Tomasz Natkaniec, Institute of Mathematics, Gdańsk University, Wita Stwosza 57, 80-952 Gdańsk, Poland. email: mattn@math.univ.gda.pl Harvey Rosen, Department of Mathematics, Box 870350, University of Alabama, Tuscaloosa, AL 35487-0350, USA. email: hrosen@gp.as.ua.edu

AN EXAMPLE OF AN ADDITIVE ALMOST CONTINUOUS SIERPIŃSKI-ZYGMUND FUNCTION

Dedicated to the memory of Jerry Gibson

Abstract

Assuming that the union of fewer than c-many meager sets does not cover the real line, we construct an example of an additive almost continuous Sierpiński-Zygmund function which has a perfect road at each point but which does not have the Cantor intermediate value property.

Our terminology is standard. In particular, symbols \mathbb{Q} and \mathbb{R} stand for the sets of all rationals and reals, respectively. We consider only real-valued functions of one real variable. No distinction is made between a function and its graph. The cardinality of \mathbb{R} is denoted by \mathfrak{c} . If A is a planar set, we denote its x-projection by dom (A). \mathcal{M} denotes the ideal of meager subsets of the real line and $\operatorname{cov}(\mathcal{M})$ is the minimal cardinality of a family of meager sets which $\operatorname{cover} \mathbb{R}$. (Note that if $\operatorname{cov}(\mathcal{M}) = \mathfrak{c}$, $A \subset \mathbb{R}$ is residual in some open interval and B is the union of fewer than \mathfrak{c} meager sets, then $A \setminus B$ is of size \mathfrak{c} .)

If $A \subset \mathbb{R}$ (or $A \subset \mathbb{R}^2$), then LIN (A) denotes the linear subspace of \mathbb{R} (\mathbb{R}^2 , respectively) over \mathbb{Q} generated by A. (Note that if $A \subset \mathbb{R}^2$, then dom (LIN (A)) is a linear subspace of \mathbb{R} .) In particular, if $q \in \mathbb{Q}$ and $\langle x, y \rangle \in \mathbb{R}^2$, then $q\langle x, y \rangle = \langle qx, qy \rangle$ and if $q \in \mathbb{Q}$ and $A \subset \mathbb{R}^2$, then $qA = \{qa : a \in A\}$.

Mathematical Reviews subject classification: Primary 26A15; Secondary: 03E50 Received by the editors June 17, 2004

Communicated by: Krzysztof Chris Ciesielski

Key Words: almost continuous; additive function; Sierpiński-Zygmund function; perfect road; Cantor Intermediate Value Property

A function $f \colon \mathbb{R} \to \mathbb{R}$ is Sierpiński-Zygmund type (SZ function) if the restriction f|A is discontinuous for each $A \subset \mathbb{R}$ of size \mathfrak{c} . Recall that f is an SZ function iff for every G_δ set $G \subset \mathbb{R}$ and for each continuous function $g \colon G \to \mathbb{R}$, f agrees with g on the set of size less than \mathfrak{c} [SZ]. A function $f \colon \mathbb{R} \to \mathbb{R}$ is almost continuous (in the sense of Stallings, $f \in AC$ shortly) if each open subset of the plane containing f contains also a continuous function $g \colon \mathbb{R} \to \mathbb{R}$. A blocking set $K \subset \mathbb{R}^2$ is a closed subset of \mathbb{R}^2 that meets the graph of every continuous function $g \colon \mathbb{R} \to \mathbb{R}$ and is disjoint with at least one function. Recall that if $f \colon \mathbb{R} \to \mathbb{R}$ intersects every blocking set, then it is almost continuous. Recall also that for each blocking set $K \subset \mathbb{R}^2$ there exists a continuous function g defined on a G_δ set $G \subset \mathbb{R}$ such that G is residual in some non-degenerate open interval $I \subset \mathbb{R}$ and $g \subset K$. (See [KK, Lemma 1] and the proof of [BCN, Theorem 1].)

A function $f: \mathbb{R} \to \mathbb{R}$ has a *perfect road* at $x \in \mathbb{R}$ if there exists a perfect set P with bilateral limit point x such that f|P is continuous at x. PR is the class of all functions which have a perfect road at each point $x \in \mathbb{R}$.

f has the Cantor intermediate value property $(f \in CIVP)$ if for each $x, y \in \mathbb{R}$ and every perfect set C between f(x) and f(y) there exists a perfect set P between x and y with $f(P) \subset C$.

It is easy to construct an additive function $f \in SZ \cap PR$. (See [BCN, Theorem 2].) Ciesielski and Jastrzębski constructed an additive function $f \in AC \cap PR \setminus CIVP$ [CJ, Example 5.1]. Assuming the real line $\mathbb R$ is not a union of fewer than $\mathfrak c$ -many of its meager subsets, Balcerzak, Ciesielski and Natkaniec show that there exists a function $f \in AC \cap SZ \cap PR$ [BCN, Theorem 1]. Moreover, they show that some additional set-theoretic assumptions are necessary, because the existence of an SZ function which is almost continuous is independent of ZFC axioms [BCN, Section 5]. (See also [GN], [GN1], and [KP].)

The aim of this note is to find a single example having all these properties at once.

Theorem 1. Assume that $cov(\mathcal{M}) = \mathfrak{c}$. There exists an additive function $f \in SZ \cap AC \cap PR \setminus CIVP$.

PROOF. Let $C \subset (0,1)$ be a Cantor set which is linearly independent over \mathbb{Q} . (See, e.g., [MK, Theorem 2, p. 270].) Let p be a bilateral limit point of C and let $H = \{t_{\alpha} : \alpha < \mathfrak{c}\}$ be a Hamel basis such that $C \subset H$, $t_0 = p$, and $t_1 \in C$. Let $\{K_{\alpha} : \alpha < \mathfrak{c}\}$ be the collection of all perfect nowhere dense subsets of \mathbb{R} , $\mathcal{G} = \{g_{\alpha} : \alpha < \mathfrak{c}\}$ be the family of all continuous functions defined on G_{δ} subsets of the real line and let $\{I_n : n < \omega\}$ be a sequence of all open intervals with rational end-points. We will define a sequence f_{α} , $\alpha < \mathfrak{c}$, of linear functions defined on subspaces of \mathbb{R} with the following properties.

- **(P1)** $t_{\alpha} \in \text{dom}(f_{\alpha}) \text{ and } |\text{dom}(f_{\alpha})| < \mathfrak{c}.$
- **(P2)** $f_{\beta} \subset f_{\alpha}$ if $\beta < \alpha$.
- **(P3)** If dom (g_{α}) is residual in some interval I, then there is $x \in I \cap \text{dom}(f_{\alpha})$ with $f_{\alpha}(x) = \lim_{t \to x} g_{\alpha}(t)$.
- **(P4)** $f_{\alpha} \cap g_{\beta} \subset f_{\beta}$ whenever $\beta < \alpha$.
- **(P5)** $f_0(t_0) = 0, f_0(t_1) = 1.$
- (P6) $f_{\alpha}|C$ is continuous at t_0 .
- **(P7)** There exists $x_{\alpha} \in K_{\alpha} \cap \text{dom}(f_{\alpha})$ with $f_{\alpha}(x_{\alpha}) \notin C$.

Then by properties (P1) and (P2), $f = \bigcup_{\alpha < \mathfrak{c}} f_{\alpha}$ is an additive function defined on all of \mathbb{R} . The property (P4) implies $f \cap g_{\beta} \subset f_{\beta}$ for each $\beta < \mathfrak{c}$, so $|f \cap g_{\beta}| < \mathfrak{c}$ and consequently, $f \in \mathrm{SZ}$. The condition (P6) implies that $f \in \mathrm{PR}$. In fact, fix $x \in \mathbb{R}$ and set $z = x - t_0$. Then C + z is a perfect set containing x as a bilateral limit point, and f|(C + z) is continuous at x because $f|(C + z) = (f|C) + \langle z, f(z) \rangle$. The statements (P5) and (P7) together with $C \subset (0,1)$ give $f \notin \mathrm{CIVP}$.

Now we will verify that f is almost continuous. Fix a blocking set $K \subset \mathbb{R}^2$. Let α be the first ordinal for which there exist $q \in \mathbb{Q} \setminus \{0\}$, $n < \omega$ and $v \in f$, $v = \langle v_0, v_1 \rangle$, such that dom $[(qg_\alpha + v) \cap K]$ is residual in the interval I_n . Then dom (g_α) is residual in the interval $J = q^{-1}(I_n - v_0)$. By (P3) there is $x \in J$ with $f_\alpha(x) = \lim_{t \to x} g_\alpha(t)$. Then $x' = qx + v_0 \in I_n$ and $\langle x', f(x') \rangle = \langle qx + v_0, qf(x) + v_1 \rangle = q\langle x, f(x) \rangle + v = q\langle x, f_\alpha(x) \rangle + v \in \operatorname{cl}(qg_\alpha + v)$. Since $qg_\alpha + v$ is continuous and K is closed, this easily implies that $(I_n \times \mathbb{R}) \cap (qg_\alpha + v) = (I_n \times \mathbb{R}) \cap (qg_\alpha + v) \cap K$. Thus $\langle x', f(x') \rangle \in \operatorname{cl}((qg_\alpha + v) \cap K) \subset K$ and therefore $K \cap f \neq \emptyset$.

The functions f_{α} , $\alpha < \mathfrak{c}$, will be constructed by induction. Suppose α is fixed and all f_{β} , $\beta < \alpha$, are defined.

- (i) Let $\bar{f}_{\alpha} = \text{LIN}\left(\bigcup_{\beta < \alpha} f_{\beta}\right)$. We define a sequence $d_{\alpha,n}$, $n < \omega$, inductively in the following way. Let $D_{\alpha,n} = \{d_{\alpha,i} : i < n\} \setminus \{0\}$ and $f_{\alpha,n} = \text{LIN}\left(\bar{f}_{\alpha} \cup (g_{\alpha}|D_{\alpha,n})\right)$. If
 - (*) dom (g_{α}) is residual in I_n , and for all $\beta < \alpha$, $q \in \mathbb{Q}$ and $w \in f_{\alpha,n}$ the set $I_n \cap \text{dom}[(qg_{\beta} + w) \cap g_{\alpha}]$ is nowhere dense,¹

¹or equivalently, the set $I_n \cap \text{dom} [(qg_\beta + w) \cap g_\alpha]$ is meager,

then $d_{\alpha,n} \in I_n \cap \text{dom}(g_\alpha) \setminus \text{LIN}(\text{dom}(f_{\alpha,n}) \cup C)$ is such that

LIN
$$(\{\langle d_{\alpha,n}, g_{\alpha}(d_{\alpha,n})\rangle\} \cup f_{\alpha,n}) \cap \bigcup_{\beta < \alpha} g_{\beta} \subset f_{\alpha,n}.$$
 (1)

Otherwise $d_{\alpha,n} = 0$.

- (ii) Let $\tilde{f}_{\alpha} = \bigcup_{n < \omega} f_{\alpha,n}$. A real number t'_{α} has the following properties:
 - (a) $t'_0 = 0$ and $t'_1 = 1$.
 - **(b)** If $t_{\alpha} \in \text{dom}(\tilde{f}_{\alpha})$, then $t'_{\alpha} = \tilde{f}_{\alpha}(t_{\alpha})$.
 - (c) If $t_{\alpha} \in C \setminus \text{dom}(\tilde{f}_{\alpha})$, then $t'_{\alpha} \notin C$ and $|t'_{\alpha} t'_{0}| < |t_{\alpha} t_{0}|$.
 - (d) For each $q \in \mathbb{Q}$, $\beta \leq \alpha$ and $x \in \text{dom}(\tilde{f}_{\alpha})$, if $qt_{\alpha} + x \notin \text{dom}(\tilde{f}_{\alpha})$, then the inequality $g_{\beta}(qt_{\alpha} + x) \neq qt'_{\alpha} + \tilde{f}_{\alpha}(x)$ holds.
- (iii) Let $\hat{f}_{\alpha} = \text{LIN}(\tilde{f}_{\alpha} \cup \{\langle t_{\alpha}, t'_{\alpha} \rangle\})$. Numbers $s_{\alpha,0}, \ldots, s_{\alpha,n}, s'_{\alpha,0}, \ldots, s'_{\alpha,n}$ have the following properties:
 - (a) $s_{\alpha,0}, \ldots, s_{\alpha,n} \in H \setminus \text{dom}(\hat{f}_{\alpha})$ and there are $q_0, \ldots, q_n \in \mathbb{Q} \setminus \{0\}$ and $w \in \text{dom}(\hat{f}_{\alpha})$ such that $x_{\alpha} = \sum_{i=0}^{n} q_i s_{\alpha,i} + w \in K_{\alpha} \setminus \text{dom}(\hat{f}_{\alpha})$.
 - (b) $\sum_{i=0}^{n} q_i s'_{\alpha,i} + \hat{f}_{\alpha}(w) \notin C$.
 - (c) If $s_{\alpha,i} \in C$, then $|s'_{\alpha,i} t'_0| < |s_{\alpha,i} t_0|$.
 - (d) $g_{\beta}(\sum_{i=0}^{n} p_{i} s_{\alpha,i} + x) \neq \sum_{i=0}^{n} p_{i} s_{\alpha,i}' + \hat{f}_{\alpha}(x)$ whenever $p_{0}, \ldots, p_{n} \in \mathbb{Q}$, $\sum_{i=0}^{n} p_{i} s_{\alpha,i} \neq 0, \ \beta \leq \alpha$, and $x \in \text{dom}(\hat{f}_{\alpha})$.

Put
$$f_{\alpha} = \text{LIN}(\hat{f}_{\alpha} \cup \{\langle s_{\alpha,0}, s'_{\alpha,0} \rangle, \dots, \langle s_{\alpha,n}, s'_{\alpha,n} \rangle\}).$$

The existence of $s_{\alpha,0},\ldots,s_{\alpha,n}$ follows from the fact that $\operatorname{dom}(\hat{f})$ is of size less than \mathfrak{c} , so $K_{\alpha}\not\subset\operatorname{dom}(\hat{f})$. The choice of t'_{α} is clear. Numbers $s'_{\alpha,i},i\leq n$ are chosen by induction. We will show how to choose $d_{\alpha,n}$ in the case if (*) holds. Observe that $\operatorname{dom}(f_{\alpha,n})$ is of size less than \mathfrak{c} , so the sets $A=I_n\cap\operatorname{dom}\left[\left(\mathbb{Q}\cdot\bigcup_{\beta<\alpha}g_{\beta}+f_{\alpha,n}\right)\cap g_{\alpha}\right]$ and $B=\operatorname{LIN}\left(\operatorname{dom}(f_{\alpha,n})\cup C\right)$ are unions of fewer than \mathfrak{c} many meager sets, and by $\operatorname{cov}(\mathcal{M})=\mathfrak{c}$, the set $I_n\cap\operatorname{dom}g_{\alpha}\setminus(A\cup B)$ is non-empty. Choose $d_{\alpha,n}$ from this set. We have to verify that the condition (1) holds. Suppose there is $\beta<\alpha$ and $\langle x,y\rangle\in\operatorname{LIN}\left(\{\langle d_{\alpha,n},g_{\alpha}(d_{\alpha,n})\rangle\}\cup f_{\alpha,n}\cap g_{\beta}\setminus f_{\alpha,n}$. Then $\langle d_{\alpha,n},g_{\alpha}(d_{\alpha,n})\rangle\in\mathbb{Q}g_{\beta}+f_{\alpha,n}$, so $d_{\alpha,n}\in\operatorname{dom}\left[\left(\mathbb{Q}\cdot\bigcup_{\beta<\alpha}g_{\beta}+f_{\alpha,n}\right)\cap g_{\alpha}\right]$, a contradiction.

It is easy to observe that f_{α} is a linear function having properties (P1), (P2) and (P5). (P4) is a consequence of (ii.d) and (iii.d). (P6) follows by (ii.c) and (iii.c), and (P7) by (iii.a) and (iii.b). To verify (P3) assume that dom (g_{α})

is residual in I_n . If condition (*) holds, then $d_{\alpha,n} \in \text{dom}(f_{\alpha} \cap g_{\alpha}) \cap I_n$, and since g_{α} is continuous, $f_{\alpha}(d_{\alpha,n}) = \lim_{t \to d_{\alpha,n}} g_{\alpha}(t)$. Otherwise there are $\beta < \alpha$, $q \in \mathbb{Q} \setminus \{0\}$ and $w \in f_{\alpha}$, $w = \langle w_0, w_1 \rangle$, such that dom $[(qg_{\beta} + w) \cap g_{\alpha}]$ is residual in some interval $J \subset I_n$. (Note that for each $x \in J$, the limit of $qg_{\beta} + w$ at x exists iff the limit of g_{α} at x exists, and then those limits are equal.) Let $J' = q^{-1}(J - w_0)$. Then dom (g_{β}) is residual in J', so there is $x \in J' \cap \text{dom}(f_{\beta})$ with $f_{\beta}(x) = \lim_{t \to x} g_{\beta}(t)$. Therefore $x' = qx + w_0 \in J \cap \text{dom}(f_{\alpha})$ and $f_{\alpha}(x') = qf_{\beta}(x) + w_1 = \lim_{t \to x'} g_{\alpha}(t)$.

References

- [BCN] M. Balcerzak, K. Ciesielski and T. Natkaniec, Sierpiński-Zygmund functions that are Darboux, almost continuous, or have a perfect road, Arch. Math. Logic, 37 (1997), 29–35.
- [CJ] K. Ciesielski, J. Jastrzębski, Darboux-like functions within the classes of Baire one, Baire two, and additive functions, Topology Appl., 103 (2000), 203–219.
- [GN] R. Gibson, T. Natkaniec, *Darboux like functions*, Real Anal. Exchange, **22**(2) (1996–97), 492–533.
- [GN1] R. Gibson, T. Natkaniec, Darboux like functions. Old problems and new results, Real Anal. Exchange, 24, No. 2 (1998–99), 487–496.
- [KK] K. R. Kellum, Almost continuity and connectivity sometimes it's as easy to prove a stronger result, Real Anal. Exchange, 8 (1982–83), 244–252.
- [MK] M. Kuczma, An Introduction to the Theory of Functional Equations and Inequalities. Cauchy's Equation and Jensen's Inequality, PWN, Warszawa – Kraków – Katowice, 1985.
- [KP] K. Płotka, Sum of Sierpiński-Zygmund and Darboux like functions, Topology Appl., **122(3)** (2002), 547–564.
- [SZ] W. Sierpiński, A. Zygmund, Sur une fonction qui est discontinue sur tout ensemble de puissance du continu, Fund. Math., 4 (1923), 316– 318.