Tomasz Natkaniec, Institute of Mathematics, Gdańsk University, Wita Stwosza 57, 80-952 Gdańsk, Poland. email: mattn@math.univ.gda.pl

THE DENSITY TOPOLOGY CAN BE NOT EXTRARESOLVABLE

Abstract

We note that in some models of ZFC the density topology can be not extraresolvable.

A topological space X is called *extraresolvable* if there exists a family \mathcal{D} of dense subsets of X such that $|\mathcal{D}| > \Delta(X)$, where $\Delta(X)$ is the dispersion character of X, and $D \cap D'$ is nowhere dense for every distinct $D, D' \in \mathcal{D}$. (See [3].)

Assuming Martin Axiom (MA) A. Bella proved that the real line \mathbb{R} with the (Lebesgue) density topology \mathcal{T}_d is extraresolvable [1]. He also asked whether this fact can be proved in ZFC. In this note we answer this question in the negative.

We use standard terminology. In particular, |X| denotes the cardinality of a set X. For a topological space X, the dispersion character $\Delta(X)$ of X is the smallest cardinality of a non-empty open subset of X. If \mathcal{J} is an ideal of subsets of a set X, then its cofinality $cf(\mathcal{J})$ is the smallest cardinality of a basis of \mathcal{J} , that is, the family $\mathcal{J}_0 \subset \mathcal{J}$ such that each $J \in \mathcal{J}$ is contained in some $J_0 \in \mathcal{J}_0$. shr (\mathcal{J}) is the minimal cardinal κ such that in each set $A \subset X$, $A \notin \mathcal{J}$, there is an $A_0 \subset A$ with $|A_0| \leq \kappa$ and $A_0 \notin \mathcal{J}$.

It is well known that a set $A \subset \mathbb{R}$ is nowhere dense in the density topology if and only if it has a measure null. (See [4].) The ideal of null sets in \mathbb{R} is denoted by \mathcal{N} .

We start with the following strengthening of [1, Proposition 3].

Lemma 1. If X is a topological space, NWD is the ideal of nowhere dense sets in X, and $|X|^{\text{shr}(NWD)} \leq \Delta(X)$, then X is not extraresolvable.

Key Words: density topology, extraresolvable space, Covering Property Axiom CPA. Mathematical Reviews subject classification: Primary 28A05. Secondary 03E35, 54A25. Received by the editors May 12, 2004 Communicated by: Krzysztof Chris Ciesielski

PROOF. Suppose X is extraresolvable. Let $\{D_{\alpha}: \alpha < \kappa\}$ be a family of dense sets in X such that $\Delta(X) < \kappa$ and $D_{\alpha} \cap D_{\beta} \in \text{NWD}$ whenever $\alpha < \beta < \kappa$. For each $\alpha < \kappa$ choose a set $E_{\alpha} \subset D_{\alpha}$ such that $|E_{\alpha}| \leq \text{shr}(\text{NWD})$ and $E_{\alpha} \notin \text{NWD}$. Since $|\{E_{\alpha}: \alpha < \kappa\}| \leq |X|^{\text{shr}(\text{NWD})} \leq \Delta(X) < \kappa$, there are $\alpha < \beta < \kappa$ for which $E_{\alpha} = E_{\beta}$. Then $E_{\alpha} \subset D_{\alpha} \cap D_{\beta}$, so $D_{\alpha} \cap D_{\beta} \notin \text{NWD}$, a contradiction.

Theorem 2. There exists a model of ZFC in which the space $X = (\mathbb{R}, \mathcal{T}_d)$ is not extraresolvable.

PROOF. We will work in ZFC with three additional axioms:

- (A1) $\mathfrak{c} = \omega_2;$
- (A2) $2^{\omega_1} = \omega_2;$
- (A3) $\operatorname{cf}(\mathcal{N}) = \omega_1.$

It is known that the axioms (A1), (A2), (A3) are consistent with ZFC. In fact, (A1) and (A3) are consequences of so called *Covering Property Axiom* CPA, introduced by K. Ciesielski and J. Pawlikowski. Moreover, it is known that under CPA 2^{ω_1} can be arbitrarily large. (See [2].)

First note that (A3) implies that $\operatorname{shr}(\mathcal{N}) = \omega_1$. In fact, let $\{H_\alpha \colon \alpha < \omega_1\}$ be a basis of the ideal \mathcal{N} , that is, such that for each $N \in \mathcal{N}$ there is an $\alpha < \omega_1$ with $N \subset H_\alpha$. Assume $A \notin \mathcal{N}$. For each $\alpha < \omega_1$ choose an $x_\alpha \in A \setminus \bigcup_{\beta < \alpha} H_\alpha$. Then $A_0 = \{x_\alpha \colon \alpha < \omega_1\}$ is a subset of A and $A_0 \notin \mathcal{N}$.

It is clear that $\Delta(X) = \mathfrak{c}$. Thus (A1) implies $\Delta(X) = \omega_2$. Now we have $|X|^{\mathrm{shr}\,(\mathrm{NWD})} = \mathfrak{c}^{\mathrm{shr}\,(\mathcal{N})} = \mathfrak{c}^{\omega_1} = 2^{\omega_1}$. Therefore condition (A2) yields $|X|^{\mathrm{shr}\,(\mathrm{NWD})} = \omega_2 \leq \Delta(X)$, and, by Lemma 1, we obtain that X is not extraresolvable.

References

- A. Bella, The density topology is extraresolvable, Atti Sem. Mat. Fis. Univ. Modena, 48 (2000), 495–498.
- [2] K. Ciesielski and J. Pawlikowski, Covering Property Axiom CPA, to appear in Cambridge Tracts in Mathematics, Cambridge Univ. Press. (Available in electronic form from Set Theoretic Analysis Web Page: http://www.math.wvu.edu/~kcies/STA/STA.html).
- [3] S. Garcia-Ferreira, V. I. Malykhin and A. H. Tomita, *Extraresolvable spaces*, Topology Appl., **101** (2000), 257–271.

The Density Topology Can Be Not Extraresolvable

[4] J. C. Oxtoby, *Measure and Category*, Springer-Verlag, New York, 1971.