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email: mbalce@p.lodz.pl
Katarzyna Dems, Center of Mathematics and Physics,  Lódź Technical
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SOME TYPES OF CONVERGENCE AND
RELATED BAIRE SYSTEMS

Abstract

We study several kinds of convergence of sequences of real numbers
with indices m ∈ Nn, and the respective versions for uniform and point-
wise convergence of sequences of real functions. We obtain a theorem
about generalized Baire classes of real functions. This theorem is related
to a result by Katetov from 1972. We add some comments and appli-
cations connected with ideal convergence, a generalization of statistical
convergence investigated by several authors.

1 Convergence of Double Sequences.

We denote N = {1, 2, . . .}. Let us consider the following four types of conver-
gence of a double sequence (xmn)(m,n)∈N2 of reals to an x ∈ R:

xmn →(1) x ⇐⇒ (∀ ε > 0)(∃ k ∈ N)(∀m ≥ k)(∀n ∈ N) |xmn − x| < ε,

xmn →(2) x ⇐⇒ (∀ ε > 0)(∃ k ∈ N)(∀m ≥ k)(∀n ≥ k) |xmn − x| < ε,

xmn →(3) x ⇐⇒ (∀ ε > 0)(∀m ∈ N)(∃k ∈ N)(∀n ≥ k) |xmn − x| < ε,

xmn →(4) x ⇐⇒ (∀ε > 0)(∃k ∈ N)(∀m ≥ k)(∃ p ∈ N)(∀n ≥ p) |xmn − x| < ε.

In each of these cases, x will be called the limit of the sequence (xmn)(m,n)∈N2

with respect to convergence →(k) where k ∈ {1, 2, 3, 4}. Of course, one
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may define three other types of convergence associated with those given above
with numbers 1, 2, 4, where the roles of indices m and n are interchanged.
This however is analogous and does not seem of much interest. One can easily
check that the limit of a sequence with respect to any convergence →(k) is
unique, provided it exists. Observe that

(xmn →(1) x) ⇒ (xmn →(2) x) ⇒ (xmn →(4) x)

(xmn →(1) x) ⇒ (xmn →(3) x) ⇒ (xmn →(4) x).
(1)

It is not hard to verify that each of (all possible) remaining implications is
false, for the respectively chosen xmn and x in R.

The usual convergence xmn → x means that, for every ε > 0, the set
{(m,n) ∈ N2 : |xmn − x| ≥ ε} is finite. Obviously xmn → x implies that
xmn →(1) x but the converse can be false.

Now, if E is a fixed nonempty set, we may consider a pointwise or uniform
convergence with index k ∈ {1, 2, 3, 4} of a sequence (fmn)(m,n)∈N2 of functions
fmn : E → R to a function f : E → R. This means that we add the quantifier
(∀x ∈ E) at the beginning or at the end of the formula defining →(k), and
|xmn − x| < ε should be replaced by |fmn(x) − f(x)| < ε. We then write
fmn →(k) f or fmn ⇒(k) f (on E). Observe that the respective versions of (1)
hold if one considers pointwise or uniform convergence.

Proposition 1. Let k ∈ {1, 2, 3, 4}. Assume that E 6= ∅ and that for f : E →
R, and fmn : E → R, (m,n) ∈ N2, we have fmn ⇒(k) f on E. Then there is a
subsequence of (fmn)(m,n)∈N2 which is uniformly convergent to f on E in the
usual sense.

Proof. Since the version of (1) holds for convergences ⇒(k), we may prove
the assertion only for k = 4. Let fmn ⇒(4) f on E. Thus

(∀ ε > 0)(∃ k ∈ N)(∀m ≥ k)(∃ p ∈ N)(∀n ≥ p)(∀x ∈ E) |fmn(x)− f(x)| < ε.

Consider ε = 1/r, r ∈ N, and choose k = kr such that

(∀m ≥ k)(∃ p ∈ N)(∀n ≥ p)(∀x ∈ E) |fmn(x)− f(x)| < ε.

Then pick m = kr and choose p = pr such that the respective formula holds.
Next pick n = pr and thus

(∀x ∈ E) |fkrpr
(x)− f(x)| < 1

r
. (2)

We can ensure that kr < kr+1 and pr < pr+1 for all r ∈ N. Now, from (2) it
follows that fkrpr

⇒ f on E.

Assume that E is a metric space. From Proposition 1 we conclude that
every convergence ⇒(k) preserves continuity.
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2 Generalized Baire classes.

Since the usual pointwise convergence does not preserve continuity, the same
holds if one considers each of the pointwise convergences →(k). It is natural
to study the iteration process generated by a given convergence starting from
the class of continuous functions, which leads to generalized Baire classes.
So, assume that we have an abstract kind of “pointwise” convergence →∗

for sequences of functions from a metric space (X, d) into R. In Section 1
we proposed definitions of convergence for double sequences. Now, let us go
further and consider the case of sequences (fm)m∈Nn where n ∈ N is fixed
and fm : X → R for m = (m1, . . . ,mn) ∈ Nn. Let →∗ be a fixed kind of
convergence for sequences of type (fm)m∈Nn .

We define a Baire system {B∗
α}α<ω1 of functions from X to R as follows.

Let B∗
0 consist of all continuous functions from X to R, and for 0 < α < ω1

let B∗
α consist of all functions f from X to R such that there is a sequence

(fm)m∈Nn with fm →∗ f and fm ∈
⋃

γ<α B∗
γ for each m ∈ Nn. As before fm →

f (the usual convergence) means that the set {m ∈ Nn : |fm(x) − f(x)| ≥ ε}
is finite for any ε > 0 and x ∈ X. We shall always assume that, for all fm and
f , we have

(fm → f) ⇒ (fm →∗ f), (3)

which means that the convergence is weaker than → . The family {Bα}α<ω1

will stand for the classical Baire system (generated by →). From (3) it follows
that Bα ⊂ B∗

α for all α < ω1 (clearly B0 = B∗
0). We will study the question

how much B∗
α can be bigger than Bα. Note that the definition of {Bα}α<ω1

does not depend on the choice of n since the condition defining fm → f,
m ∈ Nn, remains true if we renumber Nn into Nr (via a bijection), for any
r ∈ N. Hence the classical system {Bα}α<ω1 may be considered with pointwise
convergence of single sequences of type (fk)k∈N.

Let {B(k)
α }α<ω1 denote the Baire system generated by pointwise conver-

gence →(k) (k = 1, 2, 3, 4) defined in Section 1.

Proposition 2. For any k ∈ {1, 2, 3} and α < ω1 we have B
(k)
α = Bα.

Proof. We have Bα ⊂ B
(k)
α for all k ∈ {1, 2, 3} and α < ω1. Thus by (1) it

suffices to consider the cases k = 2 and k = 3, and show that B
(k)
α = Bα for all

α < ω1. But this is an easy consequence of the following two observations: if
fmn →(2) f on X, then fnn → f on X, and if fmn →(3) f on X, then f1n → f
on X.

Convergence →(4) is more interesting. First, we will generalize it to the
case of convergence for sequences of reals with n indices. Thus let n ∈ N. We
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say that xm →n x (where x, xm ∈ R for m ∈ Nn) if the following formula
holds

(∀ ε > 0)(∃ k1 ∈ N)(∀m1 ≥ k1) . . . (∃ kn ∈ N)(∀mn ≥ kn) |xm − x| < ε.

Here, as before, m = (m1, . . . ,mn). Note that →1 means the usual conver-
gence and →2 is identical with →(4) . Now, we can define pointwise conver-
gence fm →n f (where f, fm : X → R,m ∈ Nn) in the standard manner. The
Baire system generated by →n will be written as {Bα(n)}α<ω1 . This system,
as before, starts from B0(n), the family of all continuous real functions on X.
We can define an analogous system generated by →n and starting from an
arbitrary family F of real functions defined on X. This system will be denoted
by {(Bα(n))(F)}α<ω1 (hence (B0(n))(F) = F). Analogously we understand
{(Bα)(F)}α<ω1 if →n is replaced by → .

Theorem 1. For every n ∈ N and any α < ω1, we have

Bα(n) =

{
Bα if α is a limit number
Bγ+kn if α = γ + k, γ is a limit number and k ∈ N.

The proof will be broken into several lemmas. If m = (m1, . . . ,mn) ∈ Nn,
we write m|0 = 0 and m|k = (m1, . . . ,mk) for k = 1, . . . , n.

Lemma 1. Let n ∈ N, n ≥ 2, and xm ∈ R,m ∈ Nn. For a fixed m ∈ Nn we
define inductively

xm|(k−1) = lim
mk→∞

xm|k for k = n, n− 1, . . . , 1 . (4)

and assume that these limits exist. Then xm →n x0.

Proof. Let ε > 0. By (4) we choose a k1 ∈ N such that |x(m1) − x0| < ε/n
for each m1 ≥ k1. Then for each m1 ∈ N we choose a k2 ∈ N such that
|x(m1,m2) − xm1 | < ε/n for each m2 ≥ k2, and so on. Thus

|x0 − xm| ≤
n∑

k=1

|xm|(k−1) − xm|k| < n
ε

n
= ε

for the respective m1, . . . ,mn. Hence xm →n x0.

Corollary 1. Let F ⊂ RX . Then (Bn)(F) ⊂ (B1(n))(F) for each n ∈ N.

Lemma 2. Let n ∈ N, n ≥ 2. Assume that x0 ∈ R and xm ∈ R for m ∈
Nn, and let xm →n x0. Fix m ∈ Nn, and for k = n, n − 1, . . . , 2, we define
inductively

xm|(k−1) = either lim inf
mk→∞

xm|k or lim sup
mk→∞

xm|k. (5)
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Then lim
m1→∞

x(m1) = x0.

Proof. Consider the formula defining xm →n x0. In inequality |xm − x| < ε,
according to the rule (5), we take step by step lim inf

mk→∞
or lim sup

mk→∞
for k =

n, n− 1, . . . , 2. At the end, we obtain |x(m1) − x0| ≤ ε for all sufficiently large
m1 ∈ N.

For a family F ⊂ RX , let

Lim(F) = {f ∈ RX : (∃ (fm)m∈N ∈ FN)(∀x ∈ X)f(x) = lim inf
m→∞

fm(x)},

Lim(F) = {f ∈ RX : (∃ (fm)m∈N ∈ FN)(∀x ∈ X)f(x) = lim sup
m→∞

fm(x)}.

Then define classes Bn(F), Bn(F), n ∈ N ∪ {0}, as follows

B0(F) = B0(F) = F,

Bn(F) =

{
Lim Bn−1(F) if n is odd
Lim Bn−1(F) if n is even,

Bn(F) =

{
Lim Bn−1(F) if n is odd
Lim Bn−1(F) if n is even.

From the above definitions and Lemma 2 we derive

Corollary 2. Let F ⊂ RX . Then (B1(n))(F) ⊂ Bn(F) ∩ Bn(F) for each
n ∈ N.

It is known that the family of Borel sets in X can be expressed as
⋃

α<ω1
Σ0

α

=
⋃

α<ω1
Π0

α, where Σ0
α ⊂ Σ0

γ , Π0
α ⊂ Π0

γ for any α < γ < ω1, and Σ0
1 = open

sets, Σ0
2 = Fσ sets, etc., and Π0

1 = closed sets, Π0
2 = Gδ sets etc. Recall [5, 24.3]

that for each α < ω1 we have: f ∈ Bα if and only if f−1(U) ∈ Σ0
α+1, for every

open set U ⊂ R. Of course we can only use open sets U of the form (−∞, c)
and (c,∞) for c ∈ R. We will write f−1(c,∞) = [f > c], f−1(−∞, c) = [f < c].
The sets [f ≤ c], [f ≥ c] have similar meaning. Since the complements of sets
from Σ0

α are in Π0
α and vice versa, f ∈ Bα if and only if [f ≤ c], [f ≥ c] are in

Π0
α+1 for every c ∈ R.

Lemma 3. Let β < ω1 and n ∈ N be arbitrary.

(a) For each f ∈ Bn(Bβ) and every c ∈ R, we have

[f > c] ∈

{
Σ0

β+n+1 if n is odd
Σ0

β+n+2 if n is even

[f ≥ c] ∈

{
Π0

β+n+1 if n is even
Π0

β+n+2 if n is odd.
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(b) For each f ∈ Bn(Bβ) and every c ∈ R, we have

[f < c] ∈

{
Σ0

β+n+1 if n is odd
Σ0

β+n+2 if n is even

[f ≤ c] ∈

{
Π0

β+n+1 if n is even
Π0

β+n+2 if n is odd.

Proof. Observe that for any β < ω1, n ∈ N, and f ∈ RX we have

f ∈ Bn(Bβ) ⇔ −f ∈ Bn(Bβ) (6)

which follows from the definitions of Bn(Bβ) and Bn(Bβ). This shows that
it suffices to demonstrate (a). Let β < ω1 be fixed. Assume that n = 1 and
f ∈ B1(Bβ). Thus f = lim inf

m→∞
fm for some (fm)m∈N ∈ (Bβ)N. We have

[f > c] =
⋃
r∈N

⋃
p∈N

⋂
m≥p

[fm ≥ c− 1
r

].

Hence [f > c] ∈ Σ0
β+2, as desired. Also, we have

[f ≥ c] =
⋂
r∈N

[f > c− 1
r

]

which yields [f ≥ c] ∈ Π0
β+3, as desired. Now, let n > 1 and assume that the

assertion (a) has been proved for n− 1. Let n be even. So f = lim sup
m→∞

fm for

(fm)m∈N ∈ (Bn−1)(Bβ). We have

[f ≥ c] =
⋂
r∈N

⋂
p∈N

⋃
m≥p

[fm > c− 1
r

].

By induction hypothesis, [fm > c − 1
r ] ∈ Σ0

β+n and so [f ≥ c] ∈ Π0
β+n+1, as

desired. Since
[f > c] =

⋃
r∈N

[f ≥ c +
1
r

],

we have [f > c] ∈ Σ0
β+n+2, as desired. If n is odd, the proof is similar to the

case n = 1.

Corollary 3. For any β < ω1 and n ∈ N, we have Bn(Bβ)∩Bn(Bβ) ⊂ Bβ+n.

Proof. Fix β < ω1. Let f ∈ Bn(Bβ)∩Bn(Bβ). If n is odd, then [f > c], [f <
c] ∈ Σ0

β+n+1 for every c ∈ R. If n is even, then [f ≥ c], [f ≤ c] ∈ Π0
β+n+1 for

every c ∈ R. Consequently, f ∈ Bβ+n.
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Proof of Theorem 1. For α = 0, the assertion is obvious. Let α > 0 and
assume that the assertion has been proved for all ordinals less than α. We will
prove it for α. Assume first that α = γ + k where γ is a limit number and
k ∈ N. We have

Bγ+kn = Bn(Bγ+(k−1)n) ⊂ (B1(n))(Bγ+(k−1)n) = (B1(n))(Bγ+(k−1)(n))
= Bγ+k(n) = Bα(n),

by the induction hypothesis and Corollary 1. By Corollaries 2 and 3 we derive
reverse inclusion:

Bα(n) = (B1(n))(Bγ+(k−1)n) ⊂ Bn(Bγ+(k−1)n) ∩Bn(Bγ+(k−1)n) ⊂ Bγ+kn.

If α is a limit number, by induction hypothesis we obtain

Bα(n) =
⋃

γ<α

Bγ(n) =
⋃

γ<α

Bγ = Bα.

3 Comments and Applications.

The core part of our main result, namely the equality B1(n) = Bn, was proved
by Katetov [3] and announced in [2], as one of a series of theorems concerning
the so-called filter convergence. In our paper, we have presented a detailed
proof that does not use filters explicitly. However, basic ideas of the both
demonstrations are similar. We believe that our article, because of a different
description, would be of some interest. While preparing our result, we were
not aware of the existence of Katetov’s work. Note that (as was observed by
the Referee) our operator →n means in fact the convergence with respect to
the iterated product of the Fréchet filter on N. A theory related to that created
by Katetov was initiated again (independently) by Nuray and Ruckle [7], and
by Kostyrko, Šalát and Wilczyński [4]. In their papers, filter convergence (or,
equivalently ideal convergence) was viewed as a generalization of statistical
convergence introduced by Fast [1] and investigated by many authors. In [4],
Baire 1 classes generated by ideal convergence were studied, and this motivated
us to find for each n ∈ N, an ideal I of subsets of N for which I-Baire 1 class
coincides with Bn. An extension of this result to the case when n ∈ N is
replaced by α < ω1 was obtained by Komisarski [6] who then learnt about
Katetov’s result and informed us of it.

Now, let us give some terminology borrowed mainly from [4]. For n ∈ N,
let I ⊂ P(Nn) denote an ideal. We shall always assume that I 6= P(Nn) and⋃

I = Nn, then we call I an ideal on Nn. We say that a sequence (xm)m∈Nn of
reals I-converges to an x ∈ R, and write xm →I x, if {m ∈ Nn : |xm−x| ≥ ε} ∈
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I for each ε > 0. (See [4].) Observe that the usual convergence → coincides
with I-convergence when I consists of finite sets. Also, I-convergence can be
defined in a different equivalent way if a dual filter F = {Nn \ A : A ∈ I} is
used instead of I. (See [3]) and [7].) Two ideals I on Nn and J on Nr are called
equivalent (which is written as I ∼ J), if there is a bijection ϕ : Nn → Nr

such that J = {ϕ(A) : A ∈ I}. Plainly I ∼ J implies xm →I x ⇔ yk →J x

for any (xm)m∈Nn and x ∈ R where yk = xϕ−1(k) for k ∈ Nr. If an ideal I

on Nn is given, we define convergence fm →I f for fm, f ∈ RX (m ∈ Nn) in
a standard manner. One can consider the Baire system {BI

α}α<ω1 generated
by convergence →I . In [4], some sufficient conditions for ideals I on N were
found in order to have BI

1 = B1. One of ideals considered there (we call it
E) is associated with a fixed partition ∆ = {Dk : k ∈ N} of N into infinitely
many infinite sets Dk. Namely, E = E∆ consists of all sets A ⊂ N such that
A intersects a finite number of sets in ∆. This ideal will be called a partition
ideal. In an analogous way, we can define a partition ideal on Nn for n ∈ N.
It is easy to check that any two partition ideals E1 on Nn and E2 on Nr are
equivalent.

Now, we derive the following corollary from Proposition 2.

Corollary 4. If n ∈ N and E is a partition ideal on Nn, then BE
α = Bα for

all α < ω1.

Proof. Observe that convergences →(k) for k = 1, 2 are generated by par-
tition ideals on N2. Indeed, let E1 ⊂ P(N2) denote the ideal associated with
the partition of N2 into rows {(m,n) ∈ N2 : n ∈ N}, m ∈ N. Thus →(1)

is identical with →E1 . Similarly →(2) is identical with →E2 where E2 on
N2 is the ideal associated with the partition of N2 into sets {(m, k) : m ∈
N} ∪ {(k, n) : n ∈ N}, k ∈ N. By Proposition 2 we have B

(i)
α = Bα for all

α < ω1 and i = 1, 2. Since any two partition ideals are equivalent and two
equivalent ideals produce identical Baire classes, the assertion follows.

Note that a result similar to Corollary 4 was mentioned in [4] for the case
when n = 1, α = 1 and if X is a complete metric space.

In the proof of Corollary 4 we have observed that convergences →(k) for
k = 1, 2 are generated by ideals. We are going to do the same for convergences
→(k) with k = 3, 4, and for convergences →n with n ∈ N. Notice that ideals

on Nn, as subsets of P(Nn), can be also viewed as subsets of the Cantor space
{0, 1}Nn

since there is a natural bijection between P(Nn) and {0, 1}Nn

via
characteristic functions (indicators). So ideals, as subsets of {0, 1}Nn

can be
closed, Borel, analytic etc.

Proposition 3. (a) Let k ∈ {1, 2, 3}. Then convergence →(k) is generated
by a Borel ideal I on N2.
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(b) Let n ∈ N. Then convergence →n is generated by a Borel ideal on Nn.

Proof. (a) Following [5, 23] we abbreviate (∃ k)(∀m ≥ k) by (∀∞m), and
(∀ k)(∃m ≥ k) by (∃∞m). It is easy to check that, for k ∈ {1, 2, 3}, convergence
→(k) is generated by an ideal I(k) on N2 defined as follows (when we identify
P(N2) with {0, 1}N2

):

I(1) = {z ∈ {0, 1}N2
: (∀∞m)(∀n) z(m,n) = 0},

I(2) = {z ∈ {0, 1}N2
: (∀∞m,n) z(m,n) = 0},

I(3) = {z ∈ {0, 1}N2
: (∀m)(∀∞n) z(m,n) = 0},

where (∀∞m,n) abbreviates (∃ k)(∀m,n ≥ k). By the use of methods of [5,
23] we may conclude that I(1), I(2) ∈ Σ0

2 and I(3) ∈ Π0
3.

(b) Observe that convergence →n is generated by an ideal Jn on Nn

defined as follows (we identify P(Nn) with {0, 1}Nn

). For n = 1 we put

J1 = {z ∈ {0, 1}N : (∀∞m1) z(m1) = 0},

and for n > 1 we put

Jn+1 = {z ∈ {0, 1}Nn+1
: (∀∞m1) z(m1, ·) ∈ Jn}.

By a careful induction one can check that Jn ∈ Σ0
2n for all n ∈ N. (See [5,

23.5].)

The approach proposed by Katetov in [2, 3] seems more abstract and in-
volved than ours, but it goes further than our considerations. For instance,
Katetov showed that, under CH, the family Bω1 (of all real-valued Borel func-
tions on R) can be expressed as the first Baire class generated by a filter
convergence, with a filter F ⊂ P(N). He proved even more since the domain R
can be replaced by an arbitrary topological space. Note that F is the intersec-
tion of two ultrafilters on N. It would be interesting to establish whether this
result can be obtained within ZFC.
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