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AN n-th ORDER INTEGRAL AND ITS
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Abstract

An n-th order symmetric Perron type integral is defined and its
properties are studied. An integration by parts formula is proved and
applied to solve problems related to summable trigonometric series.

1 Introduction.

The P"-integral introduced by James, [10], was defined to solve problems
related to summable trigonometric series, [11]. The definition has some lacunae
that were removed in [13]. This integral is such that while the n-th primitive
of an integrable function exists the previous primitives may not exist. The
absence of the first primitive caused difficulty in expressing the coefficients of
a trigonometric series by the usual Fourier formulae and expressions for the
coefficients of a trigonometric series take a different form; see [13, 7]. Also,
because of this absence of the first primitive, an integration by parts formula
could not be proved in its usual form and therefore these Fourier coefficients
were obtained by formal multiplication of trigonometric series thus avoiding
the need for integration by parts; see [11, 13, 7]. In addition additivity of the
integral for abutting intervals was a problem for this integral; see[8, 9, 19].
In the present paper the definition of the P™-integral is simplified so that
a first primitive exists; see also [12]. This enables us to obtain an integration
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by parts formula and then to get the usual Fourier formulse when applied to
trigonometric series. Finally additivity of the integral for abutting intervals
holds with no additional conditions; see [8, 9, 19].

2 Preliminaries.

Let f be a real-valued function defined on some neighborhood of x,x € R. If
there is a polynomial P(t) = P,(t) of degree at most k such that

SU +0)+ (D)4 = 0] = P0) + (), (2.1)
then f is said to possess a k-th symmetric de la Vallée Poussin (d.l.V.P)
derivative at x, and if ay, /k! is the coefficient of t* in P(t), then ay, is called the
k-th symmetric d.1.V.P. derivative of f at x, denoted by D* f(z).! It is clear
that P(t) has only even or odd powers of ¢ according as k is even or odd. Also
if D*f(z) exists, then D*=2f(z) also exists, where we take D°f(x) = f(x).
Thus P(t) in (2.1) has the form

k/2

2i
Z(;,)'D%f(gc) if k is even
i)!
_ Ji=0
P(t) (k—1)/2 (2it1 (2.2)
U 94 e
2 @it 1)!D flx) if k is odd.
Suppose that DF f (z) exists and write
tk+2 1 .
mwkw(ﬁ%t) = §(f(x +t)+ (=1)*f(x — 1)) — P(t) (2.3)

The upper symmetric d.1.V.P. derivate of f at x of order k+ 2 is defined to be

D" f(x) = limsupwiga(f, . ). (2.4)
t—0

Replacing limsup in (2.4) by liminf one gets the lower derivate D**2f(z). If
5k+2f(x) — D*2 f(x), the common value is the derivative D¥*2 f(x), possibly
infinite in this case.

The function f is said to be smooth at x of order k + 2 if D¥ f(x) exists
and lim; o twgyo(f,z,t) = 0. If f is smooth at x of order k + 2, we write

f € Skqa(x), or f € Spyo at x.

1Here and elsewhere o(tk) denotes a quantity which when divided by t* tends to 0 as
t — 0; and O(t*) denotes a quantity which when divided by t* remains bounded as t — 0.
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If there is a polynomial Q(t) = Q. (¢t) of degree at most £ such that
fl@+1t) =Q(t) + o(t"), (2.5)

then f is said to possess a ¢-th Peano derivative at x, and if ay/¢! is the
coefficient of t* in Q(t), then ay is called the /-th Peano derivative of f at ,
denoted by f()(z). It is clear that if f(;)(x) exists, then f(,_1)(z) and D’ f(z)
also exist; where fo(z) = f(«). Thus Q(¢) in (2.5) has the form

L i
Q) =Y 5 fo @) (2.
i=0

If fio)(x), exists we write

t@-‘,—l
—_— t) = t) — Q7). 2.7
The upper and lower Peano derivates of f at x of order {41 ,which are denoted
by f(e+1)(x) and i(“_l)(x), are obtained by taking upper and lower limits of

Ye+1(f, z,t) respectively. By suitably restricting, the definitions of unilateral
Peano derivates are obtained; the right, (respectively left) Peano derivate of
f at x of order ¢ being denoted by f(‘;)(x), (respectively f(;)(a:))

For the definition of n-convex functions we refer to [2]. Recall that a
function f is said to satisfy property R in an interval I, written f € R in I, if
for every perfect set P C I there is a portion of P on which f restricted to P is
continuous; see [13]. The property R is also called the Baire*-1 property. The
class of Darboux functions will be denoted by D and p will denote Lebesgue
measure.

3 Auxiliary Results.

Lemma 3.1. Let f : [a,b] — R be continuous and let D" f exist in (a,b). If
f € Spio(x) for all x € (a,b), then D'f € R in (a,b) fori=n,n—2,... .

PROOF. Let i, as in the statement, be fixed and let P C (a,b) be any perfect
set. Choose a < ¢ < d < b such that P N [c,d] is perfect. Then it follows
from [4, Theorem 3.1] that there is a sequence of closed sets {Qy} such that
[c,d] = Up—; Qk and D' f|Qy, the restriction of D'f to Q, is continuous for
all k. Since PN [c,d] = U2, (Qx N P), by Baire’s theorem there is a ky and a
portion P N (a,3) of PN |c,d] such that PN (a, 3) C Qp,. Since D' f|Qy, is
continuous, D' f|P N (a, B) is continuous and so D'f € R in (a,b). O
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Theorem 3.2. Let f : [a.b] — R be continuous and assume that in (a,b):
(i) D"%f exists and D*f € D fork=mn—2,n—4,...;
(ii) D" f >0 almost everywhere;

(iii) D" f > —oco nearly everywhere?;

() f € Sy.

Then the ordinary derivative of order (n—2), F=2) exists, is continuous and
convez in (a,b).

PRrROOF. By Lemma 3.1, D'f € R in (a,b) fori =n —2,n—4,.... Hence f
satisfies the hypotheses of [13, Theorem 3.2|, or its analogue according as n

is even or odd, and hence by that theorem f("~2) exists, is continuous and
convex in (a,b), completing the proof. O

Lemma 3.3. If f € Spya(wo) and if f)(xo) exists, then
Feeny(@o) =D f(wo), and £, (w0) = D! f(ao).
PROOF. Since
Vi+1(f, @0, t) = %Hwk—i-?(ﬁ 0, 1) + w41 (f, 2o, 1),
the result follows. O

Lemma 3.4. If F is measurable and if D"~2F exists on a set E and if
—00<D'F<D'F <o, forzeE, (3.1)
then F(,y erists almost everywhere on E and is finite there.

PRrRoOOF. Write

r

Ap(z,t, F) =Y (=1)" (;) F(z 4+ jt— %rt). (3.2)

=0

2That is except on a countable set.
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Then since A, (z, —t, F) = (=1)"A,(x, t, F'), we have from (3.2) and (2.3) that

A (z,t, F) :% (Ar(x, tL,F)+ (1) A (x, —t, F))

:jzo (_12)r,j C) (F(x + jt — %rt) b (1) P — jt + %rt))
(3.3)
=30 (§) (P 0 + U e (- )

where P is a polynomial of degree at most (r —2) having the form (2.2). Since
Z;ZO(—l)T 9( )jt=0fori=0,1,...,r — 1, we have from (3.3) that

\ o
Ap(at, F) =Y (~1)77 (T) er (F,,(j — %r)t). (3.4)

= Jj 7!

Since by (3.1), w,(F,z,t) = O(1) ast — 0, for each x € E, we have A,.(z, ¢, F) =
O(t"), and so by [15, Theorem 3.1] the result follows. O

4 The T"-Integral.

Definition 4.1. Let f be an extended real valued function defined on the
interval [a, b] and let n > 2 be a fixed positive integer. A function @ : [a,b] — R
is said to be a T™-major function of f if:

(i) @ is continuous on [a, b];
(i) Q(n—2) exists, finitely, on [a, b];

(iii) Qn—1) exists, finitely, on [a.b] except on a set of measure zero in (a, b);
(iv) Quy(a) =0forr=0,1,...,n—1;

(v) D”Q > f almost everywhere on (a,b);

(vi) D"Q > —oo nearly everywhere on (a,b);

(vii) @ € S, (x) for = € (a,b).

A function ¢ : [a,b] — R is said to be a T™-minor function of f if —qis a
T"-major function of — f.
If there is no confusion we shall simply say major or minor, omitting 7.
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Lemma 4.2. If Q and q are major and minor functions of f, then for each
r1<r<n,(Q—q) ™" exists and is k-convex in [a,b] for all k, 0 <k <r;
and 80 Q(n—ry = q(n—r) 18 k-convex in [a,b] for all k, 0 <k < 7.

PROOF. Let ¢ = Q —¢. Then ¢ is continuous and ¢, o) exists in [a,b]. So
¢y € D, 1 <k <n—2;[16]. Also ¢ € S,(x) for x € (a,b) and on (a,b),
D"¢ > D"Q—D"q > 0 almost everywhere and D" ¢ > —oo nearly everywhere.
Hence by Theorem 3.2 ¢(,,_z) exists, is continuous and convex in [a,b]; so
¢(n—2) is the derivative #"=2) on [a,b], [16]. By convexity, the right-hand
derivative of $("~2) exists in [a,b), the left-hand derivative of ¢("~2) exists in
(a,b], and ¢(»~1) exists nearly everywhere in (a,b) and is non-decreasing on
the set on which it exists. Also ("~ (z) = [ ¢("~V), z € [a,b], and so ("~
is non-negative and non-decreasing on [a, b]. Since ¢("~2) = Qn-2) = Un—2),
the result is proved for r = 2.

Suppose that the result is true for a fixed 7, 1 < 7 < n. Since (Q —¢)™~")
is k-convex in [a,b] for 0 < k < 7, we have (""" V(z) = [Tp"™") 2z €
[a,b], and hence ¢(*~"~Dis k-convex on [a,b] for 0 < k < 7 + 1; that is,
Q(n—r—1) = G(n—r—1) is k-convex on [a,b] for 0 < k < r + 1, proving the result
for r 4+ 1; and so the proof has been completed by induction. O

Let M, respectively M, be the family of all major, respectively minor,
functions of f. Let

U= inf Q—1)(b) and V = sup q(n,—1)(b).
QeM qeM

If Q € M and ¢ € M, then by Lemma 4.2 (Q — ¢)"?has a right-hand
derivative at a and a left-hand derivative
at b, and

0

Qn-1)(a) = gn-1)(@) = (Q — 9)" V(a)
< (Q - Q)(n_l)(b) = Q(nfl) (b) - Q(nfl)(b)
Hence Qn—1)(b) > q(n—1)(b) which shows that U > V.

If U =V # +oo, then f is said to be T"-integrable on [a,b] and the
common value is called the T™-integral of f and is denoted by (T™) fan f or
() 7 f(t)dt.

Let f be T"-integrable on [a, b] and let € > 0 be arbitrary. Then there is a
Q € M and a ¢ € M such that Q,—1)(b) — q(n—1)(b) < €. Hence from Lemma
4.2 and from the definitions of @ and g we have almost everywhere in (a,b)
that

0 < Qn-1)() = qgn-1)(x) < Qu-1)(b) = gn—1)(b) <e. (4.1,1)
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Since Q(n—2) — q(n—2) is convex,

Q@) =t 2) = [ (Quuty ~ dtn)s 2 € a1,
Hence from (4.1,1) and Lemma 4.2 for = € [a, b] we have

0 < Qn-2)(T) = qn-2)(7) < Qn—2)(b) — qn—2)(b) <€(b—a).  (41,2)

So, since € is arbitrary, for each z € [a, b],
ini Q(n—2)(x) = SUup q(n—2) ($) = FQ(x)a say.
QeM qeM

The function F3 is called the second primitive of f. Suppose that the r-th
primitive of f is defined, F}., 2 < r < n, and that the relation

0< Q(nfr) ('r) —4(n—r) (.13) < Q(nfr) (b) — 4(n—r) (b) < E(b - a)r—l’ (4.1,1‘)

for x € [a,b] is obtained. Since Q(,—r—1) — ¢(n—r—1) is convex,

Q(n—r—l) (l‘) - Q(n—r—l)('r> = / (Q(n—r) - q(n—r))a T e [a7b]'
Hence from (4.1,r) and Lemma 4.2 we have for = € [a, b]

0< Q(n—r—l)(x) - q(n—T—l)(x)

41r4+1
< Q(nfrfl)(b) — 4(n—r-1) (b) < G(b - a)r7 ( o )

and so, since € is arbitrary, for each = € [a, b],

info(nfrfl)(x) = sup (I(nfrfl)(x) = F’r‘Jrl(x)? say,
QeM qeM

the (r + 1)-th primitive of f. So all of the primitives F;., 2 < r < n of f have
been defined and it remains to define the first primitive of f, F3.

Henceforth we shall, where there is no confusion, write integrable and
integral instead of T"-integrable and T™-integral, and omit the prefix (T},) in
the notation (™) [ f.

Lemma 4.3. Let f be integrable on [a,b] with F,., 2 < r < n, its r-th primitive.
Then there is a sequence of major functions {Q;}, and a sequence of minor
functions {q;} such that {(Q:)m—r)} and {(qi)(n-ry} converge uniformly in
[a,b] to F, 2 <r <n.
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PROOF. Let ¢ be a positive integer. Since f is integrable, there is a major
function @Q; and a minor function ¢; such that (Q;)m—1)(b) — (¢i)(m—1)(b) < %
From this we get, as in (4.1,1)—(4.1.r), for = € [a, b] that

| =

0 < (Q)n—n (@) = (@) (n—ry(@) < =(b—a)" "

~

Hence from the definition of F,. we have for « € [a, b] that

0 < (Qi)(n—r)(@) = F(x) < (Qi)(n—r)(®) = (@) (n—ry () < (b —a)"".

S| =

This shows that the sequence {Q;)(,,—r)} converges uniformly to F,. in [a, b].
The rest is clear. O

Lemma 4.4. Let f be integrable on [a,b] with F,, 2 < r < n, ils r-th primi-
tive. Then for any major function Q and any minor function q the functions
Qn—r) — Frand F. — qn—y) are k-convex, 0 <k <r, on [a,b].

PROOF. By Lemma 4.3 there is a sequence of minor functions of f,{g;}, such
that {(¢i)(n—r)} converges uniformly to F,. on [a,b], for 2 <7 < n. Let Q be
any major function of f. Then by Lemma 4.2, Q,—,) — (¢i)(n—r) is k-convex

on [a,b] for 0 < k < n, and for each i, 4 =1,2,3,... . Hence
Q(nfr) - F = Q(nfr) - nh_{go((h')(nfr) = nh—{gc (Q(nfr) - (Qi)(nfr))
is k-convex on [a,b]. A similar argument can be given for F,. — q(,—p). O

Theorem 4.5. Let f be integrable on [a,b] and let F,, be its n-th primitive.
Then (Fp)(n—2) exists, finitely, on [a,b] and there is a set B C [a,b] such
that @ € B, b € B, u(B) = b —a and (F,)n—1 exists, finitely, on B. Also

(Fu)n-1(a) = 0 and (Fu)n-1(0) = [, f.

PRrROOF. Let @ be any major function of f. Then by Lemma 4.4 the function
¢ = Q — F, is k-convex, 0 < k < n, on [a,b]; in particular, ¢ is n-convex
on [a,b]. So ¢, exists on [a,b]. Hence since Q(,—2y exists in [a,b], so
does (Fy,)(n—2). Also ¢&71)(a) and ¢&71)(b) exist and ¢, 1) exists , finitely,
nearly everywhere on (a,b). Since Q(,—1)(a) and Q(,—1)(b) exist and Q,_1)
exists almost everywhere on (a,b), we have that (F,),—1) exists, finitely at a
and b, and almost everywhere in (a,b). Let

B = {x € [a,b]; (F) (n—1)(x) exists finitely}.

Then B satisfies the requirements.
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Let € > 0 be arbitrary. Then there is major function Q of f and a minor
function ¢ of f such that

0< Q(nfl) (b) - Zj(nfl)(b) <€ (42)

By Lemma 4.4 if @ is any major function of ' and ¢ any minor function
of f, Q — F,, and F,, — q are k-convex, 0 < k < n, and hence

Q(n—l) (b) - (Fn)(n—l)(b) > 0 and (Fn)(n—l) (b) - q(n—l)(b) > 07 (43)

for Q € M, ¢ € M. Hence from (4.2) and (4.3)

0 < Qu-1)(b) = (Fn)(n-1)(b) < €. (4.4)
From (4.3) and (4.4)
inf Q(n—l)(b) = (Fn)(n—l)(b)' (45)
QeM

Since (4.3) holds if b is replaced by a, it follows from the definition of @ and
q that (Fy,)m—1)(a) = 0. O

Definition 4.6. The set B in Theorem 4.5 is called the base of the integral
and (F},)(,—1) is called the first primitive of f, denoted by F7.

Clearly the first primitive F} is only defined on the set B.

Corollary 4.7. If f is integrable on [a,b] and if B is the base of the integral,
then for any c € B f is integrable on |a,c] and (F},)m—1)(c) = f: f.

PROOF. By k-convexity the relations (4.2)—(4.5) hold if b is replaced by ¢ and
the rest is clear. O

Theorem 4.8. If QQ is a major function of f and q a minor function of f,
then Qn—1y and q,—1) exist on B.

PrOOF. By Lemma 4.4, if F,, is the n-th primitive of f, then Q — F,, is n-
convex. So the unilateral derivatives (Q — Fn)?;hl) and (Q — Fn)(_nq) exist
in [a,b) and (a,b] respectively. Let & € BN (a,b). Then since (F,)n—1)(§)
exists both Qa_l)(f) and Q(_n_l)(g) exist. Since Q € S,(§), it follows that
Qn-1)(§) exists by [13, Lemma 2.1]. The proof for the case of the minor
function is similar. O

Theorem 4.9. If f is integrable on [a, b] with F, its r-th primitive, 1 <r <n,
then:
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(1) (Fn)(n—r)(x) = Fr(z) for x € [a,b], 1 <r <n;
(ii) D"F,, = [ almost everywhere in (a,b);
(iii) F,, € Sp(x) for all z € (a,b).

PROOF. (i) We may suppose that 1 < r < n since the case r = n is trivial
and the case r = 1 is Theorem 4.5. By Lemma 4.4 Q — F,, and F;,, — q are
k-convex for 0 < k < n and so (Q — F,)"™") and (F,, — q)(*~") are k-convex
for 0 < k < r. Hence for = € [a,b] and all Q € M, ¢ € M,

Qn-r) (@) = (Fn)(mn—r)(x) >0, and (F,) - (2) = qn—py(x) > 0. (4.6)

Let € > 0 be arbitrary. By (4.1,r) there is a major function of f, Q, and a
minor function of f, ¢, such that

0< Q(n—r) (I) - (j(n—r) (l’) < E(b - a)ril for z € [a’a b] (47)

From (4.6) and (4.7)
0< Q(nfr) (.13) - (Fn)(nfr) (.73) < €(b - a)r—l for z € [CL, b] (48)

From (4.6) and (4.8)

erelgﬂQ(nfr)(x) = (Fn)(nfr) (.’E) for z € [a?b]' (49)

But by definition the left-hand side of (4.9) is F,.(z), so the proof of (i) is
complete.
(ii) For any positive integer k, let

Ey = {:E sz € (a,b); f(z) > D"F,(x) + %}

Suppose that Fj has positive outer measure, p say, and choose € such that
0<e< 2% Let @ be a major function of f such that

0<Qn-1)(b) = (Fn)n-1)(b) <& (4.10)

such a @ exists by (4.5). Let R = Q(—1) — (Fu)n-1) on B. Then R is
non-decreasing since @ — F), is n-convex. Extend R to the whole of [a,b] as a
non-decreasing function. Then by (4.10)

/bR’ < R(b) <. (4.11)
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Let
/ 1 / 1

Gy = {x;xEBﬂEk;OSR(x) < %} and Hy, = {x; x € B;R'(z) > ﬁ}
Then Hj, is measurable and p(Hy) < p by (4.11). Since pu(B) = b — a, the set
BN Ey has outer measure p and, since BNE, C G, UH}, G has positive outer
measure. Since @, — I}, is n-convex, Q,—2y — (Fi)n—2) is convex and so by
21, Vol. I, p. 328, Lemma 3.16] D*(Q(r,—2) — (Fy) (n—2)) exists, finitely, almost
everywhere in (a,b). Hence D™(Q — F,,) exists, finitely, almost everywhere in
(a,b), and also, by Lemma 3.4, so does the Peano derivative (Q — F},) (). Since
(Q — Fy)(n—1) = R almost everywhere in (a,b) by [21, Vol. II, p. 77, Theorem
4.26] D™(Q — F,) = (Q — Fy)(n) = Ry, almost everywhere in (a,b). Since R
is monotonic, we deduce that D"(Q — F,) = R’ almost everywhere in (a,b).
So almost everywhere on Gy,

1

But this is a contradiction since Gy, C Ej. Therefore u(Ey) = 0 and since
{w€ (@) f(@) > D"Fo(0)} = U B,

we have that f < D"F, almost everywhere in (a,b). Similarly f > D"F,
almost everywhere in (a, ). This completes the proof of (7).

(#ii) Let € > 0 be arbitrary and @ a major function of f, ¢ a minor function
of f such that

Q(nfl) (b) - q(nfl)(b) <e (412)
Let ¢ € (a,b) and choose h, 0 < h < min{c — a,b — ¢}. By the mean value
theorem there is a 6, 0 < 6 < 1 such that

hwn(Q, ¢, h) — hwy, (Fy, ¢, h) =hw,(Q — F,c,h) = thQ((Q — Fo)(n-2): ¢ Hh)

:thg (Q(n_z) - (Fn)(n—Q)a C, Hh) (413)
:eth (Q(n_g), C, Gh) - 3hw2 ((Fn)(n—2)7 C, 0h) .

Since (Q — Fy,)(n—2) is non-decreasing,

Qn—2)(c = 0h) — (Fp)(n—2)(c = 0h) = Q(n—2)(c) + (Fn)(n—2)(c) <0 (4.14)

and since (Q — Fy,)(,—2) is also convex,

Q(n-2)(c+ 0h) = (Fn)(n—2)(c + 0h) = Qn—2)(c) + (Fn)(n—2)(c)
c+6h
= [ @ Fon = Qo 0) = (Fy )0 (4.15)
S(Q(nfl)(b) - q(nfl)(b>)9h < eﬂh,
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by (4.12). Adding (4.14) and (4.15) and dividing by 6h,
Ohwo (Q(n_g), c, Qh) — thg((Fn)(n_Q), c, 9h) < €. (4.16)
From (4.13) and (4.16)
hwn (Q, ¢, h) — hw, (Fy, ¢, h) < €. (4.17)

Since Q € S,(c), from (4.17) liminfy_o hw,(Fy,c,h) > —e and so since € is
arbitrary, liminf, o hw,(F,,c,h) >0 .

By a similar argument using ¢ we get that limsup;,_,qhwy,(F,,c,h) <0,
which completes the proof of (4i). O

Theorem 4.10. If f is T"-integrable, then f is T™-integrable for any m > n
and the two integrals are equal.

PROOF. Let f be T™-integrable and let Q) be any T"™-major function of f with
Q the (m — n)-th indefinite integral of Q with Q(T)(a) =0,r=0,1,...,m —
n — 1. Since Q(m,n) = @ in [a,b], by the mean value theorem there is for
each , a 8 = 0,,0 < 0 < 1, such that wm(Q,m,t) = wp(Q,z,0t). Hence
D™Q(z) > D"Q(x) for all z and Q € S,,(z) for z € (a,b). So Q is a T™-
major function of f. Also Q(,—1)(b) = Q(m_l)(b) by the mean value theorem.
The rest is clear. O

Theorem 4.11. If f is integrable, then f is measurable and finite almost
everywhere.

PROOF. Let F, be the n-th primitive of f. Then F,, is continuous and since
Yo" (8)j" = 0fori=0,1,...,n—1and 37 ;(~1)"" (aj" = n!Fwe
t

have by (3.4) that for each z € (a, b) for which D" F,, () exists, %in&%
= D"F,(x), where A, (z,t,F,) is given by (3.2). Therefore D"F,, is mea-
surable on the set where it exists. By Theorem 4.9 (%), f is measurable.
Suppose that f = oo on a set of positive measure. Then by Theorem 4.9
(i), D™F,, = oo on a set of positive measure. Let ¢ be any minor function
of f. Then F,, — ¢ is n-convex and as in the proof of Theorem 4.9 (i) it can
be shown that D™(F,, — q) exists, finitely, almost everywhere in (a,b). Since
D"F, = D"q + D™(F,, — q), we have that D"q = oo on a set of positive
measure, which is a contradiction. Thus f < oo almost everywhere. Similarly
f > —oo almost everywhere. O

Theorem 4.12. If f is integrable on [a,b] and if c € B, where B is the base of
the integral, then f is integrable on [a,c] and [c,b]. Conversely if f is integrable
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on both [a,c] and [c,b] for some ¢, a < ¢ < b, then f is integrable on [a,b]. In

both cases . . .
/af:/Ger/cf. (4.18)

PROOF. Let f be integrable on [a,b] and let ¢ € B. Then, by Corollary 4.7, f
is integrable on [a, ] and

/ "= (Fa)n (@), (4.19)

where F,, is the n-th primitive of f on [a,b]. Also as remarked in the proof of
that corollary (4.5) holds if b is replaced by ¢ and so

inf Qn-1)(c) = (Fn)(n-1)(c). (4.20)
QeM
For each Q € M let
n—1 i
Q(z) = Q(z) — ({E;C) Qi(c), for c <z <b.
i=0 :

Then Q is a major function of f on [¢,b]. Also
Qn—1)(D) + Qn_1)(¢) = Qr—1)(b) (4.21)

Hence, if U is the family of major functions of f on [c, b], we have from (4.21)
that

inf U,—1)(b) + inf Qn-1)(¢) < inf Qru_1)(b) + inf Quo1)(c)  (4.22)
UeU QeM QeM QeM
< inf (Qun_1)(b) + Q(n_1(c
Q€M(Q( 1)(b) + Qn-1)())
= lnfiQ(nfl)(b)
QeM
From (4.19), (4.20) and (4.22)
b c
inf,U(n—l)(b) S/ f—/ I (4.23)
Uuel a a

Similarly if U is the family of minor functions of f on [, b],

b c
jelgwn—m(w > / f- / f. (4.24)
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From (4.23) and (4.24) f is integrable on [c,b] and (4.18) holds.

Conversely, let f be integrable on [a, ] and [c, b] and let € > 0 be arbitrary.
Let Q, respectively g, be a major, respectively a minor, function of f on [a, ¢],
and let U, respectively u, be a major, respectively a minor, function of f on
[e, b], chosen so that

Q(n,l)(c) - q(n,l)(c) <€, and U(n,l)(b) - U(n,l)(b) < €. (4.25)
Let
- Q) ‘ ifa<z<ec,
= {U@c) PSSO fesash )
and
oy q(zx) . ifa<z<e
ale) = {u(z) + Z?z_ol (‘r;c)qu;(c) ifc<z<b. (4.27)

Then @ is a major function of f on [a,b], and G is a minor function of f on

[a,b]. Also by (4.25) Q(n—1)(b) —§(n—1)(b) < 2¢. Hence f is integrable on [a, b].

If F, is the n-th primitive of f on [a,b] and if @ is as in (4.26), then let
¥ = Q- F,. Since VU is n-convex on [a, b], the unilateral derivatives \IJ?;_D (o),
and \Il(fnfl)(c) exist and are finite. Further ¥ € S, (c) since Q € S,,(c), and by
Theorem 4.9 (i) F,, € S,(c). Since

h
(’Yn—l (\II; & h) - ’yn—l(\lla ¢, _h)) = Ewn(\pa ¢, h)

N | =

we get, by letting h — 0+ that \IJ?;L_l)(c) =V, 4y(c). Thus ¥(,_1)(c) exists,

finitely, and from (4.26) Q(n_l)(c) exists, finitely, so then does (F},)(n—1)(c).
Hence ¢ € B and the proof is complete by the first part. O

Theorem 4.13. Suppose that:
(i) F is continuous on [a,b];
(i) F(n—o) exists finitely on [a,b];
(iii) F(,_1y exists finitely on [a,b] except on a set of measure zero in (a,b);
(iv) D"F = f almost everywhere in (a,b);
(v) —o0 < D"F < D"F < oo nearly everywhere in (a,b);

(vi) F € S, (x) for x € (a.b).
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Then f is T™-integrable on [a,b] and (T™) f;f = Fp1)(b) — Fn—1)(a).

PROOF. The function ®(z) = F(z) — S0 (wf.a)iF(,-)(a) for a < o <b, is

7!
both a T™-major function and a T"-minor function of f on [a,b]. So f is

T™-integrable on [a, b] and

Tn / f (I)(n 1) ) F(n_l)(b)fF(n_l)(a). O

5 Integration by Parts.

In what follows we need two theorems on the C, P-integral introduced in [5]
and which is equivalent to the Z,-integral defined in [1]. A major function
for the Z,-integral of a function f defined on [a,b] is required to satisfy the
following conditions on [a, b]:

(i) M is continuous;
(if)
(iil) M pq) 2 f;
(iv)

The conditions for a minor function are similar. We note that the conditions
(#i) and (iv) can be relaxed to

M,y exists finitely;

M(r+1) > —00.

(iil)" M, 41y > f almost everywhere;
(iv)" M(,1) > —oc nearly everywhere.

This modification defines an integral, say the Z-integral, that clearly in-
cludes the Z,.-integral. It can be verified that all the properties of the Z,.-
integral remain true for the Z-integral; see [6].

The theorems that we need are the following:

Theorem 5.1. If F{,y exists finitely in [a,b] and if F(, 1) exist almost every-
where in [a,b] and if F(, ) and F .41y are finite nearly everywhere on [a,b],

b
then F.11y is Z;-integrable and (Z}) fab Fiq1) = F

Theorem 5.2. Let f be Z;-integrable on [a,b] and let F(x) = (Z}) [* f for
a <z <b. Ifgis of bounded variation on [a,b] and if

1 ¢ r—1
] / (x—t)"""g(t)dt, a <z <b,

==,
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then fG is Z}-integrable on [a,b] and
b
(z )/ FG = FG‘ (Z*_ 1)/ FG'.

These are analogues for the Z*-integral of [1, Propositions 3.4 and 5.1].

Lemma 5.3. For any positive integer n > 2 we have:

. n nermy.i )0 fori=0,1,....n—1,
(Z) ZT‘ZO(_I) (T)r - {n forizn;

e oo 0 fork=0,1,...n—1,
@ S = {] ke

(iii) >, e CHC Y = ()R for k=0,1,...,n — 2

(iv) 3.5 . 1( nr(.") (nf,zfl) = (-1)"* Y n—k-1) fork=0,1,...,n— 2.

PROOF. (i) This is a well known result.
(i) If 0 < k < n then

r=0
—Ii!t::(—l)r<2)(n—r)(n—r—1)-~(n—7"—k‘+1)
:;:O(—l)r(:)(n—r)(n—r— 1o (n—r—k+1)
S Z(—l)(”) ;p

where pg = 1 and the remaining p’s depend on n and k. So by (i) I = 0 for
k=0,...,n—1and I; =1 for kK =n, as had to be proved.
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(i43) If 0 < k < n — 2 then

ny e () ()

;nil(l)r(:_i>(nr1)(nr2)...(nrk)
;!:L:ll(l)r<;l_i)(nr1)(n7’2)~~(nrk) (5.1)
quw(ﬁ_i)((rl)<n2>)---(<r1><nk1>>
B S (*2)) iw S
= =
where go = 1 and g1, ..., g, are given by

gt g = (z—(n=2))(z—(n=3) - (z—(n—k-1)). (5.2)

Since 0 < k < n — 2, we have by (i) that ZZ;S(—l)”_”_l(”Vl)yi =0,i=
0,1,...,k, and so

n—2
> (=t (”; 1) vi=—(n—1) fori=0,1,...,k (5.3)
v=0

From (5.1) and (5.3)

PGS (") iq’f

v=0

_1\n—k-1 k )
—EU S - 1 =

by (5.2) completing the proof of (%ii).
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(iv) As in (5.1) we have

Iy :nfl(—l)r (Tf 1) (" _1: - 1) (5.4)
k
S e () T -

r=1 =0
k

:% Tf(*l)nﬂ'*l (Z) ; q

v=0
where go = 1 and the remaining ¢ are given in equation (5.2). Since 0 < k <
n — 2, we have by (i) >0 (=1)""(?)v* =0 for i = 0,1,...,k, which gives
Z:;g(—l)””’*l (Mvi =n'—n(n—1)"fori =0,1,...,k. Hence by (5.2) and
(5.4)

n—~k k k
1y = (S gt Y - 14)
i= =0
(_l)nik n—k—1
= (b D= (kD) = (1" = k- 1), 0

Lemma 5.4. Let F(") exist in [a,b], for somen > 2, and let g be of bounded
variation in [a,b]. If G(z) = ﬁf;(x —t)"2g(t)dt for a < x < b, then the
function S defined by

n—2 T
S(z) = F(x)G(z) + Z(—l)" (Z) ﬁ / (x —t)""LF()GM (t)dt
) / (= )" 2F(8)g(t) dt (5.5)

1 T t
—1)" _ 4\n—2 F
V) gy [ a0 Faghar
is such that S~ egists in [a,b] and for all x € [a,D]

se V@) =([ FOE) + (-1 Fla)gla)

K'\;s\g

=S D @G @) + (-1 (Flag(o) - [ Fag).

k=0
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PRrROOF. Integrating by parts

(T_llﬂ/:(:z:t)rlF(t)G(r)(t)dt/awdfl /;1 dgz.../jl FG®™,

and taking the derivative of order (n —2), for 0 <7 < n — 2 we have

T (n—2)
<(1 / (x—t)”F(t)GW(t)dt) = (FGM)" ) (),

r—1)!

Similarly

and

(s Lo )= [

Hence from (5.5)

Since (") = (%) + ("=7) + (*}), we have

k=0
S 0 (N ) ot G )

+ (—1)"_171/: Fg+(-1)" /: (/t ng>dt~
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By Lemma 5.3 (1)

n—2

3 (” - 2) (k) (n—k—2)
2
k=0
2 n—2\ (" fn—r—2
(P =7 =2\ p(o) g(n—k-2)
e (") (M)

r=1 k=0
n—2 n—r—2
9 -2

— (_1)r (n ) ) ( (n ]: >F(k)G(n—k—2)) (57)

r=0 k=0

n—2(n—k—2) 9 9
— (—=1)" (n - ) <n -r- )F(k)G(n—k—2) = (=23

r k
k=0 r=0

(i)

k=1

S U [

and by Lemma 5.3 (iv)

S )(E o) e
2

r=1 k=1
n n—k—
n—1\/n—r—2

= (k) (n—k—2)
(T e (I e )
n—3

= (1)~ k— Q(Hf k— 2)F(k)G(n*k*2)'
k=1

Since TTA(—1)7(17) = (—1)"2 and Y0217 (7)) = (<) 2(n - 2),

we have

g(—l)r(C: f) + (:: i)) = (=1)""2(n—1). (5.10)
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From (5.8), (5.9) and (5.10)

() CE e

2 () () e o)
() (D) (o)

M

n—3
=(=1)"2(n = DFG"? + Y (=1)"F 2 (n — k = HFP G —F=2),
k=1

Finally, integrating by parts yields

(—1)n 1n/ng+< >/m</thg>d
/ Fg-— / gla) /tF’( Jg(w)du)de)

=1} ((n = DF@E™ D (@) ~ (0~ 1) / FGe=2)

+ /l (F(a)g(a) + (/ F’g))dt) (5.12)
Using (5.7), (5.11) and (5.12) we get from (5.6)
(n—3)
St (2) =F" D (2)G(x) + Y (-1)" 2 (n— k= 1) F® (2)G ) ()
k=1

+(=1)" n—l/FG(” 24 (-1 / /F’
Hence

St (z) =F" D (2)G () + F" Y (2)G(a)
(n—3)

+ Z n k— 2 k- 1)(F(k+1)(l‘)G(n_k_2)($)
+F(’“)( )GTTF D (@) + (1) (n — 1) F'(2)G" P (z)  (5.13)

) (Flag(a) + [ ")
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Now

—

?rmﬁ
ML

(_1)n—k—2(n k- 1)(F(k+1)G(n—k—2) + F(k)G(n—k—l))

k=2
n—3
+Y ()" (= k- WG (5.14)
k=1
n—3
= — QF(n72)G/ + Z(_l)nfkfl ((TL - k) B (n ke 1))F(k)G(n7k71)
k=2

+ (=) 3(n —2)F'G"—2)

n—2
— F(n—2)G/ + Z(_l)n—k—lF(lc)G(n—k—l) + (_1)n—3(n o ].)F/G(n_2).
k=1

Also integrating by parts successively leads to

/r Flg= Ti(_l)k—lF(k) (x)G(”_k_l)(x) + (_1)n—1 /z FM . (5.15)
a k=1 a

Using (5.14) and (5.15) we get from (5.13)
SO () = / FOOG + (—1)"1 F(a)g(a), (5.16)

which proves the first part.
Integrating the right-hand side of (5.16) by parts we get

n—2 T
S0 (w) = (DD @G @) + (1) (Flog(e) - [ Fdg).
k=0 a
which completes the proof. O

Lemma 5.5. Let M : [a,b] — R be continuous, g : [a,b] — R be of bounded
variation, and, for an n > 2, let M,_s) exist on [a,b]. If G is defined by
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G(z) = ﬁf;(x — )" 2g(t)dt, a < x < b, then the function S defined by

S(x) =M ()G (x) + i(q)r <’Z> ﬁ / I(:c — )" M E)GM (t)dt
+ ((nl)_nz),” /j(x —HP2M () g(t)dt (5.17)

T /x(x — t)"—Q(/t Mdg)dt
=21 ), .
is such that:
(i) S is continuous and S(,_2y exists in [a,b];
(1) twn (S, zo,t) = tG(x0)wn (M, zo,t) + o(1) for all xo, a < xy < b;
(iii) if n > 2, then

wn (S, o, t) =G(x0)wn (M, zo,t) + nG’ (x0) (wn,l (M, xg,t)

t
g [ € a0, €)d6) + of1) for a < a0 < b

(iii) " if n = 2, then?
w2(S7 Zo, t) :G(.To)UJQ(M, o, t) + 2g(Z0) I:wl (M7 Lo, t)

t
— t%/ fwl(M»anf)dg] +0(1)’

for those xg,a < xg < b, for which

"V g) = 0 and V' (g) = O(h). (5.18)

o xro—h

(iv) for those xg,a < xo < b, for which M, _1(xo)exists

n—1

d
3The total variation of g in [c, d] is written V(g).
c
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PROOF. Suppose that zy € [a,b], and without loss in generality assume zy =
0. Let:

tn72

P(t) :M(O) + tM(l)(O) +---+ mM(n_g)(O);

R(t) =P()C(1) + Y (ffl);)!(”) /0 (t — & PG (1)de

r

+(n_2)!/ t=&"" 2P(é‘) (€)d¢ (5.19)

() +;j = (”) / (t— O I LEG (€)de

(r— 0
+C - oo (5.20)
+ (( —)2)|/(t_€)n 2(/ Ldg)d¢;
ult) = (7(1 1););/0 (t—gn? / Mdg)d (5.21)
n—2
= (Z) (t—E)T "M (G (€)d¢ (5.22)
r=1 . .
”*”"’1(71_2)! / (t — )" M(E)g(€)de

—_1)" 0 ¢
*(51—1)2)!/ (tff)"*z(/ Mdg)dg

Then, summing (5.19)—(5.22), we get from (5.17)
S=R+T+U+V. (5.23)

Since P is a polynomial of degree at most (n — 2), by Lemma 5.4, R(=1) ig
constant and so R is a polynomial of degree at most (n—1). Also from (5.21),
(5.22)

0
U = (4)”/ Mdg and V"=V = 0; (5.24)
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so R+ U 4V is a polynomial of degree at most (n — 1).

Since
L(t) = M(t) — P(t) = o(t"™?) (5.25)
we have
1 ! r—1 _ n+r—2 .
] /O (t =) " L)G(£)dE = oft )for 1 <r<n—2 (526)
T | =€ = o) (5.27)
t 3
(n i 2)!/0 (t— 5)71_2 (/O Ldg) d§ = O(t2n_3)- (5.28)
From (5.20) and from (5.25)—-(5.28) we get
T(t) = L(t)G(t) + o(t" Y. (5.29)
Since g is bounded
G(t) =G(0) 4+ tg(0) + O(t) for n = 2, (5.30)
and
G(t) =G(0) + tG'(0) + o(t) for n > 2; (5.31)

and so from (5.23), (5,25), (5.29) and from (5.30) or (5.31)
S(t) = R(t) + U(t) + V() + G(O)L(t) + o(t"™ V), (5.32)
Since R is a polynomial, from (5.24), (5.25) and (5.32) S is continuous and
S(n—2) exists in [a, b] proving (7). Further R+U +V is a polynomial of degree
(n—1) so from (5.32)
wn(8,0,) = G(0)wn(L,0,t) + o(t ") = G(0)wn (M, 0,t) + o(t ™Y,

proving (7).
To prove (iii) note that in this case G’ exists and

G'(t) — G'(0) = O(1). (5.33)

Hence
G(t) = G(0) + tG'(0) + O(t?), (5.34)
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and so from (5.20), (5.26)—(5.28), (5.33) and (5.34)

T(t) =L{t)G(t) —n /Ot LG+ o(t")

—G(0)L(t) + tG (0)L(t) — nG(0) / L+o(t).
0

Hence

T(t) + (~=1)"T(~t) =G(0)(L(t) + (—=1)"L(~1))
+ GO) (L) + (1) L(—t))t (5.35)

_ G/ L _ n—lL _ d ny.
nGO)( [ (2 + (1) L) de) +o)
Since R+ U + V is a polynomial of degree (n — 1), from (5.23) and (5.35)
wn(S,0,t) =G(0)wy, (L, 0,t) +nG'(0) (wn—1(L,0,t)
n [t
— 5 [ etanmo.0 o
=G(0)wy, (M, 0,t) + nG'(0) (wn—1(M,0,t)
n [
- | e enan0.90) o).
proving (44). For (iii) note from (5.18) that
g(t) = 9(0) + O(t) (5.36)

and hence

G(t) = G(0) + tg(0) + O(?). (5.37)
Also, from (5,18) and (5.25)

/Ot(/o5 Ldg)d¢ = o(t?). (5.38)

From (5.36)—(5.38)
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and hence

T(t) + T(—t) =G(0)(L(t) + L(—t)) + g(0)(L(t) — L(—t))t

t 5.39
—24(0) / (L(€) — L(~£)) d + (). (539

Since R+ U + V is linear, we have from (5.23) and (5.39)

L(t) — L(=t)

w2(S,0,t) =G(0)ws(L,0,t) + 29(0) 5

~ 2g(0)
t2

=G(0)w(M.0.1) + 29(0) (1 (M.0.0) = 7 [ €1(M.0,6)d€) + (1),

/0 (L(€) - L(~£)) d + o(1)

proving (i) ’.
To prove (iv) we have by Lemma 5.4
n—2

ROD(z) = 30 (<) PO ()G (2)
k=0

(1) P@)g(e) + (1" / " pdg

and hence

ROD(0) =) (-1)FPUTED 0GR (0) + (=) P(0)g(0)
k

|l
IN)

(5.40)

=> (=) PEEY0)GH (0) + (—1)" T P(0)9(0),
k=1

since P is a polynomial of degree (n —2). Since M,_1)(0) exists, L,—1)(0)
exists and L,_1)(0) = M(,_1)(0). Hence, from (5.32), (5.24) and (5.40) we
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have
Sty (0) = 3 (— 1) PO Q)G (0) 4 (~1)" P(0)g(0)

r=1 o
+ (_1)n/ M dg + M, (0)G(0)
n—1

— ( )n r— 1M ( )G(n r— 1)(0)
r=1 .
+(—1)”—1M(0)g(0)+(—1)"/ M dg. O

Theorem 5.6 (Integration by Parts). Let f be T™ integrable on [a,b],
n> 2, and let F(x) = (T") faz f, © € B. Let ¢ be the n-th primitive of f and
let ¢ satisfy

suslont) 1 [ @G =00 (a)

nearly everywhere on (a,b). Let g be of bounded variation in [a,b] and let
G(z) = ﬁf;(m — )" 2g(t)dt, a < x <b. Then:

(i) if n > 2, then fG is T™-integrable on [a,b] and
b . b
(1) [ 56 = (901 DO@ -0 @] (7)) 610G

the last integral exists by Theorems 5.1 and 5.2. Moreover, if F' is Z% _,-
integrable on [a,b], then

b b
@) [ 16 = F@)GE)] -z [ Fo

(i1) if n = 2 and if g satisfies the conditions (5.18) nearly everywhere on
(a,b), then fG is T™-integrable on [a,b] and
b b
+/ ¢dg.

/FQ

N _ _ /
(T%) | fG = [¢0)(2)G(z) — d(2)G"(z

If moreover F is D*-integrable on [a,b], then

T2/fG F(2)G(
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PROOF. (i) We first suppose that ¢ > 0. Then G > 0 and G > 0 for
1 <r <n-—2. Let Q be any major function of f and let L = @Q — ¢. Then
L is n-convex and so L,_1) exists, finitely, nearly everywhere in (a,b) and
so, nearly everywhere in (a,b), w,—1(L, z,t) tends to a finite limit as ¢ — 0.
Since by the mean value theorem t%f(f &1, (L, 2,8)d€ = w,_1(L, z,0t)
for 0 < § < 1, we have nearly everywhere on (a,b) that

t
nr (L)~ 1 / €Yoy (L, x,€) dé = o(1).
0
So by (5.41)

t
W7L—1(Q7x7t) - tﬁn/ov §n71w7z—1(Q7$7£) df = 0(1)7 (542)

nearly everywhere on (a,b). Let, a <z < b,

S(z) =Q(x)G(z) + z_: (_N. (”) / z(x —t)"LQ)G M (¢) dt (5.43)

(-1 *n

p n—2 (=D [T a2 !
W/a(x_t) Q(t)g(t)dt + (n72)!/Q(x t) (/a Qdg) dt.

+

Then by Lemma 5.5 (4), (ii), in [a,b], S is continuous and S(,,_s) exists, and
in (a,b) S is smooth of order n, and by Lemmas 5.5 (iv) S(,—1) exists at a
and b and almost everywhere in (a,b). Also by (5.42) and Lemma 5.5 (7i)
D"S > —o0 nearly everywhere on (a, b), and since the existence of Q,_1)()
implies

ona(@urnt) = 7 [ €7@ ) d€ = o),

D"S > fG almost everywhere in (a,b). let

75(@ (CL)

r!

Then U has the above properties of S and moreover U,y (a) = 0 for r =
0,1,...,(n—1). So U is a major function of fG.

Similarly if ¢ is a minor function of f, then u is a minor function of fG
where

— (r—a)"

TS(T) (a)
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n—2

s(z) = )+

()/ﬂw—w”«we“«wdt o

((nl)”Q) /;(x " 2q(t)g(t) dt + ((_1)2”)'/;(3; _t)n—z(/a gdg) dt.

<

Applying Lemma 5.5 (iv) in (5.43) and (5.44) we get
’S(n—l)(xO) S(n—1)(wo)| <
Z|Q(r) 20) — q(r) (20) |G (wo) (5.45)

r=1
T 10(0) — a(e0)lg(xo) + | / "=y,

for those xo for which Q,—1)(z0) and g(,—1)(zo) exist.

Let € > 0 be arbitrary. Since f is integrable, there is a major function @
and a minor function ¢ which satisfy the conditions (4.1,1)—(4.1,n). For these
Q@ and ¢ we have from (5.45)

|S(n_1)(b) - S(n—l)(b)| < KE, (546)

where K is a constant. Since S,_1)(a) = s5(,,—1)(a) = 0, by Lemma 5.5 (iv),
we have from (5.46) and from the definitions of U and u that |U,_1)(b) —
U(n—1)(b)| < Ke, showing that fG is integrable on [a, b].

Now using integration by parts for the D*-integral [17, p. 246], and then
successively for the Z- integrals by Theorem 5.2

b b b b b b
/ Qdg :Qg‘a—/ Q(l)g:Qg‘a_Q(l)G(nfz)‘aJr/ QG2 =
n—3

=Q(b)g(b) + > (~1)"Q (G (b) (5.47)

r=1

b
Dz / Qo2 G2

Applying Lemma 5.5 (iv) to the function S in (5.43) we have

n—1

Stn-1)(0) =Y (=1 Qe (5)G V(D)
r=1 (5.48)

L (C1)"Qb)g /ng.
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From (5.47) and (5.48)
Un-1)(0) =S(n-1)(b) = Qn—1)(b)G(b) — Q(n—2)(b)G" (D)
(5.49)
/ Q 2)0( )

Let € > 0 be arbitrary. Then as in (4.6) and (4.9) there is a major function Q
of f such that

0 <Q(n-1)(b) = P(n—1)(b) <€
0 <Qr-2)(x) = P(n—2)(z) < e(b—a), a <z <b

b
Q1) (DCD) — Quusy (D)C' () + / Q)G (5.50)

b
< Pn-1)(D)G(0) = d(n-2) ()G (D) +/ Fn-2)G® + K,

where K is a constant.
Since (5.49) holds for any major function Q of f, we have from (5.49) and
(5.50)

b
Un-1y(D) < du-1y(BYG(D) — b2 (B)G'(B) + / Son_2G® + K.

Since € is arbitrary,

b
/ JG < n-1)(D)G(b) — P(n—2)(b / G(n_2G?. (5.51)

In a similar manner, considering a minor function ¢ of f we get

b
/ fG > b1y (B)G(b) — dnn(b / bGP, (5.52)

From (5.51) and (5.52)

b
/ £G = 61y (D)G(B) — bn_n(b / G, (5.53)

which completes the proof of the first part of (4).
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Now if F is Z};_,-integrable on [a,b], then since ¢(,_o) is an indefinite
Z)_o-integral of F', we get using integration by parts for the Z7_,-integral,
by Theorem 5.2,

b b
(Z:;,Q)/ FG' = ¢ (2)G' ()], — (Z:;,g)/ Fn-2)G®. (5.54)

From (5.53) and (5,54) we get

b b
| 16 =ou-n®Gt) -z [ PG
a a
which completes the proof of (i).
The proof of (i) is similar but uses Lemma 5.5 (iii) ' instead of Lemma
5.5 (iii). O

6 Applications to Trigonometric Series.

‘We write for convenience:

1
Ap(x) = 540, A, (x) = ap cosnz + by sinnz, n > 1,
By(z) =0, By,(z) = b, cosnz — ap sinnx, n > 1,

B, (z)

C()(‘T) = 0, Cn(x) = — , n > ].,

Afe) = 30 Arla), AE@) = YA o), k21
r=0

with similar meaning for B¥(z) and C¥(z). The upper and lower (C, k) sums
of the series

> An(@) (6.1)
n=0

will be denoted by S*(x) ands®(z) respectively.
The following theorem includes an extension of a result of Zygmund, [21,
II, p. 66, Theorem 2.1], and a result of Wolf, [20, Theorem B|.

Theorem 6.1. Let k be a fized positive integer and let the series (6.1) in-
tegrated term-by-term r times, v > k + 1, converge to a function F' in some
neighborhood of xo. Then:

(i) if AE=Y(z) = o(n¥), then D"2F(xq) exists and F € S,(z¢);
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(ii) if A (x0) = O(nF¥), then D" F(x0) and D"F(xq) are finite;

(iti) if Ak=1(20) = o(n*) and if CE=2(z0) = o(n*~1), then F(,_a)(x0) emists
finitely, where for k = 1 we take CE=2(x¢) to be C2(xy).

(iv) if Ay (o) = o(n), C}~*(z0) = o(n*~1) and C}~"(w0) = O(n*~1),
then F(,_1)(x0) and F(,_1)(xo) are finite.

PROOF. We may assume that r = k+2, o = 0, ap = 0 and at first we suppose
that r is even. Let

k/2
cost /

V() = t#0; Pt)=) (-1)

= )
¢ v=0

t2u
(2v)!’

=(=1)"2 a’zit()nrt) + (=) i anA(nt)
k/2

- t21/ " ;
—Z mﬁ% + ﬁwr( ),

v=0

where

ﬁ2u _ (_1)r/2+u Z ann2ufr; (63)
n=1

wi(t) = (=121 " an A(nt). (6.4)

Consider the difference operator AJu,, for any sequence {u,} defined by
Alu, = u, — upyr and Adu, = AY(AItu,) for j > 1. It can be proved

by induction that
j .
j ifd
Ny, = ;(_1) (Z)un+ (6.5)
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Now, summing by parts k times and writing cf~1 = AX=1(0), we get from
(6.3) and (6.4)

621/ — (_1)7‘/2+V Zaﬁ_lAanV_r; (66)
n=1

wy(t) = (=1)"/2¢! Z k=1 AR N(nt). (6.7)
n=1

Since A is infinitely differentiable, for each ¢, 0 < ¢ < k, thereisaf;, 0 < 6; < 1,
such that

k—

Ant +it) =) (it)” A9 (nt) + (i]i—)k/\(k)(nt + 0it). (6.8)

il !
= 7 !

Ju

Using (6.5) and (6.8)

AFA(n) =i(—1>i(‘?) » B\ )

=0
1y k ) ,
=5 LA () (—1)%<’?>¢J) (6.9)
j=0"" i=0 v
u K\ (it)*
_1)¢ (k) i
+;( 1) (Z) A (nt + 0yit)
Lk
:’% (—1)i<]?)ik)\(k)(nt+9iit).
"i20 1
Since A®) remains bounded, we have
AFX(nt) = O(t%). (6.10)

Since A*¥n?=" = O(n?~"%) and oF~! = o(n*), and since 2v — r < —2, the

series in (6.6) is absolutely convergent and so (s, is finite for v = 0,1,...k/2

1
Let 0 < ¢t < 1 and choose a positive integer N such that N < n < N+1.
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Then from (6.7)

[tw, ()] = r!t}i o TTARN(nt)|

N o0
( |oE=E AR (nt)| + Z |‘7§71Ak}\(nt)|) (6.11)

n=N+1

IN

rlt
r!t(UEt) +V(t)), say.

From (6.10) there is a constant C' such that

N N
rlitU(t) <CFH Y Cloh = = CtF Y o(n*)
—~ —~ (6.12)

=Ct"lo(NFF1) = o(1).

Again if z > 1, then there are constants Cy and C5 such that ”y(k) (x)’ < Ciz™"

and ’(P(m)x_r)(k)‘ < Cyz™" and so |A¥) ()| < (C1 + Ca)az~". Therefore if
n> N+ 1, then nt > (N + 1)t > 1 and so
C1+ Cy C1 +Cy

(k) A1) < < <i<k. 6.13
|)\ (nt—l—Gﬂt)] S Gt ity = 0<i<k ( )

From (6.9) and (6.13) there is a constant C such that |AFA(nt)| < Cst*/(nt)",
and therefore

PtV (1) = rit( i ]aﬁ—lAkA(nt)D < Oyrlght i ‘?i;‘
’::N S o e (6.14)
== Y O(Tl’ﬁ.) =Cs% Y o) =o(1)
n=N+1 n=N+1
From (6.11), (6.12) and (6.14) we get
tw,(t) = o(1). (6.15)

Hence (t" /r!)w,(t) = o(t**1), that is, (t"/rD)w,(t) = o(t*). So from (6.2), (2.1)
and (2.3) it follows that (B2, is the symmetric d.1.V.P. derivative of F at 0 of
order 2v, 0 < v < k/2, and w,(t) is w,(F,0,t) defined in (2.3). It also follows
from (6.15) that F' is smooth at 0 of order . This completes the proof of (i).



486 S. N. MUKHOPADHYAY

To prove (ii), summing by parts (k + 1) times and writing o¥ = A (0) we
get from (6.4) that

wr(t) = (=1)"/2¢! ia,’iA’““)\(nt). (6.16)

n=1

Taking 0 <t <1 and N <t~ ! < N + 1 we get,as above, from (6.16)

N e
wr(®)] < 71 |oE AR M) + 71 Y [ok AR (nt)|
n=1 n=N+1 (617)

=G(t)+ H(t), say.

As in (6.10) we have A*+1(nt) = O(t*1) and form this we have, as in (6.12)

N
G(t) < ity ok = 0(1), (6.18)

n=1
where C is a constant. Also if n > N + 1, then we have as in (6.14) that
H(t) = 0(1). (6.19)

From (6.17)—(6.19) w,(t) = O(1), completing the proof of (ii).

Now since ag = 0, F is obtained from . C,(z) by integrating this series
term-by-term (r — 1) times. So replacing k,r and AX=!(z¢) by k—1,r — 1 and
Ck=2(z0) respectively, we get from (i) that F' is smooth at xq of order r — 1.
Also by (i) F'is smooth at x¢ of order r. So, by [13, Lemma 2.1], F,_2)(z0)
exists. This proves (%ii).

Now note that since F is obtained from Y C, (x) we apply (%) to get that
ﬁr_lF(xo) and D"~ F(x) are finite. Also by (i) F is smooth at x, of order
rand by (iii) F(,_2)(z0) exists. So D'F(x¢) exists and D"F(z¢) = F;(zo)
fori=1,2,...r —2. Hence by a simple calculation applying (2.2), (2.3), (2.6)
and (2.7) we have

t
wrfl(Fa .’Eo,t) + ;w,«(F, xOvt) = ’erl(F? ant);
and so I being smooth at zq of order r, we have that F(,_)(xo) = D" ()

and F(rq) (zo) = Dt (x0), completing the proof of (iv) and the consideration
of the case r even.
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If r is odd let

sint 2 2 41
t)=——, t#0; P(t)= —1)Y
W)= A0 PO= 3 D gy
P(t) o t2u7r
A(t) = ~(t) — = —1)Y——.
O=10-F= > Vg
v=(k+1)/2
and compute
(k—1)/2
F(t) — F(—t) v+l tr .
2 = 2 Go e+ et

v=0

where
oo
Bau1 = (1) D/2H Z ann® T
n=1

wy(t) = (=1)r=D/2p) i apntA(nt).

n=1
The rest of the proof of this case is similar to the above and is omitted. O
Theorem 6.2. Let the series (6.1) be such that
(i) — oo < sk(x) < S*(z) < o nearly everywhere;

o(n*) for all ;

(ii) Ay~(x)

(iii) C*¥=2(z) = o(nk=1) for all x;
(iv) Ck=1(x) = O(n*k~1) nearly everywhere.

Then the series obtained by integrating (6.1) term-by-term (k + 2) times con-
verges to a continuous function G such that G40y exists almost everywhere
and is T*+2-integrable and (6.1) is the T*T2-Fourier series of G (ky2)- More-
over, for each j, 1 < j < k+1, the (k42— j) times integrated series of (6.1)
is the Z7_,-Fourier series of Gj)(z) — (apz® 277 /2(k + 2 — j)I).

PrOOF. Condition (i) implies that a,, = O(n¥), b, = O(n*); [21, Volume I,
p. 317, Theorem 1.4] and therefore the series obtained by integrating (6.1)
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term-by-term (k + 2) times converges uniformly to a continuous function, G
say. Let

ap a*t?

H(x) = - — .
(@) =C@) - 5 G5
By Theorem 6.1 G ;) exists, G is smooth of order (k + 2) everywhere and
Q(,Hl),é(kﬂ),QkHG,ﬁkHG are all finite nearly everywhere. So from (6.20)
Hy,y exists, H is smooth of order (k + 2) everywhere and nearly everywhere

(6.20)

—00 < Hjy1y < Hppr) < 00, (6.21)

—00 < D"*?H < D"V’ H < . (6.22)

From (6.22) and Lemma 3.4 H;, ) exists finitely almost everywhere. Let
B be the set where H ;1) exists finitely. By Theorem 4.13 H ;o) is Tk+2.
integrable and

T2
(Tk+2)/ H(k+2) = H(k+1)<x2) - H(k+1)(9€1), for x1,x2 € B. (623)
T

Let « € B. Then a 4+ 27 € B. So from (6.23) and (6.20) we get that
a2 Q ..
(Tk+2) fa + (Gry2) — ?0) = 0 giving

1 " a+2m
ag = ;(T +2)/ G(k+2)' (624)
Let k be even. Then from (6.20)
o An(2)
H(z) = (123" pyal (6.25)
n=1

Since the series in (6.25) converges uniformly, it is the Lebesgue-Fourier series
of H. Hence

Bj21 a, 1 a+2m
(—1) T ;(L)/a H(x)cosnz dz. (6.26)

Since Hy, exists in o, a+27] and H 1) exists almost everywhere in the same
interval and since (6.21) is satisfied nearly everywhere, we have by Theorem
5.1 that the function H,) is Z ;-integrable with H,_;) its indefinite Z_ ;-
integral, » = 1,2,...,k + 1. Hence applying Theorem 5.2 successively we
get

a+2m a+2m
(ZZ)/ Hjy1)(z) sinnz dz = (—l)k/2+1nk+1(L)/ H(z) cosnx dz.

(6.27)
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Writing
F(z) = Hit1)(2) — Hig1y (@), © € B, (6.28)

we have from (6.23) that F(z) = (T**2) [* H40), @ € B. Also from (6.21)
and Lemma 3.3 wi1(H, z,t) = O(1) nearly everywhere, and so nearly every-
where we have

E+2

t
wk+1(Hax?t) - tk+2/0 §k+1wk+1(H7ma§) df: 0(1)

Integrating by parts by Theorem 5.6

a+27
(Tk+2)/ H (j42) () cos nx dz
o 3 o (6.29)
= F(x) cosnm|z " +n(ZZ)/ F(z)sinnz dz.
Now F'(a) = 0 and since by (6.25) H ;1) is periodic, by (6.28), F(a+27) = 0.
So from (6.20), (6.29), (6.27) and (6.26)

a+2m
(Tk+2)/ G (r+2) () cosnx dx

a+27
= (Tk+2)/ H(j42)(x) cosnx dx

© (6.30)

= n(ZZ)/ Hjy1)(z) sinnz dz
a+27
= (—1)k/2+1nk+2(L)/ H(z)cosnz dz = way,.
[e%
Similarly
a+27m
(T’H'Q)/ G (it2)(x) sinnz dz = 7b,,. (6.31)
[e%

The first part of the theorem now follows from (6.24), (6.30) and (6.31).
To prove the second part note that since G(;) is Z7_;-integrable for j =
1,...,k 4+ 1 we have, when j is even, by Theorem 5.2, (6.25) and (6.26)

1

™

a+27 ) ) 1 a+27
(Z;_l)/ Hj)(z) cosnz dx =(—1)]/2n]7(D*)/ H(z)cosnz dx
(0% ™ (03
_ k+2—j)/2_ On
=(—1)( 9/ ey
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When j is odd an analogous relation holds.
This completes the proof of the theorem in the case of even k; the proof
when k is odd is similar. O

Remark. If in Theorem 6.2 the (C, k) summability almost everywhere of the
series (6.1) is assumed, in addition to (%), and if the conditions (i) and (iv)
are replaced by the single condition BX~!(z) = o(n*) for all x, then it can be
proved that (6.1) is the Fourier series of f where f is its (C, k) sum. However
now we have to apply formal multiplication of trigonometric series since the
integration by parts formula cannot be used.

7 Concluding Remarks.

In [3] we gave a proof for the integration by parts formula for the SC P-integral
in the following form; [3, Theorem 1].

Theorem 7.1. Assume that f is (SCP, B)-integrable on [a,b] and let F(z) =
(SCP,B) fax f, © € B. Let g be a continuous function of bounded variation
on [a,b] with G(z) = [ g, a<ax <b. If

w1(p,x,h) = O(h) nearly everywhere, (7.1)

where ¢(x) = (D*) [T F, a <x <b. Then fG is (SCP, B)-integrable on [a,b]
and (SCP,B) [! fG = FG|" — (D*) [” Fy.

We also remarked at the end of [3] that this integration by parts formula
could not be applied to solve the so-called ‘coefficient problem’ for convergent
trigonometric series because the condition (7.1) need not be satisfied by every
¢ that is the sum of the twice integrated series of a convergent trigonometric
series. However Skljarenko, [18], proved the above theorem without assuming
the condition (7.1) and we have shown, [14], that not only is the condition
(7.1) redundant but also the requirement made above that the function g be
continuous. Since the proofs in [18] and [14] are long and involved whereas the
proof of Theorem 5.6 is considerably simpler when n = 2 we will now discuss
how Theorem 5.6, in the case n = 2, which is the same as Theorem 7.1 except
that (7.1) is replaced by

) h
ar(6.0.m)= 5 [ €r(6.2.6)d€ = 001 (7.2

z+h

<
—
=)
N~—
Il
)
—~
>
?/
| <<s
—
\s)
N—
Il
©)
—
=
—
\]
&
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and omitting the condition of continuity of g, helps to solve the coefficient
problem. All we need to show is that for every convergent trigonometric series
the function ¢ satisfies the condition (7.2), since (7.3) is satisfied trivially as
g(z) is either cosnz or sinnz. This we do in the following theorem.

Theorem 7.2. Let (6.1) be such that Y, _ kpi,=0(n?), where p, =+\/a2 + b2;
and let ¢ and v be the sum of the twice and thrice integrated series of (6.1).
Then for all x

dx+h)—d(x—h) P@+h)—2¢@)+px—h)
o — e =0(1). (7.4)

PRrROOF. Let 0 < h < 1 and N be a positive integer such that N < % <N+1
and suppose that ag = 0. Since ¢ and i are the sums of once and twice
o0
By (z)
integrated series of — E i
integr ri -

n=1

, we have

o +h)—¢x—h) i B, (x) sinnh

2h = n nh
Y@+h)=2¢9@)+¢@@-h) i B, (x) (sinnh>2
h? N — n nh /
So the left-hand side of (7.4) is
B i By (z) (sinnh (sin nh)2 B i B, (x) sinnh

n nh nh n nh

n=1 n=N+1

. B,(z) /sinnh\2 B )

+ Z n ( nh ) =P+ Q+ R say;

= O(u?) writing

sin u (sinu>2

see [21, Volume I, pp. 319-322]. Since ”
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n
Tn = Yy kpk, we have:

N N
P <y %"O(n%?) = 0((h* " npa) = O(1);
n=1 n=1

1 & Pn 1 & NPn 1 & Tn — Tn—1
< - _——= - _— - - " =
@l = h n2 h Z n3 h Z n3
n=N+1 n=N+1 n=N+1
1 1 1 1 &
< = _ 1 2 —4
~h Z "(n3 (n+1)3) h Z Om)OMm™)
n=N+1 n=N+1
= O(N)O(N™!) = 0(1);
1 > Pn [ nPn 1 Tn
Bl < 53 BTE X e X
n=N+1 n=N+1 n=N+1
1 > 1 1 2 - 2 -5
< 73 Z Tn<n4 m) = O(N7) Z O(n*)O(n™)
n=N+1 n=N+1
=O0(N?) > 0(n™?)=0(N*)O(N~?) =0(1).
n=N+1

Now if (6.1) is convergent, then a, = o(1), b, = o(1) and so p, = o(1).
Hence Y, kpr = > p_, 0o(k) = o(n?) and so by Theorem 7.2 the condition
(7.4) is satisfied and hence the condition (7.2) is also satisfied. Thus the

problem raised in our remark in [3] is solved.
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