν1+ν2T

2(β−α) , the property a2n+1 < a2n < a2n−1 being
automatically satisfied by Lemma 5.4 under the choice (5.14).

Remark 5.8. Obviously, the choice of the coefficients cn we made in the proof
of Lemma 5.7, is not unique. As can be seen from the proof, this choice is
restricted only by the following three requirements:
1) c2n satisfy the condition lim

n→∞

c
ν2
2n+2

c
ν1
2n

= 0,

2) c2n+1 are chosen via c2n as c2n+1 = ξn

c
ν1
2n

= ηn

c
ν2
2n+2

, where ξn → ∞ and
ηn → 0 are arbitrary,
3) c2n and c2n+1 are strictly decreasing and increasing, respectively.

The following theorem is in fact just a rephrasing of Lemma 5.7.

Theorem 5.9. Given 0 < α < β < 1 and an arbitrarily small ε > 0(
0 < ε < β−α

2

)
, there may be explicitly constructed an (α, β)-function ω(x) =

ωε(x) such that

α ≤ mω ≤ α + ε and β − ε ≤ Mω ≤ β. (5.30)

This function is given by (5.4) with cn defined in (5.22) with the choice A >

1, T >
(

β−α−ε
ε

)2

and b = β−α−ε
2ε + ε

2(β−ε)T.
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Proof. The statement of the theorem follows from Lemma 5.7 (with the
choice λ1 = α+ε, λ2 = β−ε) which is applicable since (α, β)-functions belong
to Φ according to Lemma 5.3.

Theorem 5.10. Given 0 < α < β < 1, there may be explicitly constructed an
(α, β)-functions ω(x) such that

mω = α and Mω = β. (5.31)

This function is given by (5.4) with the choice

c2n = e−Aun
, c2n+1 = eAvn

, (5.32)

where A > 1 and un and vn are arbitrary positive increasing sequences with
lim

n→∞
un = lim

n→∞
vn = ∞ such that

lim
n→∞

(vn − un) = lim
n→∞

(un − vn−1) = ∞. (5.33)

Proof. To prove (5.31), according to Lemma 4.2 we have to show that for
any ε > 0 the function ω(x)

xα+ε cannot be almost increasing and the function
ω(x)
xβ−ε cannot be almost decreasing. To this end, it suffices to show that there
exists sequences xn → 0 and yn → 0 such that

lim
n→∞

ω(xn)
xα+ε

n
= ∞ and lim

n→∞

ω(yn)

yβ−ε
n

= 0. (5.34)

We choose xn = a2n+1 and yn = a2n independently of ε and show that (5.34)
is valid in this case for any ε > 0.

Direct calculation by means of formulas (5.4) and (5.14) yields

lim
n→∞

ω(a2n+1)
aα+ε
2n+1

= c1−ε1
2n cε1

2n+1 and lim
n→∞

ω(a2n)

aβ−ε
2n

= cε1
2nc1−ε1

2n−1

where ε1 = ε
β−α . Therefore, by (5.34) we arrive at the conditions

lim
n→∞

(
ε1

1− ε1
ln c2n+1 − ln

1
c2n

)
= lim

n→∞

(
ε1

1− ε1
ln

1
c2n

− ln c2n−1

)
= +∞

(5.35)
which must hold for every ε1 > 0. Obviously, there exist a large choice of
increasing sequences c2n+1 and decreasing sequences c2n for which (5.35) is
valid. It’s a matter of direct verification to show that for example the sequences
given in (5.32)–(5.33) satisfy relations (5.35).
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Corollary 5.11. Let 0 < α < β < 1. Any (α, β)-function corresponding to
the partition

a2n+1 = e−
Aun+Avn

β−α , a2n = e−
Aun+A

vn−1
β−α (5.36)

where A > 1 and the sequences un and vn are from Theorem 5.10, has the
property

mω = α, Mω = β.

Indeed, it suffices to note that the values of the coefficients cn given in
(5.32) provide formulas (5.36) for partition by (5.4).
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