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A RIEMANN-TYPE INTEGRAL ON A
MEASURE SPACE

Abstract

In a compact Hausdorff measure space we define an integral by par-
titions of the unity and prove that it is nonabsolutely convergent.

1 Introduction.

In a measure space, usually, a Lebesgue-type integral is defined. In [1], Ahmed
and Pfeffer defined a Riemann-type integral on a locally compact Hausdorff
space, using partitions of sets and proved that it is equivalent to the Lebesgue
integral if the space has suitable properties and the measure is complete.

In [7], a Riemann-type integral has been defined in a compact Haus-
dorff space, using partitions of the unity (PU-integral) and has been proved
that a PU-integrable function is µ−integrable and conversely, and that the
µ−integral is equivalent to the PU-integral. Now, in this note, we modify
the partitions of the unity and we obtain a nonabsolutely convergent integral
(PU*-integral). We give also an example of function which is PU∗− integrable
but it is not µ−integrable.

2 Preliminaries.

In this paper X denotes a compact Hausdorff space, M a σ-algebra of subsets
of X such that each open set is in M, µ a non-atomic, finite, complete Radon
measure on M.
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Definition 1. A partition of the unity (PU-partition) of X is, by definition,
a finite collection P = {(θi, xi)}p

i=1 where xi ∈ X and θi are non negative,
µ-measurable and µ-integrable real functions on X such that

∑p
i=1 θi(x) = 1

a.e. in X.

The PU-partition is a PU∗-partition if xi ∈ Sθi = {x ∈ X : θi(x) 6= 0}.
We observe that for any PU-partition P = {(θi, xi)}p

i=1 we can have a
PU∗-partition P̄ = {(θ̄i, xi)}p

i=1 where for every x ∈ X we set θ̄i(x) = θi(x) if
xi ∈ Sθi

, and if xi /∈ Sθi
we set θ̄i(x) = θi(x) for x 6= xi and θ̄i(xi) = 1.

Definition 2. gage δ on X is a map which to each x ∈ X assigns an open
neighborhood of x; set δ(x) = U(x) and denote by U(X) the family of all
gages on X.

Definition 3. If δ is a gage on X, a PU-partition P = {(θi, xi)}p
i=1 is said to

be δ-fine if Sθi ⊂ δ(xi) (i = 1, 2, .., p).

Definition 4. A real function f on X is said to be (PU)-integrable on X if
there exists a real number I with the property that, for every given ε > 0,
there is a gage δ such that |

∑p
i=1 f(xi) ·

∫
X

θidµ − I |< ε for each δ-fine
(PU)-partition P = {(θi, xi)}p

i=1 of X.

The number I is called the (PU)-integral of f on X and we write I =
(PU)

∫
X

f .
For (PU)∗-partitions, we have the (PU)∗-integral and set I = (PU)∗

∫
X

f.

3 Main Results.

3.1 Properties of the PU∗-Integral.

Proposition 3.1.1. If δ is a gage on X then there is a δ-fine PU (PU∗)-
partition of X.

Proof. Given δ ∈ U(X), let {U(xi)}n
i=1 be a finite subcover of neighbor-

hoods. Set

V1 = U(x1), Vi = U(xi)−
i−1⋃
k=1

U(xk) i = 2, . . . , n

and
θi(x) = χVi

(x),

then the family {(θi, xi)}n
i=1 verifies the properties of a δ−fine PU-partition

of X.
If we consider θi(x) = χVi∪xi(x), we have a PU∗−partition.
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Denoting by PU∗(A) the family of all the PU∗-integrable real functions on
X, the following Proposition is an immediate consequence of the Definition 4.

Proposition 3.1.2. 1) PU∗(X) is a linear space and the map f → (PU)∗
∫

X
f

is a non negative linear functional on PU∗(X);

2) if k ∈ < and f(x) = k for each x ∈ X then f ∈ PU∗(X) and (PU)∗
∫

X
f =

kµ(X).

3) if f , g ∈ PU∗(X ) and f ≤ g then (PU)∗
∫

X
f ≤ (PU)∗

∫
X

g.

Proposition 3.1.3. If A is a compact subset of X and if f ∈ PU∗(X), then
f ∈ PU∗(A).

Proof. See Proposition 1.3 in [5].

If P = {(θi, xi)}n
i=1 is a partition of X, set σ(f, P ) =

∑n
i=1 f(xi)

∫
X

θidµ.

Proposition 3.1.4. If f is a real function on X, then f ∈ PU∗(X) if and
only if for each ε > 0 there is a gage δ on X such that |σ(f, P )− σ(f,Q)| < ε
for every P = {(θi, xi)}n

i=1 and Q = {(θ′i, x′i)}
p
i=1 δ−fine PU∗-partitions of X.

Proof. See proposition 1.4 in [7].

3.2 Measurability and Properties of PU∗−Integrable Functions.

Proposition 3.2.1. If f is µ−measurable and µ−integrable on X, then f ∈
PU∗(X) and (PU)∗

∫
X

f =
∫

X
fdµ.

Proof. It follows by the equivalence between the PU-integral and the µ−inte-
gral (see [7]) and because a PU∗-partition is also a PU-partition.

Proposition 3.2.2. A PU∗-integrable function is µ−measurable.

Proof. It is analogue to that used in [7] Propositions 3.1, 3.2 and 3.3.

Proposition 3.2.3. If f, g are two real functions on X and f = g a.e. in
X then g is (PU)∗-integrable if and only if f is (PU)∗-integrable and the two
integral coincide.

Proof. If f is (PU)∗-integrable then by Proposition 2.2 it is µ−measurable
and by completeness of measure also g is µ−measurable, then f − g = 0 a.e.
in X and it is µ−measurable, µ−integrable and (PU)∗-integrable with

(PU)∗
∫

X
(f − g) = 0. So g = f − (f − g) is (PU)∗-integrable.
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Lemma 1. If f is a real µ−integrable function on X, A, B ∈M, with A ⊂ B,
and if c ∈ < and

∫
A

fdµ ≤ c ≤
∫

B
fdµ then there exists a µ−measurable set

C such that A ⊂ C ⊂ B and
∫

C
fdµ = c.

Proof. Consider the σ−algebra D = {D ∈ M : D ⊂ B − A} and the signed
measure α : D →

∫
D

fdµ for D ∈ D.
By Liapounoff theorem (see [9]), the set {α(D) : D ∈ D} is a compact

interval. So
α(∅) = 0 < c−

∫
A

fdµ <

∫
B−A

fdµ

and exists D1 ∈ D such that∫
D1

fdµ = c−
∫

A

fdµ

c =
∫

A∪D1

fdµ, A ⊂ A ∪D1 ⊂ B.

Proposition 3.2.4. If f is a PU∗-integrable function on X, then for each
ε > 0 there is a µ−measurable set E such that µ(X−E) < ε, f is µ−integrable
on E and

∫
E

fdµ = (PU)∗
∫

X
f.

Proof. Suppose that f be not µ−integrable; set

En = {x ∈ X : n− 1 ≤ f(x) < n},
Fn = {x ∈ X : −n ≤ f(x) < −n + 1} n = 1, 2, 3, . . . ,

then

X =
∞⋃

n=1

(En ∪ Fn) =
∞⋃

n=1

(
n⋃

i=1

(Ei ∪ Fi)) =
∞⋃

n=1

Hn,

where Hn =
⋃n

i=1(Ei ∪ Fi) is an increasing sequence of measurable sets.
By a property of the measure, it results limn→∞ µ(Hn) = µ(X) and for

each ε > 0 there is n̄ ∈ N such that for n0 > n̄ it is

µ(X)− µ(Hn0) = µ(X −Hn0) < ε (∗)

f is bounded on Hn0 so it is µ−integrable on Hn0 .
Suppose that

∫
Hn0

fdµ < (PU∗)
∫

X
f ; since f is not µ−integrable, then

the series
∑

n

∫
En

fdµ and
∑

n

∫
Fn

fdµ are divergent to + ∞ and to −∞
respectively. In fact, if

∑
n

∫
En

fdµ = +∞ and
∑

n

∫
Fn

fdµ > −∞, consider
the functions

f1(x) = f(x) if x ∈
⋃
n

En and f1(x) = 0 elsewhere,
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f2(x) = f(x) if x ∈
⋃
n

Fn and f2(x) = 0 elsewhere,

then f2(x) is µ−integrable and hence (PU)∗-integrable and f1(x) = f(x) −
f2(x) is (PU)∗-integrable, but it is also µ−integrable with integral +∞ and
this is impossible. So for ε > 0 there exists K > n0 such that∫

Hn0

fdµ +
∫

En0+1

fdµ + · · ·+
∫

En0+k

fdµ > (PU)∗
∫

X

f

and set H = Hn0 ∪ En0+1 ∪ · · · ∪ En0+k, it results∫
Hn0

fdµ < (PU)∗
∫

X

f <

∫
H

fdµ.

By Lemma 1 there exists a µ−measurable set E with Hn0 ⊂ E ⊂ H such
that

∫
E

fdµ = (PU)∗
∫

X
f and by relation (*) we have

µ(X − E) ≤ µ(X −Hn0) < ε.

Lemma 2. If f is µ−measurable and there exists finite
∫

X
fdµ, given ε > 0

there is a gage δ on X such that∑
i

|(f(xi)
∫

X

θidµ−
∫

X

fθidµ)| < ε

for each δ−fine (PU)∗-partition P = {(θi, xi)} in X.

Proof. It is a consequence of Vitali-Caratheodory theorem. See Proposition
3.1 in [5].

Proposition 3.2.5. A µ−measurable function f is (PU)∗-integrable on X if
and only if given ε > 0 there is a gage δ on X and a µ−measurable set E such
that µ(EC) < ε, f is µ−integrable on E and |

∑
i fχEC (xi)

∫
X

θidµ| < ε for
each δ−fine (PU)∗-partition P = {(θi, xi)}. Moreover

∫
E

fdµ = (PU)∗
∫

X
f.

We have set EC = X − E.

Proof. If f is (PU)∗-integrable, by previous Proposition, let ε > 0 there
is E ∈ M such that µ(EC) < ε, f is µ−integrable on E and

∫
E

fdµ =
(PU)∗

∫
X

f ; so fχE is µ−integrable and hence (PU)∗-integrable and

(PU)∗
∫

X

fχE =
∫

X

fχEdµ =
∫

E

fdµ = (PU)∗
∫

X

f.
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By the (PU)∗-integrability of f and fχE , at corrispondence of ε > 0 there
is a δ on X such that for each δ−fine (PU)∗-partition {(θi, xi)}, it results

|
∑

i

f(xi)
∫

X

θidµ− (PU)∗
∫

X

f | < ε

2

and

|
∑

i

f(xi)χE

∫
X

θidµ− (PU)∗
∫

X

f | < ε

2
.

So we have

|
∑

i

f(xi)χEC

∫
X

θidµ| = |
∑

i

f(xi)
∫

X

θidµ−
∑

i

f(xi)χE

∫
X

θidµ| ≤

≤ |
∑

i

f(xi)
∫

X

θidµ−(PU)∗
∫

X

f |+ |
∑

i

fχE(xi)
∫

X

θidµ−(PU)∗
∫

X

f | < ε.

Conversely, for ε > 0 let E be a µ−measurable and µ−integrable set with
µ(EC) < ε and let δ be a gage on X such that |

∑
i fχC

E(xi)
∫

X
θidµ| < ε

2 for
each δ−fine (PU)∗-partition P of X.

By the µ−integrability of f on E , then also the function fχE is µ−integrable
and, by lemma 2, there is a gage δ1 on X such that

|
∑

i

fχE(xi)
∫

X

θidµ−
∫

X

fχEdµ| < ε

2
.

If δ̄(x) = δ(x)
⋂

δ1(x) for each x ∈ X, then for each δ̄−fine (PU)∗-partition
P consider:

|
∑

i

f(xi)
∫

X

θidµ−
∫

E

fdµ| ≤ |
∑

i

fχE(xi)
∫

X

θidµ−
∫

E

fdµ|+

+|
∑

i

fχC
E(xi)

∫
X

θidµ| < ε

2
+

ε

2
= ε.

So f is (PU)∗-integrable and (PU)∗
∫

X
f =

∫
E

fdµ.

3.3 Convergence Theorems and Nonabsolutely Convergence of the
PU∗−Integral.

Proposition 3.3.1. If f and |f | are (PU)∗-integrable then f is µ−integrable.
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Proof. If f and |f | are (PU)∗-integrable, consider the bounded sequence
fn = |f |∧n for each n ∈ N it converges increasing to |f | and it is µ−integrable
and ∫

X

|f |dµ = lim
n

∫
X

fndµ = lim
n

(PU)∗
∫

X

fn ≤ (PU)∗
∫

X

|f | < +∞.

So |f | and f are µ−integrable.

Proposition 3.3.2. If (fn)n is an increasing sequence of (PU)∗-integrable
functions converging to f pointwisely and limn(PU)∗

∫
X

fn < ∞ then f is
(PU)∗-integrable and (PU)∗

∫
X

f = limn(PU)∗
∫

X
fn.

Proof. Consider the increasing sequence (fn − f1)n converging to f − f1;
since the functions (fn − f1)n are non negative, then by Proposition 3.3.1,
they are µ−integrable and

lim
n

∫
X

(fn − f1)dµ = lim
n

(PU)∗
∫

X

(fn − f1) =

= lim
n

(PU)∗
∫

X

fn − (PU)∗
∫

X

f1 < +∞.

So by the monotone theorem for the µ−integrable functions, the function
(f−f1) is µ−integrable and hence (PU)∗-integrable. Therefore f = (f−f1)+f1

is (PU)∗-integrable.

Proposition 3.3.3. If (fn)n is a sequence of (PU)∗ integrable functions con-
verging pointwisely to f and such that there are two functions h and g (PU)∗-
integrable with h ≤ fn ≤ g for each n ∈ N then f is (PU)∗-integrable and
(PU)∗

∫
X

f = limn(PU)∗
∫

X
fn.

Proof. Consider the sequence (fn − h)n; it is non negative and (PU)∗-
integrable, so it is µ−integrable and results:

0 ≤ (fn − h) ≤ (g − h).

Since the function g−h is non negative and (PU)∗-integrable, it is µ−integrable
and by the dominate convergent theorem, the sequence of functions (fn −
h) converges to f − h which is a µ−integrable function and hence (PU)∗-
integrable. By the equality f = (f − h) + h it follows the (PU)∗-integrability
of f .

Definition 5. We say that a real function f has finite
∫

X
fdµ but

∫
X
|f |dµ

is infinite if
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i) or exists a sequence An ∈M with An ⊂ An+1,
⋃

An = X, f is µ−integrable
on An for each n and exists finite limn

∫
An

fdµ while
∫

X
|f |dµ = +∞.

Then we set ∫
X

fdµ = lim
n

∫
An

fdµ;

ii) or if f =
∑+∞

n=1 anχAn
, An ∈ M,

⋃
An = X, Ai

⋂
Aj = ∅ and∑+∞

n=1 anµ(An) is finite while
∑+∞

n=1 |an|µ(An) = +∞ , then we set

+∞∑
n=1

anµ(An) =
∫

X

fdµ.

Proposition 3.3.4. If f is µ−measurable and exists finite
∫

X
fdµ but

∫
X
|f |dµ =

+∞ then f is (PU)∗-integrable and
∫

X
fdµ = (PU)∗

∫
X

f.

Proof. If ε > 0, by lemma 2, there is a gage δ on X such that if P = {(θi, xi)}
is a (PU)∗-partition of X, then we have:

ε > |
∑

i

(f(xi)
∫

X

θidµ−
∫

X

fθidµ)| = |
∑

i

f(xi)
∫

X

θidµ−
∑

i

fθidµ| =

= |
∑

i

(f(xi)
∫

X

θidµ−
∫

X

fdµ)|.

An example of a function which is PU∗-integrable but it is not
µ−integrable.

Consider the space X = {0, 1}N. Let ᾱ = α1α2 . . . αk be a finite string of 0
and 1; consider the set Aᾱ = [ᾱ]k = {γ ∈ X : γ = ᾱβ, for some β ∈ X}, it is a
clopen set (i.e. an open and closed set) with respect to the topology induced
by the metric ρ so defined:

if α, β ∈ X ρ(α, β) = 1
2n if α 6= β and α1 = β1, . . . αn = βn, αn+1 6= βn+1

ρ(α, α) = 0.
With respect to this metric ρ, X = {0, 1}N is a complete, separable and

compact metric space ( see [3]). Define on the family {Aᾱ} the following set
function m:

m(Aᾱ) =
1
2k

and let m∗ be the outer measure induced by m on the family of all the subsets
of X. If M is the σ−algebra of all the subsets of X m∗−measurable in the
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Caratheodory sense, then the open sets are inM and m∗ is a complete measure
on M.

Define on X the following real function

f(α) =


a1 if α1 = 0
a2 if α1 = 1 and α2 = 0
an if α1, α2, . . . αn−1 = 1, αn = 0
. . .

f(1111 . . . 111 . . . ) = 0

where α = (α1, α2, . . . ) ∈ {0, 1}N and an = (−1)n 2n

n for every n ∈ N. Then,
by Proposition 3.3.4, we have:∫

X

fdm =
∞∑

n=1

an
1
2n

=
∞∑

n=1

(−1)n 1
n

= (PU)∗
∫

X

f,

so f is PU∗-integrable but |f | is not µ-integrable.
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