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ON A SPACE OF BESICOVITCH
FUNCTIONS

To the Bellaterrian cats in front of my window

Abstract

Let C([0, 1]) be the set of all continuous functions mapping the unit
interval [0, 1] into itself, equipped with the metric ρ of uniform conver-
gence (and the induced topology τ). A function f ∈ C([0, 1]) is called
Besicovitch if it is nowhere one-sided differentiable (finite or infinite).
For the Lebesgue measure λ we define the set B(λ) ⊂ C([0, 1]) by

B(λ) = {f | ∀ Borel A ⊂ [0, 1] : λ(A) = λ(f−1(A)) and f is Besicovitch}.

We construct a set X ⊂ B(λ) such that the space (X, τ |X) is homeo-
morphic to the product topological space (

Q∞
i=0[0, 1), µ).

1 Introduction.

The history of Besicovitch functions (a real-valued function of a real variable
without finite or infinite one-sided derivatives) began many years ago with the
classical work of Besicovitch [1]. From that time more authors have presented
constructions of such functions and studied their properties (see e.g. [5], [6],
[4], [3], [2]). The purpose of this note is not to give another new construction,
but rather to provide an interesting insight into the set of all such functions.
We restrict ourselves to the case of Besicovitch functions preserving Lebesgue
measure. There are two main reasons why we prefer this restriction: First,
we want to show that a coexistence of nowhere differentiability and a measure
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regularity is not so exceptional and ”thin” as one could expect; second, as the
reader will see, the measure regularity causes even simpler proofs of nowhere
differentiability.

Let C([0, 1]) be the set of all continuous functions mapping the unit interval
[0, 1] into itself equipped with the metric ρ of uniform convergence. Denote
τ the topology on C([0, 1]) induced by ρ. A function f ∈ C([0, 1]) is called
Besicovitch if it has nowhere a finite or infinite one-sided derivative. For
Lebesgue measure λ we put

B(λ) = {f | ∀ Borel A ⊂ [0, 1] : λ(A) = λ(f−1(A)) and f is Besicovitch}.

Our main result is the following.

Theorem 1.1. There is a set X ⊂ B(λ) such that the space (X, τ |X) is
homeomorphic to the product topological space (

∏∞
i=0[0, 1), µ).

The paper is organized as follows.
In §2 we present a modified construction from [5]. We construct a function

f = f [γ] ∈ C([0, 1]) which depends on a parameter γ ∈
∏∞

i=0(4,∞). In §3 we
prove that f is Besicovitch and preserves Lebesgue measure. In §4 we give the
proof of Theorem 1.1.

Acknowledgement. The author thanks to the referee for valuable comments
and remarks.

2 Construction and Auxiliary Results.

2.1 Construction of a Canonical Step Triangle

For k > 4, let us construct in [0, 1/2] a discontinuum

D = [0, 1/2] \ L, where L =
∞⋃

m=1

2m−1⋃
p=1

rm,p, (1)

and the open intervals rm,p = (am,p, bm,p) are constructed as follows:

(α) d1,1 = [0, 1/2], r1,1 ⊂ d1,1, λ(r1,1) = 1
2k , b1,1 is the center of d1,1

(β) for m > 1, if dm,1 · · · dm,2m−1 are (from left to right) the intervals of the

set [0, 1/2]\
⋃m−1

q=1

⋃2q−1

p=1 rq,p, then rm,p ⊂ dm,p, bm,p is the center of dm,p

and λ(rm,p) = 1
2km .
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Obviously, λ(L) = 1
2(k−2) and λ(D) = k−3

2(k−2) .
Let φ : [0, 1/2] → [0, 1] be a nondecreasing continuous function satisfying

φ(0) = 0, φ(1/2) = 1, φ is constant on every interval rm,p, φ(rm,p) = {(2p −
1)/2m}. Define a function p : [0, 1] → [0, 1] by

p(x) =

{
φ(x) if x ∈ [0, 1/2]
φ(1− x) if x ∈ [1/2, 1].

(2)

The function p and the interval [0, 1] form the well-known (canonical) step
triangle [5]. The base [0, 1] is lower than the vertex (1/2, 1) - in this case
we say that a step triangle is positively oriented. The set {(x, p(x)); x ∈
[0, 1/2]}, resp. {(x, p(x)); x ∈ [1/2, 1]} is the left, resp. right side of the
triangle.

In order to explain what we mean by a step triangle with a general base,
height and parameter we use linear transformations. For two compact intervals
[a, b], [c, d] ⊂ R define the map

ra,b,c,d(x) =
d− c

b− a
(x− a) + c, x ∈ [a, b].

Definition 2.1. Let [a, b], [c, d] be non-degenerate compact intervals. Con-
sider the functions p, s = ra,b,0,1, t = r0,1,c,d. The function t◦p◦s : [a, b] → [c, d]
and the segment S = {(x, c) : a ≤ x ≤ b} will form a step triangle with base
S, height d− c and parameter k. An orientation and sides of such triangle are
defined analogously as for p.

Further, for f ∈ C([0, 1]) put uy = {(x, y);x ∈ [0, 1]} and let g(f) be a
graph of the function f . Below we present the construction of a Besicovitch
function preserving Lebesgue measure. This construction is composed of steps.
In each of them we work with step triangles introduced above (triangles differ
by their bases, heights and parameters). For our purpose it is not necessary
to give a precise formula for the number of triangles managed in the nth step.
However we will assume that there is an increasing sequence

0 = m(0) < 2 = m(1) < m(2) < · · · (3)

of positive integers such that for n > 0, (m(n)−m(n− 1)) step triangles are
constructed in the nth step. (For n = 0 it is exactly one triangle.) Let

Γ = {γ = {γ(i)}∞i=0 : γ(i) > 4 for each i}. (4)

Let γ ∈ Γ. We can carry out the following construction of a function f = f [γ]:
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2.2 Construction

0th step: We construct a positively oriented (canonical) step triangle with
base [0, 1], height 1 and parameter γ(0); the sides of the step triangle define a
function f0. All D-contiguous intervals (see (1)) will be called 0th L-segments.

nth step: For n > 0 we construct m(n)−m(n−1) step triangles (positively
or negatively oriented, numbered by i ∈ {m(n − 1) + 1, . . . ,m(n)} from left
to the right) whose bases are segments of the set

⋃2n−1

p=1 u 2p−1
2n

∩ g(fn−1) and
heights 1

2n . For i ∈ {m(n− 1) + 1, . . . ,m(n)}, the corresponding triangle has
a parameter γ(i) and is placed inwards the bigger triangle on whose side has
its base. The union of sides of all triangles constructed so far define a function
fn. All new contiguous intervals (subintervals of some previous L-segments)
will be called nth L-segments.

Since for each n ∈ N, fn is continuous and

ρ(fn−1, fn) =
1
2n

, (5)

the continuous map f = f [γ] = lim
n→∞

fn is well defined.
Several auxiliary lemmas follow. In the first one, we pick up the rather

trivial fact that two step triangles (canonical, with the base [0, 1]) associated
to distinct values of parameters differ.

Lemma 2.2. For k < k′ from (4,∞), let pk, pk′ be functions defined in (2).
Then

pk(ak
1,1) > pk′(ak

1,1).

More generally, we will need to be sure that distinct values γ, γ′ give us
distinct functions f [γ], f [γ′].

Lemma 2.3. If γ 6= γ′, then f [γ] 6= f [γ′].

Proof. Let k ∈ N ∪ {0} be the least value for which γ(k) 6= γ′(k) and

k ∈ {m(n− 1) + 1, . . . ,m(n)},

where the sequence {m(n)}∞n=0 was defined in (3). Then by Lemma 2.2 the
functions fn[γ] and fn[γ′] differ in step triangles of common base associated
to the values γ(k), γ′(k). Assume that those triangles are built up on an L-
segment S, they are positively oriented and γ(k) < γ′(k). Using Definition
2.1 and Lemma 2.2, for the leftmost point ak of maximal 0th L-segment (in
S, for the parameter k) we have for some positive δ,

fn[γ](ak)− fn[γ′](ak) > δ. (6)
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Since successive step triangles are placed inwards the precedent ones and
fn[γ](ak) = f [γ](ak), we get from (6)

f [γ](ak)− f [γ′](ak) = f [γ](ak)− fn[γ′](ak) > δ.

In particular, f [γ] 6= f [γ′]. The case when step triangles built up on an L-
segment S are negatively oriented is analogous.

We end this section with the two obvious statements useful for our purpose.
The first one will significantly simplify the proof that each f = f [γ], γ ∈ Γ is
a Besicovitch function.

Lemma 2.4. Let f preserve Lebesgue measure and assume that for some
x ∈ [0, 1) ( ∈ (0, 1]), the function f has the right (left) derivative a = f ′+(x)
( = f ′−(x)) at x. Then |a| ≥ 1.

Proof. If a = f ′+(x) exists and a ∈ (−1, 1), then there is an interval [a, a+ ε]
such that λ(f([a, a + ε])) < λ([a, a + ε]). Since [a, a + ε] ⊂ f−1(f([a, a + ε]))
and the map f preserves Lebesgue measure, we have

λ([a, a + ε]) ≤ λ(f−1(f([a, a + ε]))) = λ(f([a, a + ε])) < λ([a, a + ε]),

- a contradiction. The case when a = f ′−(x) ∈ (−1, 1) can be disproved
analogously.

The second lemma gives two needed evaluations of lengths (slopes) of in-
tervals (given by intervals) dm,p from Con. 2.1.

Lemma 2.5. The following are true.

1. For q = k/2 and each m > 1,

min
p

λ(dm,p) =
1

(2q)m
[qm −

m−1∑
i=1

qi], max
p

λ(dm,p) =
1

2m
.

2. If rm,p = (am,p, bm,p) ⊂ dm,p and x ∈ (bm,p,max dm,p] is not a point of
any 0th L-segment, then

f(x)− f(bm,p)
x− bm,p

≤ 2(k − 2)
k − 4

. (7)

Proof. (1) Since λ(dm,1) = minp λ(dm,p) and λ(dm,2m−1) = maxp λ(dm,p),
both equalities can be easily verified. Let us show (2). By our definition,

f(max dm,p)− f(min dm,p) =
1

2m−1
.
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Let A = 1
(2q)m [qm−

∑m−1
i=1 qi]. Using dm,1 = [0, am−1,1] and (1) for each m, p

we get

f(max dm,p)− f(min dm,p)
max dm,p −min dm,p

≤ f(am−1,1)− f(0)
am−1,1

=
1

2m−1

A
= B(m).

Hence after some standard computation we obtain

f(max dm,p)− f(min dm,p)
max dm,p −min dm,p

≤ B(m) = 2
(k − 2)(k

2 )m−1

(k − 4)(k
2 )m−1 + 2

<
2(k − 2)
k − 4

.

Now the inequality (7) follows from Construction 2.1.

Remark 2.6. From Lemma 2.5(1) it follows that for k > 4, minp λ(dm,p) > 0
for each m ∈ N.

3 Properties of f [γ], γ ∈ Γ.

Let f be defined on a (one-sided) neighborhood of x. The derived numbers
D+f(x), D+f(x) of f at x are

D+f(x) = lim sup
h→0+

f(x + h)− f(x)
h

, D+f(x) = lim inf
h→0+

f(x + h)− f(x)
h

and the analogous limits from the left define D−f(x), D−f(x). Obviously f
has a one-sided derivative at a point x if and only if either D+f(x) = D+f(x)
or D−f(x) = D−f(x).

Theorem 3.1. For each γ ∈ Γ, f = f [γ] is Besicovitch and preserves Lebesgue
measure; i,e., f ∈ B(λ).

Proof. The proof that f preserves Lebesgue measure is literally the same as
the one of Th.6 in [2].

Let us show that f is Besicovitch. To this end we distinguish several cases.
I. First, we assume that x ∈ [0, 1] is not a point of any 0th L-segment.

Because of symmetry we consider points from [0, 1
2 ] only.

I(+) Assume that x ∈ [0, 1
2 ) is not the left endpoint of any 0th L-segment

and show that f ′+(x) does not exist. To this end we use values of f at endpoints
and centers of 0th L-segments.

Fix h > 0, let rm,p = (α, β) be the maximal 0th L-segment contained in
(x, x+h), Put γ = α+β

2 . Since φ is nondecreasing, f(x) = φ(x) < φ(α) = f(α).
Let us show that f(x) ≥ f(γ). Really, by our construction f(α) = 2p−1

2m and
f(γ) = 2p−1

2m − 1
2m = p−1

2m−1 . It means that f(γ) coincides with the image
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φ(rm′,p′) of some rm′,p′ with m′ < m. Then λ(rm′,p′) > λ(rm,p).Hence from
our choice of rm,p we get am′,p′ < bm′p′ ≤ x. Since φ is nondecreasing,
f(γ) = φ(rm′,p′) ≤ φ(x) = f(x). The number h was chosen arbitrarily small,
hence D+f(x) ≤ 0 ≤ D+f(x). By Lemma 2.4, any derivative f ′+(x) does not
exist.

I(-) Assume that x ∈ (0, 1
2 ] is not a point or the right endpoint of any 0th

L-segment.
Fix h > 0 and denote rm,p = (α, β) the maximal 0th L-segment contained

in (x− h, x), let γ = α+β
2 . Since rm,p is maximal, x ∈ (β, max dm,p] and from

Con. 2.1 and Lemma 2.5 we obtain

0 < x− α = β − α + x− β ≤ 1
2km

+
1
2
λ(dm,p) ≤

1
2km

+
1

2m+1
. (8)

Now, computing the difference Θ(α, γ) = f(x)−f(γ)
x−γ − f(x)−f(α)

x−α , again from
Con. 2.1 and (8) we get

Θ(α, γ) >
f(α)− f(γ)

x− α
=

1
2m(x− α)

≥ 1
2m( 1

2km + 1
2m+1 )

=
2

1 + ( 2
k )m

; (9)

at the same time from Lemma 2.5(2) we have

f(x)− f(β)
x− β

≤ 2(k − 2)
k − 4

. (10)

Since h can be chosen arbitrarily small, the inequalities (9), (10) used for an
increasing sequence of m’s imply

D−f(x)−D−f(x) ≥ 2 & 0 ≤ D−f(x) ≤ 2(k − 2)
k − 4

;

i.e., f ′−(x) does not exist.
II Second, we assume that for some n ∈ N, x ∈ [0, 1] is a point of

some (n − 1)st L-segment (a, b) and does not belong to any nth L-segment.
Then the point (x, f(x)) lies on the side of a step triangle ∆ with the base
{(z, fn−1(z)) : z ∈ [a, b]}, height 1

2n and some parameter k > 4. Suppose
that the step triangle ∆ is positively oriented. Using the fact - see Defini-
tion 2.1 - that ∆ was created with the help of linear transformations ra,b,0,1,
r0,1,f(a),f(a)+1/2n , for one-sided derivatives of f at x we get: if x ∈ [a, a+b

2 ) is
not the left endpoint of any nth L-segment, then D+f(x) ≤ 0 ≤ D+f(x) and
we can use Lemma 2.4 again; if x ∈ (a, a+b

2 ] is not the right endpoint of any
nth L-segment, then

D−f(x)−D−f(x) ≥ 2
1

2n(b− a)
& 0 ≤ D−f(x) ≤ 2(k − 2)

k − 4
1

2n(b− a)
;
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i.e., no one-sided derivative at x exists. As above we can use the symmetry to
conclude the same for points from [a+b

2 , b].
The case when the step triangle is negatively oriented is analogous: if

x ∈ [a, a+b
2 ) is not the left endpoint of any nth L-segment, then D+f(x) ≤

0 ≤ D+f(x) and we can use Lemma 2.4 again; if x ∈ (a, a+b
2 ] is not the right

endpoint of any nth L-segment, then

D−f(x)−D−f(x) ≥ 2
1

2n(b− a)
& 0 ≥ D−f(x) ≥ −2(k − 2)

k − 4
1

2n(b− a)
;

i.e., as above no one-sided derivative at x exists.
III Let x ∈ [0, 1] belong to L-segments of all orders. Then (x, f(x)) has to

lie on sides of infinitely many step triangles whose bases (their lengths) and
heights converge to zero. Moreover, by Con. 2.2 infinitely many of them are
positively/negatively oriented. The reader can easily verify alone that in such
a case we get D+f(x) ≤ 0 ≤ D+f(x) and D−f(x) ≤ 0 ≤ D−f(x); i.e., by
Lemma 2.4 no one-sided derivative at x exists.

Remark 3.2. The proof of (2) is in fact simpler than the original one in [5].
This is caused by the fact that our map preserves the Lebesgue measure.

4 Properties of (X, τ |X).

For Γ̃ ⊂ Γ (see (4)) defined by

Γ̃ = {γ = {γ(i)}∞i=0 : γ(i) ≥ 5 for each i}

let us put X = X(Γ̃) = {f ∈ C([0, 1]) : f = f [γ] for some γ ∈ Γ̃}. We know
from Theorem 3.1 that X ⊂ B(λ). Consider the topological space (X, τ |X),
where τ is the topology on C([0, 1]) induced by the metric ρ of uniform con-
vergence. In this section we show that the product space (

∏∞
i=0[0, 1), µ) and

(X, ν = τ |X) are homeomorphic. Without loss of generality and to simplify
our notation we identify (

∏∞
i=0[0, 1), µ) with (Γ̃, µ).

From Lemma 2.3 we obtain the following.

Lemma 4.1. The map F : Γ̃ → X defined by F (γ) = f [γ] is a bijection.

We need to show that F is even a homeomorphism. Since both the topo-
logical spaces (Γ̃, µ), (X, ν) are second countable, checking the continuity of
F, F−1 we can restrict ourselves to the case of convergent sequences.

We let the reader prove the next lemma. We suppose that its validity can
be easily seen from the construction of fn but a complete formal proof would
be rather long and vain.
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Lemma 4.2. For every n ∈ N ∪ {0} and sequence {γm}m ⊂ Γ̃,

γm →µ γ ⇐⇒ fn[γm] →ν fn[γ]. (11)

The final property we need to show is the following.

Theorem 4.3. For every sequence {γm}m ⊂ Γ̃,

γm →µ γ ⇐⇒ f [γm] →ν f [γ].

Proof. Suppose that γm →µ γ and fixed ε > 0. Using (11), we can find an
n and m0 such that 1

2n < ε
3 and for each m > m0 also ρ(fn[γm], fn[γ]) < ε

3 .
Then from (5) we obtain

ρ(f [γm], f [γ]) ≤ ρ(f [γm], fn[γm]) + ρ(fn[γm], f [γ])
≤ ρ(f [γm], fn[γm]) + ρ(fn[γm], fn[γ]) + ρ(fn[γ], f [γ])

<
ε

3
+

ε

3
+

ε

3
= ε.

Hence f [γm] →ν f [γ].
On the other hand, when γm 9µ γ, there is the least value k ∈ N ∪ {0}

(let us take it as in Lemma 2.3) for which γm(k) 9 γ(k) and k ∈ {m(n− 1) +
1, . . . ,m(n)} for the sequence (3). Without loss of generality we can assume
that for γ′ from Lemma 2.3, γ(i) = γ′(i) for each i ∈ {0, . . . , k − 1} and
lim infm γm(k) ≥ γ′(k)(> γ(k)). Then for the same L-segment S, its leftmost
point ak and δ from Lemma 2.3 we get

f [γ](ak)− δ > lim sup
m

f [γm](ak);

i.e., f [γm] 9ν f [γ]. This proves the theorem.

Now the proof of Theorem 1.1 directly follows from Theorem 3.1 and The-
orem 4.3.
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