Giuseppa Riccobono, Dipartimento di Matematica, Universitá di Palermo, Via Archirafi, 34, 90123 Palermo, Italy. email: ricco@math.unipa.it

A RIEMANN-TYPE INTEGRAL ON A MEASURE SPACE

Abstract

In a compact Hausdorff measure space we define an integral by partitions of the unity and prove that it is nonabsolutely convergent.

1 Introduction.

In a measure space, usually, a Lebesgue-type integral is defined. In [1], Ahmed and Pfeffer defined a Riemann-type integral on a locally compact Hausdorff space, using partitions of sets and proved that it is equivalent to the Lebesgue integral if the space has suitable properties and the measure is complete.

In [7], a Riemann-type integral has been defined in a compact Hausdorff space, using partitions of the unity (PU-integral) and has been proved that a PU-integrable function is μ -integrable and conversely, and that the μ -integral is equivalent to the PU-integral. Now, in this note, we modify the partitions of the unity and we obtain a nonabsolutely convergent integral (PU*-integral). We give also an example of function which is PU*- integrable but it is not μ -integrable.

2 Preliminaries.

In this paper X denotes a compact Hausdorff space, \mathcal{M} a σ -algebra of subsets of X such that each open set is in \mathcal{M} , μ a non-atomic, finite, complete Radon measure on \mathcal{M} .

Key Words: Lebesgue measure, partition of the unity, PU*-integral Mathematical Reviews subject classification: 28A25 Received by the editors December 16, 2003

Communicated by: Peter Bullen

^{*}This work was supported by M.U.R.S.T.

Definition 1. A partition of the unity (PU-partition) of X is, by definition, a finite collection $P = \{(\theta_i, x_i)\}_{i=1}^p$ where $x_i \in X$ and θ_i are non negative, μ -measurable and μ -integrable real functions on X such that $\sum_{i=1}^p \theta_i(x) = 1$ a.e. in X.

The PU-partition is a PU*-partition if $x_i \in S_{\theta_i} = \{x \in X : \theta_i(x) \neq 0\}.$

We observe that for any PU-partition $P = \{(\theta_i, x_i)\}_{i=1}^p$ we can have a PU*-partition $\overline{P} = \{(\overline{\theta}_i, x_i)\}_{i=1}^p$ where for every $x \in X$ we set $\overline{\theta}_i(x) = \theta_i(x)$ if $x_i \in S_{\theta_i}$, and if $x_i \notin S_{\theta_i}$ we set $\overline{\theta}_i(x) = \theta_i(x)$ for $x \neq x_i$ and $\overline{\theta}_i(x_i) = 1$.

Definition 2. gage δ on X is a map which to each $x \in X$ assigns an open neighborhood of x; set $\delta(x) = U(x)$ and denote by $\mathcal{U}(X)$ the family of all gages on X.

Definition 3. If δ is a gage on X, a PU-partition $P = \{(\theta_i, x_i)\}_{i=1}^p$ is said to be δ -fine if $S_{\theta_i} \subset \delta(x_i)$ (i = 1, 2, ..., p).

Definition 4. A real function f on X is said to be (PU)-integrable on X if there exists a real number I with the property that, for every given $\epsilon > 0$, there is a gage δ such that $|\sum_{i=1}^{p} f(x_i) \cdot \int_X \theta_i d\mu - I| < \epsilon$ for each δ -fine (PU)-partition $P = \{(\theta_i, x_i)\}_{i=1}^{p}$ of X.

The number I is called the (PU)-integral of f on X and we write $I = (PU) \int_X f$.

For (PU)*-partitions, we have the (PU)*-integral and set $I = (PU)^* \int_X f$.

3 Main Results.

3.1 Properties of the PU^* -Integral.

Proposition 3.1.1. If δ is a gage on X then there is a δ -fine PU (PU^{*})-partition of X.

PROOF. Given $\delta \in \mathcal{U}(X)$, let $\{U(x_i)\}_{i=1}^n$ be a finite subcover of neighborhoods. Set

$$V_1 = U(x_1), \quad V_i = U(x_i) - \bigcup_{k=1}^{i-1} U(x_k) \quad i = 2, \dots, n$$

and

$$\theta_i(x) = \chi_{V_i}(x),$$

then the family $\{(\theta_i, x_i)\}_{i=1}^n$ verifies the properties of a δ -fine PU-partition of X.

If we consider $\theta_i(x) = \chi_{V_i \cup x_i}(x)$, we have a PU^* -partition.

Denoting by $\mathcal{PU}^*(A)$ the family of all the PU*-integrable real functions on X, the following Proposition is an immediate consequence of the Definition 4.

Proposition 3.1.2. 1) $\mathcal{PU}^*(X)$ is a linear space and the map $f \to (PU)^* \int_X f$ is a non negative linear functional on $\mathcal{PU}^*(X)$;

2) if $k \in \Re$ and f(x) = k for each $x \in X$ then $f \in \mathcal{PU}^*(X)$ and $(PU)^* \int_X f = k\mu(X)$.

3) if
$$f$$
, $g \in \mathcal{PU}^*(\mathcal{X})$ and $f \leq g$ then $(PU)^* \int_X f \leq (PU)^* \int_X g$.

Proposition 3.1.3. If A is a compact subset of X and if $f \in \mathcal{PU}^*(X)$, then $f \in \mathcal{PU}^*(A)$.

PROOF. See Proposition 1.3 in [5].

If

$$P = \{(\theta_i, x_i)\}_{i=1}^n$$
 is a partition of X, set $\sigma(f, P) = \sum_{i=1}^n f(x_i) \int_X \theta_i d\mu$.

Proposition 3.1.4. If f is a real function on X, then $f \in \mathcal{PU}^*(X)$ if and only if for each $\epsilon > 0$ there is a gage δ on X such that $|\sigma(f, P) - \sigma(f, Q)| < \epsilon$ for every $P = \{(\theta_i, x_i)\}_{i=1}^n$ and $Q = \{(\theta'_i, x'_i)\}_{i=1}^p \delta$ -fine PU^* -partitions of X.

PROOF. See proposition 1.4 in [7].

3.2 Measurability and Properties of PU^{*}-Integrable Functions.

Proposition 3.2.1. If f is μ -measurable and μ -integrable on X, then $f \in \mathcal{PU}^*(X)$ and $(PU)^* \int_X f = \int_X f d\mu$.

PROOF. It follows by the equivalence between the PU-integral and the μ -integral (see [7]) and because a PU*-partition is also a PU-partition.

Proposition 3.2.2. A PU*-integrable function is μ -measurable.

PROOF. It is analogue to that used in [7] Propositions 3.1, 3.2 and 3.3. \Box

Proposition 3.2.3. If f, g are two real functions on X and f = g a.e. in X then g is $(PU)^*$ -integrable if and only if f is $(PU)^*$ -integrable and the two integral coincide.

PROOF. If f is (PU)*-integrable then by Proposition 2.2 it is μ -measurable and by completeness of measure also g is μ -measurable, then f - g = 0 a.e. in X and it is μ -measurable, μ -integrable and (PU)*-integrable with

$$(PU)^* \int_X (f-g) = 0$$
. So $g = f - (f-g)$ is $(PU)^*$ -integrable.

Lemma 1. If f is a real μ -integrable function on X, A, $B \in \mathcal{M}$, with $A \subset B$, and if $c \in \Re$ and $\int_A f d\mu \leq c \leq \int_B f d\mu$ then there exists a μ -measurable set C such that $A \subset C \subset B$ and $\int_C f d\mu = c$.

PROOF. Consider the σ -algebra $\mathcal{D} = \{D \in \mathcal{M} : D \subset B - A\}$ and the signed measure $\alpha : D \to \int_D f d\mu$ for $D \in \mathcal{D}$.

By Liapounoff theorem (see [9]), the set $\{\alpha(D) : D \in \mathcal{D}\}$ is a compact interval. So

$$\alpha(\emptyset) = 0 < c - \int_A f d\mu < \int_{B-A} f d\mu$$

and exists $D_1 \in \mathcal{D}$ such that

$$\int_{D_1} f d\mu = c - \int_A f d\mu$$
$$c = \int_{A \cup D_1} f d\mu, \quad A \subset A \cup D_1 \subset B.$$

Proposition 3.2.4. If f is a PU^* -integrable function on X, then for each $\epsilon > 0$ there is a μ -measurable set E such that $\mu(X - E) < \epsilon$, f is μ -integrable on E and $\int_E f d\mu = (PU)^* \int_X f$.

PROOF. Suppose that f be not μ -integrable; set

$$E_n = \{ x \in X : n - 1 \le f(x) < n \},\$$

$$F_n = \{ x \in X : -n \le f(x) < -n + 1 \} \quad n = 1, 2, 3, \dots,\$$

then

$$X = \bigcup_{n=1}^{\infty} (E_n \cup F_n) = \bigcup_{n=1}^{\infty} (\bigcup_{i=1}^n (E_i \cup F_i)) = \bigcup_{n=1}^{\infty} H_n,$$

where $H_n = \bigcup_{i=1}^n (E_i \cup F_i)$ is an increasing sequence of measurable sets.

By a property of the measure, it results $\lim_{n\to\infty} \mu(H_n) = \mu(X)$ and for each $\epsilon > 0$ there is $\bar{n} \in N$ such that for $n_0 > \bar{n}$ it is

$$\mu(X) - \mu(H_{n_0}) = \mu(X - H_{n_0}) < \epsilon \quad (*)$$

f is bounded on H_{n_0} so it is μ -integrable on H_{n_0} .

Suppose that $\int_{H_{n_0}} f d\mu < (PU^*) \int_X f$; since f is not μ -integrable, then the series $\sum_n \int_{E_n} f d\mu$ and $\sum_n \int_{F_n} f d\mu$ are divergent to $+\infty$ and to $-\infty$ respectively. In fact, if $\sum_n \int_{E_n} f d\mu = +\infty$ and $\sum_n \int_{F_n} f d\mu > -\infty$, consider the functions

$$f_1(x) = f(x)$$
 if $x \in \bigcup_n E_n$ and $f_1(x) = 0$ elsewhere,

A RIEMANN-TYPE INTEGRAL ON A MEASURE SPACE

$$f_2(x) = f(x)$$
 if $x \in \bigcup_n F_n$ and $f_2(x) = 0$ elsewhere,

then $f_2(x)$ is μ -integrable and hence (PU)*-integrable and $f_1(x) = f(x) - f_2(x)$ is (PU)*-integrable, but it is also μ -integrable with integral $+\infty$ and this is impossible. So for $\epsilon > 0$ there exists $K > n_0$ such that

$$\int_{H_{n_0}} f d\mu + \int_{E_{n_0+1}} f d\mu + \dots + \int_{E_{n_0+k}} f d\mu > (PU)^* \int_X f$$

and set $H = H_{n_0} \cup E_{n_0+1} \cup \cdots \cup E_{n_0+k}$, it results

$$\int_{H_{n_0}} f d\mu < (PU)^* \int_X f < \int_H f d\mu.$$

By Lemma 1 there exists a μ -measurable set E with $H_{n_0} \subset E \subset H$ such that $\int_E f d\mu = (PU)^* \int_X f$ and by relation (*) we have

$$\mu(X - E) \le \mu(X - H_{n_0}) < \epsilon. \qquad \Box$$

Lemma 2. If f is μ -measurable and there exists finite $\int_X f d\mu$, given $\epsilon > 0$ there is a gage δ on X such that

$$\sum_{i} |(f(x_i) \int_X \theta_i d\mu - \int_X f \theta_i d\mu)| < \epsilon$$

for each δ -fine (PU)*-partition $P = \{(\theta_i, x_i)\}$ in X.

PROOF. It is a consequence of Vitali-Caratheodory theorem. See Proposition 3.1 in [5]. $\hfill \Box$

Proposition 3.2.5. A μ -measurable function f is $(PU)^*$ -integrable on X if and only if given $\epsilon > 0$ there is a gage δ on X and a μ -measurable set E such that $\mu(E^C) < \epsilon$, f is μ -integrable on E and $|\sum_i f\chi_{E^C}(x_i) \int_X \theta_i d\mu| < \epsilon$ for each δ -fine $(PU)^*$ -partition $P = \{(\theta_i, x_i)\}$. Moreover $\int_E f d\mu = (PU)^* \int_X f$. We have set $E^C = X - E$.

PROOF. If f is (PU)*-integrable, by previous Proposition, let $\epsilon > 0$ there is $E \in \mathcal{M}$ such that $\mu(E^C) < \epsilon$, f is μ -integrable on E and $\int_E f d\mu = (PU)^* \int_X f$; so $f\chi_E$ is μ -integrable and hence (PU)*-integrable and

$$(PU)^* \int_X f\chi_E = \int_X f\chi_E d\mu = \int_E f d\mu = (PU)^* \int_X f.$$

By the (PU)*-integrability of f and $f\chi_E$, at corrispondence of $\epsilon > 0$ there is a δ on X such that for each δ -fine (PU)*-partition $\{(\theta_i, x_i)\}$, it results

$$\left|\sum_{i} f(x_{i}) \int_{X} \theta_{i} d\mu - (PU)^{*} \int_{X} f\right| < \frac{\epsilon}{2}$$

and

$$\left|\sum_{i} f(x_{i})\chi_{E} \int_{X} \theta_{i} d\mu - (PU)^{*} \int_{X} f\right| < \frac{\epsilon}{2}.$$

So we have

$$\begin{split} |\sum_{i} f(x_{i})\chi_{E^{C}} \int_{X} \theta_{i} d\mu| &= |\sum_{i} f(x_{i}) \int_{X} \theta_{i} d\mu - \sum_{i} f(x_{i})\chi_{E} \int_{X} \theta_{i} d\mu| \leq \\ &\leq |\sum_{i} f(x_{i}) \int_{X} \theta_{i} d\mu - (PU)^{*} \int_{X} f| + |\sum_{i} f\chi_{E}(x_{i}) \int_{X} \theta_{i} d\mu - (PU)^{*} \int_{X} f| < \epsilon. \end{split}$$

Conversely, for $\epsilon > 0$ let E be a μ -measurable and μ -integrable set with $\mu(E^C) < \epsilon$ and let δ be a gage on X such that $|\sum_i f \chi^C_E(x_i) \int_X \theta_i d\mu| < \frac{\epsilon}{2}$ for each δ -fine (PU)*-partition P of X.

By the μ -integrability of f on E, then also the function $f\chi_E$ is μ -integrable and, by lemma 2, there is a gage δ_1 on X such that

$$\left|\sum_{i} f\chi_{E}(x_{i}) \int_{X} \theta_{i} d\mu - \int_{X} f\chi_{E} d\mu\right| < \frac{\epsilon}{2}.$$

If $\overline{\delta}(x) = \delta(x) \bigcap \delta_1(x)$ for each $x \in X$, then for each $\overline{\delta}$ -fine (PU)*-partition P consider:

$$\begin{split} |\sum_{i} f(x_{i}) \int_{X} \theta_{i} d\mu - \int_{E} f d\mu| &\leq |\sum_{i} f\chi_{E}(x_{i}) \int_{X} \theta_{i} d\mu - \int_{E} f d\mu| + \\ &+ |\sum_{i} f\chi_{E}^{C}(x_{i}) \int_{X} \theta_{i} d\mu| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon. \end{split}$$

So f is (PU)*-integrable and $(PU)^* \int_X f = \int_E f d\mu$.

3.3 Convergence Theorems and Nonabsolutely Convergence of the PU*-Integral.

Proposition 3.3.1. If f and |f| are $(PU)^*$ -integrable then f is μ -integrable.

PROOF. If f and |f| are (PU)*-integrable, consider the bounded sequence $f_n = |f| \wedge n$ for each $n \in N$ it converges increasing to |f| and it is μ -integrable and

$$\int_{X} |f| d\mu = \lim_{n} \int_{X} f_{n} d\mu = \lim_{n} (PU)^{*} \int_{X} f_{n} \le (PU)^{*} \int_{X} |f| < +\infty.$$

So |f| and f are μ -integrable.

Proposition 3.3.2. If $(f_n)_n$ is an increasing sequence of $(PU)^*$ -integrable functions converging to f pointwisely and $\lim_n (PU)^* \int_X f_n < \infty$ then f is $(PU)^*$ -integrable and $(PU)^* \int_X f = \lim_n (PU)^* \int_X f_n$.

PROOF. Consider the increasing sequence $(f_n - f_1)_n$ converging to $f - f_1$; since the functions $(f_n - f_1)_n$ are non negative, then by Proposition 3.3.1, they are μ -integrable and

$$\lim_{n} \int_{X} (f_{n} - f_{1}) d\mu = \lim_{n} (PU)^{*} \int_{X} (f_{n} - f_{1}) =$$
$$= \lim_{n} (PU)^{*} \int_{X} f_{n} - (PU)^{*} \int_{X} f_{1} < +\infty.$$

So by the monotone theorem for the μ -integrable functions, the function $(f-f_1)$ is μ -integrable and hence (PU)*-integrable. Therefore $f = (f-f_1)+f_1$ is (PU)*-integrable.

Proposition 3.3.3. If $(f_n)_n$ is a sequence of $(PU)^*$ integrable functions converging pointwisely to f and such that there are two functions h and g $(PU)^*$ -integrable with $h \leq f_n \leq g$ for each $n \in N$ then f is $(PU)^*$ -integrable and $(PU)^* \int_X f = \lim_n (PU)^* \int_X f_n$.

PROOF. Consider the sequence $(f_n - h)_n$; it is non negative and (PU)*integrable, so it is μ -integrable and results:

$$0 \le (f_n - h) \le (g - h).$$

Since the function g-h is non negative and $(PU)^*$ -integrable, it is μ -integrable and by the dominate convergent theorem, the sequence of functions $(f_n - h)$ converges to f - h which is a μ -integrable function and hence $(PU)^*$ integrable. By the equality f = (f - h) + h it follows the $(PU)^*$ -integrability of f.

Definition 5. We say that a real function f has finite $\int_X f d\mu$ but $\int_X |f| d\mu$ is infinite if

i) or exists a sequence $A_n \in \mathcal{M}$ with $A_n \subset A_{n+1}$, $\bigcup A_n = X$, f is μ -integrable on A_n for each n and exists finite $\lim_n \int_{A_n} f d\mu$ while $\int_X |f| d\mu = +\infty$. Then we set

$$\int_X f d\mu = \lim_n \int_{A_n} f d\mu;$$

ii) or if $f = \sum_{n=1}^{+\infty} a_n \chi_{A_n}$, $A_n \in \mathcal{M}$, $\bigcup A_n = X$, $A_i \bigcap A_j = \emptyset$ and $\sum_{n=1}^{+\infty} a_n \mu(A_n)$ is finite while $\sum_{n=1}^{+\infty} |a_n| \mu(A_n) = +\infty$, then we set

$$\sum_{n=1}^{+\infty} a_n \mu(A_n) = \int_X f d\mu.$$

Proposition 3.3.4. If f is μ -measurable and exists finite $\int_X f d\mu$ but $\int_X |f| d\mu = +\infty$ then f is $(PU)^*$ -integrable and $\int_X f d\mu = (PU)^* \int_X f$.

PROOF. If $\epsilon > 0$, by lemma 2, there is a gage δ on X such that if $P = \{(\theta_i, x_i)\}$ is a (PU)*-partition of X, then we have:

$$\epsilon > |\sum_{i} (f(x_i) \int_X \theta_i d\mu - \int_X f \theta_i d\mu)| = |\sum_{i} f(x_i) \int_X \theta_i d\mu - \sum_{i} f \theta_i d\mu| = |\sum_{i} (f(x_i) \int_X \theta_i d\mu - \int_X f d\mu)|.$$

An example of a function which is PU^* -integrable but it is not μ -integrable.

Consider the space $X = \{0, 1\}^{\mathbb{N}}$. Let $\bar{\alpha} = \alpha_1 \alpha_2 \dots \alpha_k$ be a finite string of 0 and 1; consider the set $A_{\bar{\alpha}} = [\bar{\alpha}]_k = \{\gamma \in X : \gamma = \bar{\alpha}\beta$, for some $\beta \in X\}$, it is a clopen set (i.e. an open and closed set) with respect to the topology induced by the metric ρ so defined:

if $\alpha, \beta \in X$ $\rho(\alpha, \beta) = \frac{1}{2^n}$ if $\alpha \neq \beta$ and $\alpha_1 = \beta_1, \dots, \alpha_n = \beta_n, \alpha_{n+1} \neq \beta_{n+1}$ $\rho(\alpha, \alpha) = 0.$

With respect to this metric ρ , $X = \{0, 1\}^{\mathbb{N}}$ is a complete, separable and compact metric space (see [3]). Define on the family $\{A_{\bar{\alpha}}\}$ the following set function m:

$$m(A_{\bar{\alpha}}) = \frac{1}{2^k}$$

and let m^* be the outer measure induced by m on the family of all the subsets of X. If \mathcal{M} is the σ -algebra of all the subsets of X m^* -measurable in the Caratheodory sense, then the open sets are in \mathcal{M} and m^* is a complete measure on \mathcal{M} .

Define on X the following real function

$$f(\alpha) = \begin{cases} a_1 & \text{if } \alpha_1 = 0\\ a_2 & \text{if } \alpha_1 = 1 \text{ and } \alpha_2 = 0\\ a_n & \text{if } \alpha_1, \alpha_2, \dots \alpha_{n-1} = 1, \alpha_n = 0\\ \dots & \\ f(1111\dots 111\dots) = 0 \end{cases}$$

where $\alpha = (\alpha_1, \alpha_2, \dots) \in \{0, 1\}^{\mathbb{N}}$ and $a_n = (-1)^n \frac{2^n}{n}$ for every $n \in \mathbb{N}$. Then, by Proposition 3.3.4, we have:

$$\int_X f dm = \sum_{n=1}^{\infty} a_n \frac{1}{2^n} = \sum_{n=1}^{\infty} (-1)^n \frac{1}{n} = (PU)^* \int_X f,$$

so f is PU*-integrable but |f| is not μ -integrable.

References

- S. I. Ahmed and W. F. Pfeffer, A Riemann integral in a locally compact Hausdorff space, J. Australian Math. Soc., (series A) 41 (1986), 115–137.
- [2] A. M. Bruckner, Differentiation of integrals, Amer. Math. Monthly, 78(9) (1971).
- [3] G. A. Edgar, Measure, topology and fractal geometry, Springer-Verlag, 1990.
- [4] W. F. Pfeffer, *The Riemann approach to integration*, Cambridge University Press, 1993.
- [5] G. Riccobono, A PU-Integral on an abstract metric space, Mathematica Bohemica, 122 (1997), 83–95.
- [6] G. Riccobono, Convergence theorems for the PU-integral, Mathematica Bohemica, 125 (2000), 77–86.
- [7] G. Riccobono, A PU-integral on a compact Hausdorff space, Atti Accademia Scienze Lettere Arti di Palermo, serie V, V.XXII (2002), 53–69.
- [8] W. Rudin, Functional Analysis, McGraw-Hill, N.York, 1973.
- [9] W. Rudin, Principles of Mathematical Analysis, McGraw-Hill, N.York, 1976.