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AN Lp DIFFERENTIABLE
NON-DIFFERENTIABLE FUNCTION

Abstract

There is a set E of positive Lebesgue measure and a function nowhere
differentiable on E which is differentiable in the Lp sense for every posi-
tive p at each point of E. For every p ∈ (0,∞] and every positive integer
k there is a set E = E(k, p) of positive measure and a function which
for every q < p has k Lq Peano derivatives at every point of E despite
not having an Lp kth derivative at any point of E.

A real-valued function f of a real variable is differentiable at x if there is
a real number f ′ (x) such that

|f (x + h)− f (x)− f ′ (x) h| = o (h) as h → 0.

Fix p ∈ (0,∞). A function is differentiable in the Lp sense at x if there is a
real number f ′p (x) such that∥∥f (x + h)− f (x)− f ′p (x) h

∥∥
p

= o (h) as h → 0,

where ‖g (h)‖p =
(

1
h

∫ h

−h
|g (t)|p dt

)1/p

.
We have an infinite family of generalized first derivatives indexed by the

parameter p. Most generalized derivatives are not equivalent to the ordinary
derivative at a single point, but many are equivalent on an almost every-
where basis. For example, the symmetric derivative, defined by f ′s (x) =

limh→0
f (x + h)− f (x− h)

2h
, is zero for the absolute value function at x = 0

even though that function is not differentiable at x = 0, but this phenomenon
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which occurs at the single point x = 0 never occurs on a set of positive mea-
sure; there cannot exist a set of positive measure E and a function g so that
g′s (x) exists at all points of E and g′ (x) exists at no points of E [K, page 217].
In this sense the symmetric derivative is equivalent to ordinary differentia-
tion. So a natural question to ask here is whether in this sense the various Lp

derivatives are different from ordinary differentiation and from one another.
The point of this paper is to answer “yes” to this question.

If p1 < p2 and f is Lp2 differentiable at x, then f is Lp1 differentiable at x
since by Holder’s inequality,∥∥f (x + h)− f (x)− f ′p2

(x) h
∥∥

p1
≤ 2

1
p1
− 1

p2
∥∥f (x + h)− f (x)− f ′p2

(x) h
∥∥

p2

= o (h) ,

so that f ′p1
(x) exists and equals f ′p2

(x). It may be useful to think of a scale
of derivatives indexed by p, the higher the value of p, the better the behavior.
The best behavior, ordinary differentiability, occurs when p = ∞. Sometimes
the scale is extended by placing the approximate derivative at p = 0.

A function f has a kth Peano derivative at x if there are real numbers
f i (x) , i = 0, 1, 2, . . . , k, such that∣∣∣∣f (x + h)− f0 (x)− f1 (x) h− · · · − fk (x)

hk

k!

∣∣∣∣ = o
(
hk
)

as h → 0.

Fix p ∈ (0,∞). A function f has a kth Peano derivative in the Lp sense at x
if there are real numbers f i

p (x) , i = 0, 1, 2, . . . , k, such that∥∥∥∥f (x + h)− f0
p (x)− f1

p (x)h− · · · − fk
p (x)

hk

k!

∥∥∥∥
p

= o
(
hk
)

as h → 0.

The same p-scale mentioned for first derivatives also holds for kth Peano
ones as well. Whatever the value of k, when p 6= q, Lp kth order Peano
differentiability is not a.e. equivalent to Lq kth order Peano differentiability;
this is the content of Theorems 2 and 3 below.

The first extensive discussion of the Lp Peano derivative that I am aware
of appeared in reference [CZ]. Differentiation in the Lp sense for the charac-
teristic function of a set is very closely related to the concept of super density,
which is discussed in reference [LMZ].

Theorem 1. There is a set E of positive Lebesgue measure and a function
nowhere differentiable on E which is differentiable in the Lp sense for every
positive p at each point of E.
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Proof. Note that the characteristic function of the rational numbers provides
a trivial example since it is nowhere differentiable, but is Lp differentiable to
0 at every irrational point. To avoid such a triviality, we further specify that
every element of the equivalence class defining the Lp function should also fail
to be differentiable on E; i.e., changing the function on a set of measure 0
should not improve the differentiability of the function.

Order the rational numbers into a sequence and for n = 1, 2, . . . , let Gn

be an open interval centered at the nth rational of length 2−n2
. Let C be the

complement of ∪i Gi. Since |∪iGi| ≤
∑

2−n2
< ∞, |C| = ∞. Let χ be the

characteristic function of C. Let I (x, h) = [x− h, x + h].
1. χ is not differentiable at almost every point of C. Let C1 = {x ∈ C : x

is a point of density of C}. Note that |C \ C1| = 0. Let x ∈ C1. If h is
sufficiently small, |I (x, h) ∩ C| > h/2 so the essential lim sup of χ is 1. On
the other hand, since for any h > 0, the interval I (x, h) contains a rational
number and hence a subinterval on which χ = 0, the essential lim inf of χ is
0. Thus χ has no limiting value at x and so all the more is not differentiable
there.

2. χ does have a zero Lp derivative for every positive p at almost every
point of C1. This full measured subset of C1 will be a set of positive measure
and is the set promised in the statement of the theorem. Suppose that for
each p > 0, χ is Lp differentiable on Cp, a full-measured subset of C1. Then
letting Ap = C1 \ Cp, |Ap| = 0. Let A = ∪An and C2 = C1 \ A. Then χ

is not differentiable on C2, but is Lp differentiable on C2 for every p > 0,
since by definition χ is Ldpe differentiable and Holder’s inequality implies Lp

differentiability since p ≤ dpe. Thus it is sufficient to fix p and show that Ap

has measure 0.
On Cp we have(

1
h

∫ h

−h

|χ (x + t)− χ (x)− 0 · t|p dt

)1/p

= o (h) ,

or, equivalently, ∫ h

−h

|χ (x + t)− χ (x)− 0 · t|p dt = o
(
hp+1

)
, (1)

as h → 0. To show that |Ap| = 0, it suffices to show that for each ε > 0,
|Ap| < ε. Fix such an ε and pick n so large that n > p + 1 and so large that
(n + 1) 2−n+1 < ε. Let

Bp = ∪n
i=1

{
x ∈ C1 : dist (x, Gi) < 2−n

}
∪
(
∪j>n

{
x ∈ C1 : dist (x,Gj) < 2−j

})
.
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Then |Bp| ≤ (2 · 2−n) n +
∑

j>n 2 · 2−j = (n + 1) 2−n+1 < ε, so it remains to
show that (1) holds for x ∈ C1 \Bp so that Ap ⊂ Bp. Since x ∈ C, χ (x) = 1
and the absolute value of the left hand side is

` =
∫ x+h

x−h

|χ (s)− 1|p ds = |Cc ∩ I| ,

where I = [x−h, x+h]. Assume h < 2−n. Let Gj be the first complementary
interval that meets I. Since x /∈ Bp, j > n. Since 2−(i+1)2 ≤ 1

22−i2 and
1 + 2−1 + 2−2 + · · · = 2,

` ≤ |∪i≥jGi| ≤
∑
i≥j

2−i2 ≤ 2 · 2−j2
= 2

(
2−j
)j ≤ 2hj .

The last inequality holds because x /∈ Bp implies 2−j ≤ dist (x,Gj) and
Gj ∩ I (x, h) 6= ∅ implies dist (x, Gj) ≤ h. Since j > n > p + 1, hj is o

(
hp+1

)
and relation (1) follows.

This example splits ordinary differentiation from all finite Lp differentia-
tion. Given any p > 0, we can also create a function fp for which there is
a set E of positive measure on which fp is differentiable in the Lq sense for
every q < p; but fp is not differentiable at any point of E in the Lp sense.
We do this by making a “fat Cantor set” the ith stage complementary open
intervals being centered at all (2j + 1) /2n and having measure 2−i(p+1). The
details are slightly more complicated. Theorem 3 below does this and a little
bit more.

Note that the following theorem in particular separates the kth Peano
derivative from all Lp kth Peano derivatives, 0 < p < ∞.

Theorem 2. There is a set E of positive Lebesgue measure and a function
having no limit at each point of E which has a kth Peano derivative in the Lp

sense for every natural number k and every positive p at each point of E.

Proof. The function χ and the subset of C of full measure appearing in the
proof of the previous theorem are sufficient for this theorem also. In fact, for
x ∈ C set f0

p (x) = f (x) = 1 for p ∈ (0,∞); and set f i
p (x) = 0, for i = 1, 2, . . .

and p ∈ (0,∞). The defining condition for having a kth Lp Peano derivative
at such an x is(

1
h

∫ h

−h

∣∣∣∣f (x + t)− 1− 0t− · · · − 0
tk

k!

∣∣∣∣p dt

)1/p

= o
(
hk
)
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or ∫ h

−h

|f (x + t)− 1|p dt = o
(
hkp+1

)
.

The reasoning and calculations above remain unchanged, except that n must
be chosen larger than kp + 1 instead of larger than p + 1.

Theorem 3. Let p > 0 and k be a positive integer. There is a set E of
positive Lebesgue measure and a bounded function nowhere Peano differentiable
of order k in the Lp sense on E which is Peano differentiable of order k in the
Lq sense for every positive q < p at each point of E.

Proof. The example which worked for p = ∞ and k = 1 (Theorem 1) and
also for p = ∞ and general k (Theorem 2) is not delicate enough to adapt here.
Instead, as an example for finite p we offer the characteristic function of a “fat
Cantor set” with the nth stage complementary open intervals being centered
at all (2j +1)/2n and having measure ckp2−n(kp+1), where ckp = 2kp − 1. The
details follow.

For N = 1, 2, 3, . . . , the complementary intervals of rank N will be the
open intervals GiN , i = 1, 2, . . . , 2N−1, where the center of GiN is centered
at (2i− 1) /2N and |GiN | = ckp2−N(kp+1). The center to center distance
between contiguous intervals of rank N is 2 · 1

2N = 21−N . It will be convenient
to work on [0, 1] thought of as a torus so that in particular G1N and G(2N−1)N

are contiguous.

Let C =
(
∪∞n=1 ∪2n−1

i=1 Gin

)c

, χ = characteristic function of C, x ∈ C, and

h > 0. Note |C| = 1 − |Cc| and |Cc| ≤
∑∞

n=1 2n−1ckp2−n(kp+1) = 1/2, so
|C| > 0.

Then for any p > 0,∫ h

−h

∣∣∣∣χ (x + t)− χ (x)− 0 · t− 0
t2

2
− · · · − 0

tk

k!

∣∣∣∣p dt =
∫ h

−h

|χ (x + t)− 1|p dt

(2)

= |I ∩ Cc| ,

where I = [x−h, x+h]. Find m so that 2−m ≤ h < 2−m+1. We have for some

j,
j

2m
≤ x <

j + 1
2m

. The complementary interval G centered at the element

of
{

j

2m
,
j + 1
2m

}
having even numerator has rank at most m − 1 so that the
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half of G interior to
[

j

2m
,
j + 1
2m

]
has measure at least

1
2

ckp

2(kp+1)(m−1)
. Thus

|I ∩ Cc| ≥ ckp

2

(
1

2m−1

)kp+1

≥ ckp

2
hkp+1.

We show below that when q < p, the first k Peano Lq derivatives of χ are 0
at a.e. x ∈ C, so by Holder’s inequality, if the Lp Peano derivatives exist at
all, they must be zero. However, combining this inequality with equation (2)
shows that(

1
h

∫ h

−h

∣∣∣∣χ (x + t)− χ (x)− 0 · t− 0
t2

2!
− · · · − 0

tk

k!

∣∣∣∣p dt

) 1
p

>
(ckp

2

) 1
p

hk

which is not o
(
hk
)

so χ does not have a kth Lp Peano derivative at a.e. x ∈ C.
By the same reasoning as in the L∞ case above, it is enough to prove that

if q < p are fixed, and if ε > 0 is fixed, then there is a set A = A (p, q, ε),
A ⊂ C such that |A| < ε and for every x ∈ C \A,∣∣ [x− h, x + h] ∩ Cc

∣∣ = o
(
hkq+1

)
.

(In the reduction to the sufficiency of this assertion, one needs to establish this
estimate directly for a countable set of q’s that belong to (0, p) and approach
p.)

Pick n such that 3
n < ε. Then for each positive integer i, let Ai be the points

of C which are “close” to the complementary intervals of rank i; explicitly, for

rank i, i ≤ n let Ai = ∪2i−1

k=1

{
x ∈ C : dist(x, Gki) <

1
n2

1
2n

}
and for rank j,

j > n let Aj = ∪2j−1

k=1 {x ∈ C : dist(x, Gkj) <
1
j2

1
2j
}. Let A = ∪∞i=1Ai. Then

|A| ≤
n∑

i=1

|Ai|+
∞∑

i=n+1

|Ai| =
2
n2

1
2n

 n∑
j=1

2j−1

+
∞∑

i=n+1

2
i2

1
2i

2i−1

=
2
n2

1
2n

(2n − 1) +
∞∑

i=n+1

1
i2
≤ 2

n2
+
∫ ∞

n

x−2dx =
2
n2

+
1
n

<
3
n

< ε.

Let x ∈ C \ A and fix h > 0 so small that h <
1
n2

1
2n

. Let I = [x− h, x + h].
Let G be the first complementary interval intersecting I and let ` be the rank
of G so that |G| = ckp

2(kp+1)`
. Note that ` ≥ n + 1 since h is too small to allow
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any G of rank ≤ n to intersect I. Since G intersects I,

h >
1
`2

1
2`

. (3)

Let m = blog2 hc so that 2−m ≤ h < 2−m+1,

m . log (1/h) . (4)

Let a (s) be the number of elements of rank s that intersect I. Excluding
the left-most and right-most elements, a (s)− 2 centers of rank s intervals are
in I and each of the a (s) − 3 distances between these centers is 2 1

2s , whence
(a (s)− 3) 2−s+1 ≤ 2h, so

a (s) ≤ 3 + 2sh. (5)

Since h < 21−m, it follows that

if s < m, then a (s) ≤ 4. (6)

If ` < m, use inequalities (6) and (5) to obtain

|I ∩ Cc| ≤
∞∑

s=`

a (s) ckp2−(kp+1)s

≤
m−1∑
s=`

4 · ckp2−(kp+1)s + 3
∞∑

s=m

ckp2−(kp+1)s + h

∞∑
s=m

ckp2−kps (7)

. 2−(kp+1)` + h2−kpm,

where A . B means that for some constant C (k, p), A ≤ C (k, p)B. From
this and inequalities (3) and (4) we have

|I ∩ Cc| . `2kp+2

(
1

`22`

)kp+1

+ h

(
1

2m−1

)kp

≤ m2kp+2hkp+1 + hkp+1

. log2kp+2 (1/h)hkp+1 = o
(
hkq+1

)
.

If ` ≥ m, the estimate is even simpler; we get

|I ∩ Cc| ≤
∞∑

s=m

a (s) ckp2−(kp+1)s . hkp+1 = o
(
hkq+1

)
.
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