Harvey Rosen, Department of Mathematics, The University of Alabama, Tuscaloosa, AL 35487. email: hrosen@gp.as.ua.edu

MORE ABOUT SIERPIŃSKI-ZYGMUND UNIFORM LIMITS OF EXTENDABLE FUNCTIONS

Abstract

Let SZ, D, Ext, and \overline{Ext} denote respectively the spaces of Sierpiński-Zygmund functions, Darboux functions, extendable connectivity functions, and uniform limits of sequences of extendable connectivity functions, with the metric of uniform convergence on them. We show that the subspaces $SZ \cap D$ and $SZ \cap \overline{Ext}$ are each porous in the space SZ, but $SZ \cap \overline{Ext}$ is not porous in the space \overline{Ext} . We also show that every real function can be expressed as a sum of two Sierpiński-Zygmund functions one of which belongs to \overline{Ext} . Ciesielski and Natkaniec show in [4] that if \mathbb{R} is not the union of less than c-many nowhere dense subsets, then there exist Sierpiński-Zygmund bijections $f, g: \mathbb{R} \to \mathbb{R}$ such that $f^{-1} \notin SZ$ and $g^{-1} \in SZ$, but here we can additionally have f and gbelonging to \overline{Ext} .

A Sierpiński-Zygmund (SZ) function $f : \mathbb{R} \to \mathbb{R}$ has the property that all restrictions $f \upharpoonright_B$ to subsets B of cardinality **c** are discontinuous. This is equivalent to having $\operatorname{card}(f \cap g) < c$ for all continuous functions g defined on G_{δ} subsets of \mathbb{R} [12].

A function $h : \mathbb{R} \to \mathbb{R}$ is called *extendable connectivity* if there is a function $F : \mathbb{R} \times [0,1] \to \mathbb{R}$ such that F(x,0) = h(x) for all $x \in \mathbb{R}$ and $F \upharpoonright_C$ is connected for each connected set $C \subset \mathbb{R} \times [0,1]$, and such a function h must be *Darboux*, which means h(K) is connected for each connected subset K of \mathbb{R} .

According to [7], if an extendable connectivity function h has a dense graph in \mathbb{R}^2 , then there exists a decomposition of \mathbb{R} into a sequence $\{A_n\}_{n=0}^{\infty}$ of the following "special sets": A_0 is a dense G_{δ} subset of \mathbb{R} that is *h*-negligible with respect to *Ext*. This means that if h is arbitrarily redefined just on A_0 , the

Key Words: Sierpiński-Zygmund function, Darboux function, uniform limit of extendable connectivity functions, porosity, inverse function

Mathematical Reviews subject classification: 26A15, 54C35

Received by the editors December 6, 2003 Communicated by: Udayan B. Darji

Johnnunicated by. Odayan D. Darji

resulting function still belongs to Ext. Moreover, $\mathbb{R} \setminus A_0 = \bigcup_{n=1}^{\infty} A_n$, where the sets A_n , $n \ge 1$, are pairwise disjoint and nowhere dense in \mathbb{R} and therefore *h*-negligible.

In [10], we show that under MA, $SZ \cap \overline{Ext}$ cannot be characterized by pre-images of sets. We obtain more results starting with the porosity of the function space $SZ \cap \overline{Ext}$.

1 Porosity.

The porosity of a subspace M in a metric space X is a measurement of how thin M is in X. In a metric space (X, d), B(x, r) denotes the open ball centered at x with radius r > 0. For $x \in X$, let

$$\gamma(x,r,M) = \sup \Bigl\{ s > 0 : \exists z \in X \text{ such that } B(z,s) \subset B(x,r) \setminus M \Bigr\}.$$

M is porous at x if

$$p(x) = \limsup_{r \to 0^+} \frac{\gamma(x, r, M)}{r}$$

is a positive real number. M is *porous in* X if M is porous at each $x \in X$. A set M porous in X is a boundary set in X, which means $\overline{X \setminus M} = X$.

Each function space has on it the metric d of uniform convergence defined by

$$d(f,g) = \min\{1, \sup\{|f(x) - g(x)| : x \in \mathbb{R}\}\}.$$

See [9] for some results on the porosity of Darboux-like function spaces.

According to [11], $SZ \cap Ext = \emptyset$ but in [10, Theorem 1], it is shown there exists a function $f \in SZ \cap \overline{Ext}$ whose graph is dense in \mathbb{R}^2 . Balcerzak, Ciesielski and Natkaniec show in [1] that in ZFC an extra hypothesis is needed in order to have $SZ \cap D \neq \emptyset$.

Theorem 1. $SZ \cap \overline{Ext}$ is not porous in \overline{Ext} but is a boundary set in \overline{Ext} .

PROOF. Let $g \in SZ \cap \overline{Ext}$ have a dense graph in \mathbb{R}^2 and let $0 < r \leq 1$. Pick an arbitrary $\varphi \in B(g,r) \subset \overline{Ext}$ and an arbitrary positive number s < r such that $B(\varphi, s) \subset B(g, r)$. Then there exists $h \in Ext$ such that $d(\varphi, h) < \frac{s}{3}$ on \mathbb{R} . Notice the graphs of φ and h are dense in \mathbb{R}^2 just like g. Let $\{A_n\}_{n=0}^{\infty}$ be a decomposition of \mathbb{R} into those h-negligible special sets described above. Let $\mathbb{R} = \{x_\alpha : \alpha < \mathfrak{c}\}$ and henceforth let $C_{G_\delta} = \{g_\alpha : \alpha < \mathfrak{c}\}$ be an enumeration of all continuous functions defined on G_δ subsets of \mathbb{R} . Define a function $f : \mathbb{R} \to \mathbb{R}$ in SZ so that $f(x_\alpha) \in \mathbb{R} \setminus \{g_\xi(x_\alpha) : \xi \leq \alpha\}$ but we require

$$|f(x_{\alpha}) - h(x_{\alpha})| < \frac{s}{2n+2}$$
 whenever $x_{\alpha} \in A_n$ for some $n \ge 0$.

Then

$$h_0 = \begin{cases} f & \text{on } A_0 \\ h & \text{on } \mathbb{R} \setminus A_0 \end{cases}$$

is in Ext, and for $n \ge 1$,

$$h_n = \begin{cases} f & \text{on } A_n \\ h_{n-1} & \text{on } \mathbb{R} \setminus A_n \end{cases}$$

is in *Ext*. Since f is the uniform limit of h_n , we have $f \in \overline{Ext}$. But $f \in B(\varphi, s) \cap SZ \cap \overline{Ext}$ since

$$d(\varphi, f) \le d(\varphi, h) + d(h, f) < \frac{s}{3} + \frac{s}{2} < s \text{ on } \mathbb{R}.$$

 So

$$\gamma(g, r, SZ \cap \overline{Ext}) = \sup \emptyset = -\infty \text{ and } p(g) = -\infty.$$

This shows $SZ \cap \overline{Ext}$ cannot be porous in \overline{Ext} at any function g in $SZ \cap \overline{Ext}$ with graph dense in \mathbb{R}^2 .

To see $SZ \cap \overline{Ext}$ is a boundary set in \overline{Ext} , let $f \in SZ \cap \overline{Ext}$, which implies f is a uniform limit of a sequence h_n in $Ext \subset \overline{Ext} \setminus SZ$. That is, every open neighborhood of f in \overline{Ext} contains all but finitely many h_n and therefore meets $\overline{Ext} \setminus SZ$.

Theorem 2. $SZ \cap D$ and $SZ \cap \overline{Ext}$ are each porous in SZ.

PROOF. If $SZ \cap D = \emptyset$, the first result is true because the porosity of \emptyset is 1 everywhere in SZ. Therefore suppose $f \in \overline{SZ \cap D} \subset SZ \cap \overline{D}$, where closure is taken in SZ. For sufficiently small r with $0 < r \leq 1$, there exist numbers a < b such that $\frac{r}{4} < |f(a) - f(b)| < \frac{r}{2}$ and we may suppose f(a) < f(b). Let

$$B = (a,b) \cap f^{-1}\left(\left(f(a) + \frac{r}{16}, f(b) - \frac{r}{16}\right)\right) = \{x_{\alpha} : \alpha < c\}.$$

Define $g: \mathbb{R} \to \mathbb{R}$ by g(x) = f(x) if $x \in \mathbb{R} \setminus B$, and for every $\alpha < \mathfrak{c}$, pick

$$g(x_{\alpha}) \in \left(f(a), f(b)\right) \setminus \left(\left(f(a) + \frac{r}{16}, f(b) - \frac{r}{16}\right) \cup \left\{g_{\xi}(x_{\alpha}) : \xi \le \alpha\right\}\right).$$

Then $g \notin \overline{D}$ and $g \in B(f, \frac{r}{2})$ because $|f(a) - f(b)| < \frac{r}{2}$, and $B(g, \frac{r}{16}) \subset B(f, r) \setminus D$ because $|f(a) - f(b)| > \frac{r}{4}$.

To see $g \in SZ$, suppose $X \subset \mathbb{R}$ and card $X = \mathfrak{c}$. Either (1) card $(X \setminus B) = \mathfrak{c}$ or (2) card $(X \cap B) = \mathfrak{c}$. If (1) holds, then $g \upharpoonright_{(X \setminus B)} = f \upharpoonright_{(X \setminus B)}$ is discontinuous. If (2) holds, then

$$\left\{x \in X \cap B : g(x) = g_{\xi}(x)\right\} \subset \left\{x \in B : g(x) = g_{\xi}(x)\right\} \subset \left\{x_{\alpha} : \alpha < \xi\right\},\$$

which has cardinality $\langle \mathfrak{c},$ and therefore $g \upharpoonright_{(X \cap B)}$ is discontinuous. This shows $g \in SZ \setminus \overline{D}$. Since $\gamma(f, r, SZ \cap D) \geq \frac{r}{16}$,

$$p(f) = \limsup_{r \to 0^+} \frac{\gamma(f, r, SZ \cap D)}{r} \ge \frac{1}{16} > 0$$

and so $SZ \cap D$ is porous at f. $SZ \cap \overline{Ext}$ is porous in SZ because it is a subspace of $SZ \cap \overline{D}$, which is porous in SZ according to the above argument with \overline{D} in place of D.

It is left as an open problem whether or not $SZ \cap D$, if nonempty, is porous in D.

Theorem 3. $SZ \cap D$ is a boundary set in D.

PROOF. Assume $f \in \overline{SZ \cap D} \subset \overline{SZ} \cap D$, where closure is taken in D. Given $0 < r \le 1$, there exist $a, b \in \mathbb{R}$ such that $0 < s \equiv \frac{f(b) - f(a)}{2} < r$. Define the continuous function

$$g(x) = \begin{cases} x + s & \text{if } x < f(a) \\ \frac{f(a) + f(b)}{2} & \text{if } f(a) \le x \le f(b) \\ x - s & \text{if } x > f(b). \end{cases}$$

Since d(g, identity) = s, $d(g \circ f, f) = s < r$. The Darboux function $g \circ f$ is constant (hence continuous) on $f^{-1}((f(a), f(b)))$ which has cardinality \mathfrak{c} . Therefore $g \circ f \in D \setminus SZ$. This shows $SZ \cap D$ is a boundary set of D.

2 Sums of Functions.

In [3], Ciesielski and Natkaniec show that every real function can be expressed as the sum of two SZ functions. In [6], Płotka shows that under CH, every function $f : \mathbb{R} \to \mathbb{R}$ can be represented as a sum of an almost continuous (AC) function and an SZ function. (Each open neighborhood of the graph of an *almost continuous* function $f : \mathbb{R} \to \mathbb{R}$ in \mathbb{R}^2 contains the graph of a continuous function defined on \mathbb{R} .) As a corollary to a theorem in [1] about the existence of a model with no Darboux SZ function, Płotka obtains the equality $\mathbb{R}^{\mathbb{R}} = AC + SZ$ is independent of ZFC. According to the following first corollary, $\mathbb{R}^{\mathbb{R}} = (SZ \cap \overline{Ext}) + SZ$. SIERPIŃSKI-ZYGMUND UNIFORM LIMITS OF EXTENDABLE FUNCTIONS 133

Theorem 4. For each family $\mathcal{F} \subset \mathbb{R}^{\mathbb{R}}$ with card $\mathcal{F} \leq \mathfrak{c}$, there exists $g \in \overline{Ext}$ such that $g + \mathcal{F} \subset SZ$.

PROOF. Let $C_{G_{\delta}} = \{g_{\alpha} : \alpha < \mathfrak{c}\}, \mathbb{R} = \{x_{\alpha} : \alpha < \mathfrak{c}\}, \text{ and } \mathcal{F} = \{f_{\alpha} : \alpha < \mathfrak{c}\}.$ There exists $h \in Ext$ with graph dense in \mathbb{R}^2 [5], [8], and so there is a decomposition of \mathbb{R} into a sequence $\{A_n\}_{n=0}^{\infty}$ of *h*-negligible special sets. For every $\alpha < c$, pick $g(x_{\alpha}) \in \mathbb{R} \setminus \{g_{\gamma}(x_{\alpha}) - f_{\beta}(x_{\alpha}) : \beta, \gamma \leq \alpha\}$ as done in [6], but here we require

$$\left|g(x_{\alpha}) - h(x_{\alpha})\right| < \frac{1}{n+1}$$
 whenever $x_{\alpha} \in A_n$ for some $n \ge 0$.

Then $g \in \overline{Ext}$ and for every $\beta, \gamma < c$,

$$\left\{x:g(x)+f_{\beta}(x)=g_{\gamma}(x)\right\}\subset\left\{x_{\alpha}:\alpha<\max\{\beta,\gamma\}\right\},$$

which has cardinality $< \mathfrak{c}$. Since $\operatorname{card}((g+f_{\beta}) \cap g_{\gamma}) < \mathfrak{c}$ for all $\beta, \gamma < \mathfrak{c}$, $g+f_{\beta} \in SZ$ for every $\beta < \mathfrak{c}$.

Letting $\mathcal{F} = \{0, f\}$ in Theorem 4 gives the next result.

Corollary 1. Each function $f \in \mathbb{R}^{\mathbb{R}}$ is the sum of a function in $SZ \cap \overline{Ext}$ and a function in SZ.

As in [6], for \mathcal{F}_1 and $\mathcal{F}_2 \subset \mathbb{R}^{\mathbb{R}}$, define $\operatorname{Add}(\mathcal{F}_1, \mathcal{F}_2) = \min(\operatorname{\{card} \mathcal{F} : \mathcal{F} \subset \mathbb{R}^{\mathbb{R}}$ and there exists no $g \in \mathcal{F}_1$ such that $g + \mathcal{F} \subset \mathcal{F}_2 \} \cup \{(2^{\mathfrak{c}})^+\})$. This is a generalization for $\mathcal{F} \subset \mathbb{R}^X$ of

 $A(\mathcal{F}) = \min\{ \operatorname{card} F : F \subset \mathbb{R}^X \text{ and there is no } g \in \mathbb{R}^X \text{ such that } g + F \subset \mathcal{F} \}.$

It turns out $\mathfrak{c}^+ \leq A(\overline{Ext}) \leq 2^{\mathfrak{c}}$. There is no $g \in \overline{Ext}$ such that $g + \overline{Ext} \subset SZ$ because $g - g = 0 \notin SZ$, and also $\operatorname{card}(\overline{Ext}) = 2^{\mathfrak{c}}$. Therefore by Theorem 4, we have the following.

Corollary 2. $\mathfrak{c}^+ \leq \operatorname{Add}(\overline{Ext}, SZ) \leq 2^{\mathfrak{c}}$.

3 Inverses of Uniform Limits.

In [4], Ciesielski and Natkaniec verify these two facts:

Fact 1: There exists a one-to-one SZ function $f : \mathbb{R} \to \mathbb{R}$ such that $f^{-1} : f(\mathbb{R}) \to \mathbb{R}$ does not belong to SZ.

Fact 2: Assume \mathbb{R} cannot be covered by less than \mathfrak{c} -many meager sets. Then

- (a) there exists an SZ bijection $f : \mathbb{R} \to \mathbb{R}$ such that $f^{-1} \notin SZ$;
- (b) there exists an SZ bijection $f : \mathbb{R} \to \mathbb{R}$ such that $f^{-1} = f$.

Theorem 5. In each of the above two facts, f can be constructed to belong to \overline{Ext} .

PROOF. We show how to modify Ciesielski and Natkaniec's proof to make $f \in \overline{Ext}$ in Fact 1 and leave how to in Fact 2 to the reader. Let $C^*_{G_{\delta}} = \{g_{\alpha} : \alpha < \mathfrak{c}\}$ be the collection of all nowhere constant continuous functions defined on G_{δ} subsets of $\mathbb{R} = \{x_{\alpha} : \alpha < \mathfrak{c}\}$, and let $\varphi : [0, 1] \to [0, 1]$ be a nowhere constant continuous function like that given in [2, p. 222] such that $\varphi(0) = 0, \varphi(1) = 1$, and $\operatorname{card}(\varphi^{-1}(y)) = \mathfrak{c}$ for every $y \in [0, 1]$. Extend φ to a continuous function $g : \mathbb{R} \to \mathbb{R}$ by defining $g(x) = \varphi(x - n) + n$ on [n, n + 1] for each integer n. Let $h : \mathbb{R} \to \mathbb{R}$ be an extendable connectivity function having a dense graph in \mathbb{R}^2 , and let $\{A_n\}_{n=0}^{\infty}$ be a decomposition of \mathbb{R} into those special h-negligible subsets.

Define $f : \mathbb{R} \to \mathbb{R}$ by

$$y_{\alpha} = f(x_{\alpha}) \in \begin{cases} g^{-1}(x_{\alpha}) \setminus \left(\left\{ y_{\beta} : \beta < \alpha \right\} \cup \left\{ g_{\beta}(x_{\alpha}) : \beta \le \alpha \right\} \right) & \text{if } x_{\alpha} \in A_{0} \\ \mathbb{R} \setminus \left(\left\{ y_{\beta} : \beta < \alpha \right\} \cup \left\{ g_{\beta}(x_{\alpha}) : \beta \le \alpha \right\} \right) & \text{if } x_{\alpha} \in \mathbb{R} \setminus A_{0} \end{cases}$$

such that if $x_{\alpha} \in A_n$ and n > 0, then $|f(x_{\alpha}) - h(x_{\alpha})| < \frac{1}{n+1}$ which implies $f \in \overline{Ext}$. Because $f : \mathbb{R} \to \mathbb{R}$ is one-to-one and $\operatorname{card}(f \cap g_{\alpha}) < \mathfrak{c}$ for each $g_{\alpha} \in C^*_{G_{\delta}}$, f is a Sierpiński-Zygmund function according to [4, Lemma 1]. So $f \in SZ \cap \overline{Ext}$, and $f^{-1} \notin SZ$ because $f^{-1}(y_{\alpha}) = x_{\alpha} = g(y_{\alpha})$ if $x_{\alpha} \in A_0$.

 $f \in SZ \cap \overline{Ext}, \text{ and } f^{-1} \notin SZ \text{ because } f^{-1}(y_{\alpha}) = x_{\alpha} = g(y_{\alpha}) \text{ if } x_{\alpha} \in A_{0}.$ Note that f preserves nowhere dense sets $C \subset A_{0}$. For $g^{-1}(\overline{C})$ is closed and nowhere dense in \mathbb{R} because $g\left(\overline{g^{-1}(\overline{C})}\right) \subset \overline{g(g^{-1}(\overline{C}))} = \overline{C}$ and the nowhere constant function g maps connected sets to connected sets. Since $C \subset A_{0}$ and $f(C) \subset f(\overline{C}) \subset g^{-1}(\overline{C}), f(C)$ is nowhere dense in \mathbb{R} .

References

- M. Balcerzak, K. Ciesielski, T. Natkaniec, Sierpiński-Zygmund functions that are Darboux, almost continuous, or have a perfect road, Arch. Math. Logic, 37, no. 1 (1997), 29–35.
- [2] A. M. Bruckner, Differentiation of Real Functions, Lecture Notes in Mathematics, 659, Springer-Verlag, Berlin, 1978.
- K. Ciesielski, T. Natkaniec, Algebraic properties of the class of Sierpiński-Zygmund functions, Topology Appl., 79 (1997), 75–99.

- [4] K. Ciesielski, T. Natkaniec, On Sierpiński-Zygmund bijections and their inverses, Topology Proc., 22 (1997), 155–164.
- [5] K. Ciesielski, I. Recław, Cardinal invariants concerning extendable and peripherally continuous functions, Real Analysis Exchange, 21 (1995/96), 459–472.
- [6] K. Płotka, Sum of Sierpiński-Zygmund and Darboux like functions, Topology Appl., 122 (2002), 547–564.
- [7] H. Rosen, Limits and sums of extendable connectivity functions, Real Analysis Exchange, 20 (1994/95), 183–191.
- [8] H. Rosen, Every real function is the sum of two extendable connectivity functions, Real Analysis Exchange, 21 (1995/96), 299–303.
- H. Rosen, Porous and boundary sets in Darboux-like function spaces, Real Analysis Exchange, 27 (2001/02), 27–40.
- [10] H. Rosen, Sierpiński-Zygmund uniform limits of extendable connectivity functions, Real Analysis Exchange, 28 (2002/03), 105–110.
- [11] H. Rosen, R. G. Gibson, F. Roush, Extendable functions and almost continuous functions with a perfect road, Real Analysis Exchange, 17 (1991/92), 248–257.
- [12] W. Sierpiński, A. Zygmund, Sur une fonction qui est discontinue sur tout ensemble de puissance du continu, Fund. Math., 4 (1923), 316–318.