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Abstract

Assuming that the union of fewer than c-many meager sets does not
cover the real line, we construct an example of an additive almost con-
tinuous Sierpiński-Zygmund function which has a perfect road at each
point but which does not have the Cantor intermediate value property.

Our terminology is standard. In particular, symbols Q and R stand for
the sets of all rationals and reals, respectively. We consider only real-valued
functions of one real variable. No distinction is made between a function and
its graph. The cardinality of R is denoted by c. If A is a planar set, we denote
its x-projection by dom (A). M denotes the ideal of meager subsets of the real
line and cov (M) is the minimal cardinality of a family of meager sets which
cover R. (Note that if cov (M) = c, A ⊂ R is residual in some open interval
and B is the union of fewer than c meager sets, then A \B is of size c.)

If A ⊂ R (or A ⊂ R2), then LIN (A) denotes the linear subspace of R (R2,
respectively) over Q generated by A. (Note that if A ⊂ R2, then dom (LIN (A))
is a linear subspace of R.) In particular, if q ∈ Q and 〈x, y〉 ∈ R2, then
q〈x, y〉 = 〈qx, qy〉 and if q ∈ Q and A ⊂ R2, then qA = {qa : a ∈ A}.
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A function f : R → R is Sierpiński-Zygmund type (SZ function) if the
restriction f |A is discontinuous for each A ⊂ R of size c. Recall that f is
an SZ function iff for every Gδ set G ⊂ R and for each continuous function
g : G → R, f agrees with g on the set of size less than c [SZ]. A function
f : R → R is almost continuous (in the sense of Stallings, f ∈ AC shortly) if
each open subset of the plane containing f contains also a continuous function
g : R → R. A blocking set K ⊂ R2 is a closed subset of R2 that meets the
graph of every continuous function g : R → R and is disjoint with at least one
function. Recall that if f : R → R intersects every blocking set, then it is
almost continuous. Recall also that for each blocking set K ⊂ R2 there exists
a continuous function g defined on a Gδ set G ⊂ R such that G is residual in
some non-degenerate open interval I ⊂ R and g ⊂ K. (See [KK, Lemma 1]
and the proof of [BCN, Theorem 1].)

A function f : R → R has a perfect road at x ∈ R if there exists a perfect
set P with bilateral limit point x such that f |P is continuous at x. PR is the
class of all functions which have a perfect road at each point x ∈ R.

f has the Cantor intermediate value property (f ∈ CIVP ) if for each x, y ∈
R and every perfect set C between f(x) and f(y) there exists a perfect set P
between x and y with f(P ) ⊂ C.

It is easy to construct an additive function f ∈ SZ ∩ PR . (See [BCN,
Theorem 2].) Ciesielski and Jastrzȩbski constructed an additive function
f ∈ AC ∩ PR \ CIVP [CJ, Example 5.1]. Assuming the real line R is not a
union of fewer than c-many of its meager subsets, Balcerzak, Ciesielski and
Natkaniec show that there exists a function f ∈ AC ∩ SZ ∩ PR [BCN, The-
orem 1]. Moreover, they show that some additional set-theoretic assumptions
are necessary, because the existence of an SZ function which is almost contin-
uous is independent of ZFC axioms [BCN, Section 5]. (See also [GN], [GN1],
and [KP].)

The aim of this note is to find a single example having all these properties
at once.

Theorem 1. Assume that cov (M) = c. There exists an additive function
f ∈ SZ ∩AC ∩ PR \ CIVP .

Proof. Let C ⊂ (0, 1) be a Cantor set which is linearly independent over
Q. (See, e.g., [MK, Theorem 2, p. 270].) Let p be a bilateral limit point
of C and let H = {tα : α < c} be a Hamel basis such that C ⊂ H, t0 = p,
and t1 ∈ C. Let {Kα : α < c} be the collection of all perfect nowhere dense
subsets of R, G = {gα : α < c} be the family of all continuous functions defined
on Gδ subsets of the real line and let {In : n < ω} be a sequence of all open
intervals with rational end-points. We will define a sequence fα, α < c, of
linear functions defined on subspaces of R with the following properties.
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(P1) tα ∈ dom (fα) and |dom (fα)| < c.

(P2) fβ ⊂ fα if β < α.

(P3) If dom (gα) is residual in some interval I, then there is x ∈ I ∩dom (fα)
with fα(x) = limt→x gα(t).

(P4) fα ∩ gβ ⊂ fβ whenever β < α.

(P5) f0(t0) = 0, f0(t1) = 1.

(P6) fα|C is continuous at t0.

(P7) There exists xα ∈ Kα ∩ dom (fα) with fα(xα) 6∈ C.

Then by properties (P1) and (P2), f =
⋃

α<c fα is an additive function
defined on all of R. The property (P4) implies f ∩ gβ ⊂ fβ for each β < c,
so |f ∩ gβ | < c and consequently, f ∈ SZ . The condition (P6) implies that
f ∈ PR . In fact, fix x ∈ R and set z = x − t0. Then C + z is a perfect
set containing x as a bilateral limit point, and f |(C + z) is continuous at x
because f |(C +z) = (f |C)+ 〈z, f(z)〉. The statements (P5) and (P7) together
with C ⊂ (0, 1) give f 6∈ CIVP .

Now we will verify that f is almost continuous. Fix a blocking set K ⊂ R2.
Let α be the first ordinal for which there exist q ∈ Q \ {0}, n < ω and v ∈ f ,
v = 〈v0, v1〉, such that dom [(qgα + v)∩K] is residual in the interval In. Then
dom (gα) is residual in the interval J = q−1(In − v0). By (P3) there is x ∈ J
with fα(x) = limt→x gα(t). Then x′ = qx + v0 ∈ In and 〈x′, f(x′)〉 = 〈qx +
v0, qf(x) + v1〉 = q〈x, f(x)〉+ v = q〈x, fα(x)〉+ v ∈ cl (qgα + v). Since qgα + v
is continuous and K is closed, this easily implies that (In × R) ∩ (qgα + v) =
(In × R) ∩ (qgα + v) ∩ K. Thus 〈x′, f(x′)〉 ∈ cl ((qgα + v) ∩ K) ⊂ K and
therefore K ∩ f 6= ∅.

The functions fα, α < c, will be constructed by induction. Suppose α is
fixed and all fβ , β < α, are defined.

(i) Let f̄α = LIN (
⋃

β<α fβ). We define a sequence dα,n, n < ω, inductively in
the following way. Let Dα,n = {dα,i : i < n} \ {0} and fα,n = LIN (f̄α ∪
(gα|Dα,n)). If

(∗) dom (gα) is residual in In, and for all β < α, q ∈ Q and w ∈ fα,n

the set In ∩ dom [(qgβ + w) ∩ gα] is nowhere dense,1

1or equivalently, the set In ∩ dom [(qgβ + w) ∩ gα] is meager,
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then dα,n ∈ In ∩ dom (gα) \ LIN (dom (fα,n) ∪ C) is such that

LIN ({〈dα,n, gα(dα,n)〉} ∪ fα,n) ∩
⋃

β<α

gβ ⊂ fα,n. (1)

Otherwise dα,n = 0.

(ii) Let f̃α =
⋃

n<ω fα,n. A real number t′α has the following properties:

(a) t′0 = 0 and t′1 = 1.

(b) If tα ∈ dom (f̃α), then t′α = f̃α(tα).

(c) If tα ∈ C \ dom (f̃α), then t′α 6∈ C and |t′α − t′0| < |tα − t0|.
(d) For each q ∈ Q, β ≤ α and x ∈ dom (f̃α), if qtα + x 6∈ dom (f̃α),

then the inequality gβ(qtα + x) 6= qt′α + f̃α(x) holds.

(iii) Let f̂α = LIN (f̃α ∪ {〈tα, t′α〉}). Numbers sα,0, . . . , sα,n, s′α,0, . . . , s
′
α,n

have the following properties:

(a) sα,0, . . . , sα,n ∈ H \ dom (f̂α) and there are q0, . . . , qn ∈ Q \ {0} and
w ∈ dom (f̂α) such that xα =

∑n
i=0 qisα,i + w ∈ Kα \ dom (f̂α).

(b)
∑n

i=0 qis
′
α,i + f̂α(w) 6∈ C.

(c) If sα,i ∈ C, then |s′α,i − t′0| < |sα,i − t0|.

(d) gβ(
∑n

i=0 pisα,i +x) 6=
∑n

i=0 pis
′
α,i + f̂α(x) whenever p0, . . . , pn ∈ Q,∑n

i=0 pisα,i 6= 0, β ≤ α, and x ∈ dom (f̂α).

Put fα = LIN (f̂α ∪ {〈sα,0, s
′
α,0〉, . . . , 〈sα,n, s′α,n〉}).

The existence of sα,0, . . . , sα,n follows from the fact that dom (f̂) is of
size less than c, so Kα 6⊂ dom (f̂). The choice of t′α is clear. Numbers s′α,i,
i ≤ n are chosen by induction. We will show how to choose dα,n in the
case if (∗) holds. Observe that dom (fα,n) is of size less than c, so the sets

A = In ∩ dom
[(

Q ·
⋃

β<α gβ + fα,n

)
∩ gα

]
and B = LIN (dom (fα,n) ∪ C)

are unions of fewer than c many meager sets, and by cov (M) = c, the set
In ∩ dom gα \ (A ∪ B) is non-empty. Choose dα,n from this set. We have
to verify that the condition (1) holds. Suppose there is β < α and 〈x, y〉 ∈
LIN ({〈dα,n, gα(dα,n)〉}∪fα,n)∩gβ \fα,n. Then 〈dα,n, gα(dα,n)〉 ∈ Qgβ +fα,n,
so dα,n ∈ dom [(Q ·

⋃
β<α gβ + fα,n) ∩ gα], a contradiction.

It is easy to observe that fα is a linear function having properties (P1),
(P2) and (P5). (P4) is a consequence of (ii.d) and (iii.d). (P6) follows by (ii.c)
and (iii.c), and (P7) by (iii.a) and (iii.b). To verify (P3) assume that dom (gα)
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is residual in In. If condition (∗) holds, then dα,n ∈ dom (fα ∩ gα) ∩ In, and
since gα is continuous, fα(dα,n) = limt→dα,n

gα(t). Otherwise there are β < α,
q ∈ Q\{0} and w ∈ fα, w = 〈w0, w1〉, such that dom [(qgβ +w)∩gα] is residual
in some interval J ⊂ In. (Note that for each x ∈ J , the limit of qgβ + w at
x exists iff the limit of gα at x exists, and then those limits are equal.) Let
J ′ = q−1(J−w0). Then dom (gβ) is residual in J ′, so there is x ∈ J ′∩dom (fβ)
with fβ(x) = limt→x gβ(t). Therefore x′ = qx + w0 ∈ J ∩ dom (fα) and
fα(x′) = qfβ(x) + w1 = limt→x′ gα(t).
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