# ITERATED REDUCED CLUSTER FUNCTIONS 


#### Abstract

Given a multifunction $F$ between topological spaces $X$ and $Y$, the reduced cluster function $C^{r}(F ; \cdot): X \rightarrow 2^{Y}$ of $F$ is defined by $C^{r}(F ; x)=$ $\bigcap \operatorname{cl}(F(U \backslash\{x\})), U$ running through the neighborhood system of $x$. By transfinite recursion, one defines iterated reduced cluster functions $C^{r, \alpha}(F ; \cdot)$ for all ordinals $\alpha>0$.

We characterize multifunctions $F$ that are invariant in the sense of $C^{r}(F ; \cdot)=F$. For every countable ordinal $\alpha$, we describe the family of all iterated reduced cluster functions $C^{r, \alpha}(F ; \cdot)$ of arbitrary multifunctions $F: X \rightarrow 2^{Y}$ and the family of all iterated reduced cluster functions $C^{r, \alpha}(f ; \cdot)$ of arbitrary functions $f: X \rightarrow Y$, provided that $X$ and $Y$ are metrizable spaces and $Y$ is separable.


## 1 Definitions and Basic Properties.

Let $F: X \rightarrow 2^{Y}$ be a multifunction mapping a topological space $X$ into the subsets of a topological space $Y$. The empty set is allowed to be a value of $F$. The cluster set $C\left(F ; x_{0}\right)$ and the reduced cluster set $C^{r}\left(F ; x_{0}\right)$ of $F$ at a point $x_{0} \in X$ are defined by

$$
C\left(F ; x_{0}\right)=\bigcap_{U \in \mathcal{U}\left(x_{0}\right)} \operatorname{cl}(F(U))
$$

and

$$
C^{r}\left(F ; x_{0}\right)=\bigcap_{U \in \mathcal{U}\left(x_{0}\right)} \operatorname{cl}\left(F\left(U \backslash\left\{x_{0}\right\}\right)\right)
$$

respectively, where $\operatorname{cl}(\cdot)$ is the closure operator, $\mathcal{U}\left(x_{0}\right)$ the family of all open neighborhoods of $x_{0}$, and $F(U)$ the union $F(U)=\bigcup_{x \in U} F(x)$. Obviously,

$$
\begin{equation*}
C\left(F ; x_{0}\right)=C^{r}\left(F ; x_{0}\right) \cup \operatorname{cl}\left(F\left(x_{0}\right)\right) . \tag{1}
\end{equation*}
$$

[^0]In the context of single-valued functions $f: X \rightarrow \mathbb{R}$ these concepts can be found in [4], p. 184, [5], pp. 188, 196, [1], pp. 140-141 (see also [11]). The application of the original definitions to set-valued maps follows the approach of [6], [7].

The sets $C\left(F ; x_{0}\right)$ and $C^{r}\left(F ; x_{0}\right)$ describe the local accumulation behavior of $F$ in the entourage of $x_{0}$. Following the interpretation of [4], we consider $C(F ; \cdot)$ and $C^{r}(F ; \cdot)$ as multifunctions associated to $F$. We speak of the cluster function $C(F ; \cdot)$ and the reduced cluster function $C^{r}(F ; \cdot)$ of $F$.

The cluster function $C(F ; \cdot)$ has the following simple meaning.
Proposition 1. Let $X$ and $Y$ be topological spaces and let $F: X \rightarrow 2^{Y}$ be a multifunction. Then the graph of $C(F ; \cdot)$ is the closure of the graph of $F$ with respect to the product topology on $X \times Y$.

Proof. Let $G$ be the multifunction whose graph is the closure of that of $F$. Then

$$
\operatorname{graph}(G)=\{(x, y) \in X \times Y: \forall U \in \mathcal{U}(x)(y \in \operatorname{cl}(F(U)))\}
$$

Hence, for all $x \in X$,

$$
G(x)=\{y \in Y: \forall U \in \mathcal{U}(x)(y \in \operatorname{cl}(F(U)))\}=\bigcap_{U \in \mathcal{U}(x)} \operatorname{cl}(F(U))=C(F ; x)
$$

A basic consequence of Proposition 1 is

$$
C(C(F ; \cdot) ; \cdot)=C(F ; \cdot)
$$

for all $F: X \rightarrow 2^{Y}$. Accordingly, an iteration of the cluster function $C(F ; \cdot)$ is not useful. However, we shall see that the behavior of the reduced cluster function $C^{r}(F ; \cdot)$ is quite different, though its definition is very close to that of $C(F ; \cdot)$.

Proposition 2. Let $X$ be a $T_{1}$-space, $Y$ an arbitrary topological space, and $F: X \rightarrow 2^{Y}$ a multifunction. Then
(a) $C^{r}(F ; \cdot)=C^{r}(C(F ; \cdot) ; \cdot)$ and
(b) $C^{r}(F ; \cdot)=C\left(C^{r}(F ; \cdot) ; \cdot\right)$, that is, the graph of $C^{r}(F ; \cdot)$ is closed.

Proof. (a) The inclusion $C^{r}(F ; \cdot) \subseteq C^{r}(C(F ; \cdot) ; \cdot)$ is obvious, because $F \subseteq$ $C(F ; \cdot)$. The converse can be obtained as follows.

$$
\begin{aligned}
C^{r}\left(C(F ; \cdot) ; x_{0}\right) & =\bigcap_{U \in \mathcal{U}\left(x_{0}\right)} \operatorname{cl}\left(C\left(F ; U \backslash\left\{x_{0}\right\}\right)\right) \\
& =\bigcap_{U \in \mathcal{U}\left(x_{0}\right)} \operatorname{cl}\left(\bigcup_{x \in U \backslash\left\{x_{0}\right\}} \bigcap_{V \in \mathcal{U}(x)} \operatorname{cl}(F(V))\right) \\
& \subseteq \bigcap_{U \in \mathcal{U}\left(x_{0}\right)} \operatorname{cl}\left(\bigcup_{x \in U \backslash\left\{x_{0}\right\}} \operatorname{cl}\left(F\left(U \backslash\left\{x_{0}\right\}\right)\right)\right) \\
& =\bigcap_{U \in \mathcal{U}\left(x_{0}\right)} \operatorname{cl}\left(F\left(U \backslash\left\{x_{0}\right\}\right)\right)=C^{r}\left(F ; x_{0}\right) .
\end{aligned}
$$

The inclusion " $\subseteq$ " is based on the $\mathrm{T}_{1}$ property of $X$.
(b) Clearly, $C^{r}(F ; \cdot) \subseteq C\left(C^{r}(F ; \cdot) ; \cdot\right)$. On the other hand,

$$
\begin{aligned}
C\left(C^{r}(F ; \cdot) ; x_{0}\right) & =\bigcap_{U \in \mathcal{U}\left(x_{0}\right)} \operatorname{cl}\left(C^{r}(F ; U)\right) \\
& =\bigcap_{U \in \mathcal{U}\left(x_{0}\right)} \operatorname{cl}\left(\bigcup_{x \in U} \bigcap_{V \in \mathcal{U}(x)} \operatorname{cl}(F(V \backslash\{x\}))\right) \\
& \subseteq \bigcap_{U \in \mathcal{U}\left(x_{0}\right)} \operatorname{cl}\left(\bigcup_{x \in U} \operatorname{cl}\left(F\left(U \backslash\left\{x_{0}\right\}\right)\right)\right) \\
& =\bigcap_{U \in \mathcal{U}\left(x_{0}\right)} \operatorname{cl}\left(F\left(U \backslash\left\{x_{0}\right\}\right)\right)=C^{r}\left(F ; x_{0}\right) .
\end{aligned}
$$

This completes the proof.
The following example justifies the restriction to $\mathrm{T}_{1}$-spaces $X$ in Proposition 2. Let $X=\mathbb{R}$ be equipped with the system of open sets $\{\emptyset, \mathbb{R}\} \cup\{(x, \infty)$ : $x \in \mathbb{R}\}$. Then $X$ is a $\mathrm{T}_{0}$-space. We consider

$$
f(x)= \begin{cases}0, & x \neq 0 \\ 1, & x=0\end{cases}
$$

This yields

$$
\begin{aligned}
& C^{r}(f ; x)=\left\{\begin{array}{cc}
\{0,1\}, & x<0, \\
\{0\}, & x \geq 0,
\end{array} \quad C\left(C^{r}(f ; \cdot) ; x\right)=\left\{\begin{array}{cc}
\{0,1\}, & x \leq 0, \\
\{0\}, & x>0,
\end{array}\right.\right. \\
& C(f ; x)=\left\{\begin{array}{cc}
\{0,1\}, & x \leq 0, \\
\{0\}, & x>0,
\end{array} \quad C^{r}(C(f ; \cdot) ; x)=\left\{\begin{array}{cc}
\{0,1\}, & x \leq 0, \\
\{0\}, & x>0 .
\end{array}\right.\right.
\end{aligned}
$$

In particular, $C^{r}(f ; 0) \neq C^{r}(C(f ; \cdot) ; 0)$ and $C^{r}(f ; 0) \neq C\left(C^{r}(f ; \cdot) ; 0\right)$.
Part (a) of Proposition 2 shows that all reduced cluster functions can be obtained as reduced cluster functions of multifunctions with closed graph. Moreover, since $C^{r}(F ; \cdot) \subseteq C(F ; \cdot)$, we obtain

$$
C^{r}\left(C^{r}(F ; \cdot) ; \cdot\right) \subseteq C^{r}(C(F ; \cdot) ; \cdot)=C^{r}(F ; \cdot)
$$

The function $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by

$$
f(x)=\left\{\begin{array}{cl}
0, & x \notin\left\{\frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots\right\}, \\
1-x, & x \in\left\{\frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots\right\}
\end{array}\right.
$$

illustrates that the inclusion $C^{r}\left(C^{r}(F ; \cdot) ; \cdot\right) \subseteq C^{r}(F ; \cdot)$ is a strict one in general. Indeed,

$$
C^{r}(f ; x)=\left\{\begin{array}{cc}
\{0\}, & x \neq 0, \\
\{0,1\}, & x=0
\end{array} \quad \text { and } \quad C^{r}\left(C^{r}(f ; \cdot) ; x\right) \equiv\{0\}\right.
$$

This justifies the definition of iterated reduced cluster functions.

Let $F: X \rightarrow 2^{Y}$ be a multifunction between topological spaces $X$ and $Y$ and let $\alpha>0$ be an ordinal number. We define the reduced cluster function $C^{r, \alpha}(F ; \cdot)$ of $F$ of order $\alpha$ by

$$
C^{r, \alpha}(F ; x)=\left\{\begin{array}{cl}
C^{r}(F ; x) & \text { if } \alpha=1 \\
C^{r}\left(C^{r, \beta}(F ; \cdot) ; x\right) & \text { if } \alpha=\beta+1, \beta>0 \\
\bigcap_{\beta<\alpha} C^{r, \beta}(F ; x) & \text { if } \alpha \text { is a limit ordinal. }
\end{array}\right.
$$

Proposition 2 shows that $\left(C^{r, \alpha}(F ; \cdot)\right)_{\alpha>0}$ is a decreasing transfinite sequence of multifunctions with closed graphs, provided that $X$ is a $\mathrm{T}_{1}$-space.

The reduced cluster function $C^{r}(F ; \cdot)$ and its iterations $C^{r, \alpha}(F ; \cdot)$ of a multifunction $F$ with closed graph can be considered as a particular derivative within the system of all closed subsets of $X \times Y$ and as its iterations in the sense of [8], p. 270: One considers closed subsets of $X \times Y$ as graphs of multifunctions.

## 2 A Continuity Property of Invariant Multifunctions.

For every $F: X \rightarrow 2^{Y}$, there exists a smallest ordinal $\alpha_{0}=\alpha_{0}(F)$ such that $C^{r, \alpha_{0}}(F ; \cdot)=C^{r, \alpha_{0}+1}(F ; \cdot)$ or, equivalently, $C^{r, \alpha_{0}}(F ; \cdot)=C^{r, \alpha}(F ; \cdot)$ for all $\alpha \geq \alpha_{0}$. The multifunction $C^{r, \alpha_{0}}(F ; \cdot)$ shows a pleasant behavior in so far as it remains invariant under formation of its reduced cluster function. The ordinal $\alpha_{0}$ indicates in some sense the distance between $F$ and its "invariant derivative" $C^{r, \alpha_{0}}(F ; \cdot)$. In the present section we study properties of invariant multifunctions.

The following local reformulation of the invariance $C^{r}(F ; \cdot)=F$ is a simple consequence of $(1)$, since $C^{r}\left(F ; x_{0}\right)$ is a closed set.

Proposition 3. Let $X$ and $Y$ be topological spaces, $F: X \rightarrow 2^{Y}$ a set-valued function, and $x_{0} \in X$. Then $C^{r}\left(F ; x_{0}\right)=F\left(x_{0}\right)$ if and only if $C\left(F ; x_{0}\right)=$ $F\left(x_{0}\right)$ and $F\left(x_{0}\right) \subseteq C^{r}\left(F ; x_{0}\right)$.

The inclusion $F\left(x_{0}\right) \subseteq C^{r}\left(F ; x_{0}\right)$ can be considered as a local continuity property of $F$ at the point $x_{0}$. In fact, in [10] the inclusion $f\left(x_{0}\right) \in C^{r}\left(f ; x_{0}\right)$ in the case of a single-valued function $f: \mathbb{R} \rightarrow \mathbb{R}$ defines so-called $S_{\infty}$-continuity of $f$ at $x_{0}$, the reduced cluster set $C^{r}\left(f ; x_{0}\right)$ coinciding with Thomson's $S_{\infty^{-}}$ cluster set $\left(S_{\infty}\right)-\Lambda\left(f, x_{0}\right)$ (see pp. $\left.3,4,70\right)$.

Proposition 4. Let $X$ and $Y$ be topological spaces, $F: X \rightarrow 2^{Y}$ a set-valued function, and $x_{0} \in X$. Then the following are equivalent.
(i) $F\left(x_{0}\right) \subseteq C^{r}\left(F ; x_{0}\right)$.
(ii) $C^{r}\left(F ; x_{0}\right)=C\left(F ; x_{0}\right)$.
(iii) There is no open subset $V_{0} \subseteq Y$ such that $x_{0}$ is an isolated point of the set $F^{-}\left(V_{0}\right)=\left\{x \in X: F(x) \cap V_{0} \neq \emptyset\right\}$.

Proof. The equivalence (i) $\Leftrightarrow$ (ii) follows from (1).
$\neg(\mathrm{i}) \Rightarrow \neg(\mathrm{iii})$. If $F\left(x_{0}\right) \nsubseteq C^{r}\left(F ; x_{0}\right)$, we can fix $y_{0} \in F\left(x_{0}\right) \backslash C^{r}\left(F ; x_{0}\right)$. Since $y_{0} \notin C^{r}\left(F ; x_{0}\right)$, there exists a neighborhood $U_{0} \in \mathcal{U}\left(x_{0}\right)$ such that $y_{0} \notin \operatorname{cl}\left(F\left(U_{0} \backslash\left\{x_{0}\right\}\right)\right)$. We put $V_{0}=Y \backslash \operatorname{cl}\left(F\left(U_{0} \backslash\left\{x_{0}\right\}\right)\right)$. Then $\left(U_{0} \backslash\left\{x_{0}\right\}\right) \cap$ $F^{-}\left(V_{0}\right)=\emptyset$. On the other hand, $x_{0} \in F^{-}\left(V_{0}\right)$, for $y_{0} \in F\left(x_{0}\right) \cap V_{0}$. Hence $U_{0} \cap F^{-}\left(V_{0}\right)=\left\{x_{0}\right\}$, which shows that $x_{0}$ is an isolated point of $F^{-}\left(V_{0}\right)$.
$\neg$ (iii) $\Rightarrow \neg$ (i). Now we assume that $x_{0}$ is an isolated point of $F^{-}\left(V_{0}\right)$ for some open $V_{0} \subseteq Y$. Then there exists a neighborhood $U_{0} \in \mathcal{U}\left(x_{0}\right)$ such that $U_{0} \cap F^{-}\left(V_{0}\right)=\left\{x_{0}\right\}$, that is, $F\left(U_{0} \backslash\left\{x_{0}\right\}\right) \cap V_{0}=\emptyset$ and $F\left(x_{0}\right) \cap V_{0} \neq \emptyset$. Since $V_{0}$ is open, we obtain $\operatorname{cl}\left(F\left(U_{0} \backslash\left\{x_{0}\right\}\right) \cap V_{0}=\emptyset\right.$ and therefore $C^{r}\left(F ; x_{0}\right) \cap V_{0}=\emptyset$. Thus

$$
F\left(x_{0}\right) \backslash C^{r}\left(F ; x_{0}\right) \supseteq\left(F\left(x_{0}\right) \cap V_{0}\right) \backslash\left(C^{r}\left(F ; x_{0}\right) \cap V_{0}\right) \neq \emptyset,
$$

which proves that $F\left(x_{0}\right) \nsubseteq C^{r}\left(F ; x_{0}\right)$.
Propositions 1, 3, and 4 yield the following characterization of invariant multifunctions.

Theorem 1. A multifunction $F: X \rightarrow 2^{Y}$ between topological spaces $X$ and $Y$ is invariant in the sense of $C^{r}(F ; \cdot)=F$ if and only if $F$ has a closed graph and, for every open subset $V \subseteq Y$, the set $F^{-}(V)=\{x \in X: F(x) \cap V \neq \emptyset\}$ has no isolated points.

Application to the particular open set $V=Y$ shows that, for an invariant multifunction $F=C^{r}(F ; \cdot)$, the set $\{x \in X: F(x) \neq \emptyset\}$ does not contain isolated points, that is, $\{x \in X: F(x) \neq \emptyset\}$ is a perfect subset of $X$.

We close this section with the remarkable observation that every multifunction $F: X \rightarrow 2^{Y}$ between a metrizable space $X$ and a separable metrizable space $Y$ fails the continuity property $F(x) \subseteq C^{r}(F ; x)$ only on a "small" set of points $x \in X$. A subset $A \subseteq X$ is called locally finite if every point $x_{0} \in X$ possesses a neighborhood $U_{0} \subseteq \mathcal{U}\left(x_{0}\right)$ whose intersection with $A$ is finite. The following proposition generalizes a theorem from [2].

Proposition 5. Let $X$ be a metrizable space, $Y$ a separable metrizable space, and $F: X \rightarrow 2^{Y}$ a multifunction. Then the set

$$
M=\left\{x \in X: F(x) \nsubseteq C^{r}(F ; x)\right\}
$$

is a countable union of locally finite subsets of $X$.

Proof. We suppose that $X$ and $Y$ are equipped with corresponding metrics $d_{X}$ and $d_{Y}$. For all $x \in M$, we choose a value $f(x) \in F(x) \backslash C^{r}(F ; x)$. We define
$M(k)=\left\{x \in M:\right.$ for every $\tilde{x} \in M \backslash\{x\}, d_{X}(x, \tilde{x})>\frac{1}{k}$ or $\left.d_{Y}(f(x), f(\tilde{x}))>\frac{1}{k}\right\}$
for integers $k \geq 1$. Then $M=\bigcup_{k \geq 1} M(k)$, for otherwise there would exist a point $x_{0} \in M$ and a sequence $\left(x_{k}\right)_{k \geq 1} \subseteq M \backslash\left\{x_{0}\right\}$ such that $\lim _{k \rightarrow \infty} x_{k}=x_{0}$ and $\lim _{k \rightarrow \infty} f\left(x_{k}\right)=f\left(x_{0}\right)$. However, since $f\left(x_{k}\right) \in F\left(x_{k}\right)$, this would yield $f\left(x_{0}\right) \in C^{r}\left(F ; x_{0}\right)$ contrary to the choice of $f\left(x_{0}\right)$.

Let $\left(y_{l}\right)_{l \geq 1}$ be a dense sequence in $Y$ and

$$
M(k, l)=\left\{x \in M(k): f(x) \in B\left(y_{l} ; \frac{1}{2 k}\right)\right\}
$$

$B\left(y_{l} ; \frac{1}{2 k}\right)$ denoting the closed ball of radius $\frac{1}{2 k}$ centered at $y_{l}$. Accordingly, $M=\bigcup_{k \geq 1} M(k)=\bigcup_{k, l \geq 1} M(k, l)$. The sets $M(k, l)$ are locally finite. Indeed, any two distinct points $\bar{x}_{0}, x_{1} \in M(k, l)$ satisfy

$$
d_{Y}\left(f\left(x_{0}\right), f\left(x_{1}\right)\right) \leq d_{Y}\left(f\left(x_{0}\right), y_{l}\right)+d_{Y}\left(y_{l}, f\left(x_{1}\right)\right) \leq \frac{1}{2 k}+\frac{1}{2 k}=\frac{1}{k}
$$

and in turn $d_{X}\left(x_{0}, x_{1}\right)>\frac{1}{k}$, since $x_{0}, x_{1} \in M(k)$.
Proposition 5 requires several comments.

1. A countable union of locally finite subsets of a metric space $\left(X, d_{X}\right)$ is a countable union of topologically discrete subsets of $X$ and vice versa. Obviously, every locally finite set is discrete. Conversely, every discrete set $A \subseteq X$ is the countable union $A=\bigcup_{k \geq 1} A_{k}$ of the locally finite sets

$$
A_{k}=\left\{x \in A: d_{X}(x, \tilde{x})>\frac{1}{k} \text { for all } \tilde{x} \in A \backslash\{x\}\right\}
$$

If $X$ is separable, then every locally finite set is countable. Thus in this case a countable union of locally finite subsets is a countable subset of $X$.
2. Application of Proposition 5 to the multifunction $C^{r}(F ; \cdot)$ shows that $\left\{x \in X: C^{r}(F ; x) \neq C^{r}\left(C^{r}(F ; \cdot) ; x\right)\right\}=\left\{x \in X: C^{r}(F ; x) \nsubseteq C^{r}\left(C^{r}(F ; \cdot) ; x\right)\right\}$ is a countable union of locally finite sets. By transfinite induction, all sets $\left\{x \in X: C^{r}(F ; x) \neq C^{r, \alpha}(F ; x)\right\}, \alpha>0$ being a countable ordinal, have a representation of the same kind.

Consequently, for every countable $\alpha>0,\left\{x \in X: F(x) \nsubseteq C^{r, \alpha}(F ; x)\right\}$ is a countable union of locally finite sets, too.

Since $\left\{x \in X: C(F ; x) \neq C^{r}(F ; x)\right\}=\left\{x \in X: F(x) \nsubseteq C^{r}(F ; x)\right\}$ by Proposition 4, the sets $\left\{x \in X: C(F ; x) \neq C^{r, \alpha}(F ; x)\right\}$ are countable unions of locally finite sets as well for all countable ordinals $\alpha>0$.
3. In [2] Collingwood proves the claim of Proposition 5 for single-valued functions $f$ mapping the plane unit disc $D$ into the two-dimensional Euclidean
sphere $S$, then the exceptional set $\left\{x \in D: f(x) \notin C^{r}(f ; x)\right\}$ describing as a countable set. He claims that this statement would be true for maps $f$ into any complete metric space $Y$. This is not the case as the following example illustrates.

Let $X=Y=D$ be the plane unit disc equipped with the Euclidean metric $d_{X}$ and with the discrete metric $d_{Y}$ defined by $d_{Y}\left(x_{1}, x_{2}\right)=1$ for $x_{1} \neq x_{2}$, respectively. Then the identity $f: X \rightarrow Y, f(x)=x$, yields $C^{r}(f ; x)=\emptyset$ for all $x \in X$ and thus $\left\{x \in X: f(x) \notin C^{r}(f ; x)\right\}=X$ is not countable.

## 3 Characteristic Properties of Iterated Reduced Cluster Functions.

In this section we ask for multifunctions $G: X \rightarrow 2^{Y}$ that can appear as reduced cluster functions $G=C^{r, \alpha}(F ; \cdot)$ of fixed order $\alpha>0$. We shall give a corresponding characterization if $X$ is a metrizable space, $Y$ a separable metrizable space, and $\alpha$ a countable ordinal.

The sequence $\left(C^{r, \alpha}(F ; \cdot)\right)_{\alpha>0}$ associated to a set-valued function $F$ between second countable spaces $X$ and $Y$ stabilizes already for some countable ordinal $\alpha_{0}$. Indeed, $\left(C^{r, \alpha}(F ; \cdot)\right)_{\alpha>0}$ can be seen as a decreasing transfinite sequence of closed graphs in the second countable space $X \times Y$ which, by Theorem 6.9 of [8], satisfies $C^{r, \alpha_{0}}(F ; \cdot)=C^{r, \alpha_{0}+1}(F ; \cdot)$ for some countable $\alpha_{0}$. Consequently, in the case of second countable spaces $X$ and $Y$ the study of countable ordinals $\alpha$ is not a restriction, but in fact covers arbitrary ordinals $\alpha$.

The theorems to be presented make use of the concept of the iterated Cantor-Bendixson derivatives $X^{\alpha}$ of a topological space $X$ (see Definition 6.10 of [8]). The first Cantor-Bendixson derivative $X^{\prime}$ is defined by

$$
X^{\prime}=\{x \in X: x \text { is not isolated in } X\}
$$

The iterated Cantor-Bendixson derivatives for arbitrary ordinals $\alpha$ are

$$
X^{\alpha}=\left\{\begin{array}{cl}
X & \text { if } \alpha=0 \\
\left(X^{\beta}\right)^{\prime} & \text { if } \alpha=\beta+1, \beta \geq 0 \\
\bigcap_{\beta<\alpha} X^{\beta} & \text { if } \alpha \text { is a limit ordinal. }
\end{array}\right.
$$

The derivatives $X^{\alpha}$ can easily be described by the aid of iterated reduced cluster functions. Given two topological spaces $X$ and $Y$, we consider the multifunction

$$
\mathbf{I}_{A}(x)= \begin{cases}Y, & x \in A \\ \emptyset, & x \notin A\end{cases}
$$

as an indicator function of a subset $A \subseteq X$. Obviously, $C^{r}\left(\mathbf{I}_{X} ; \cdot\right)=\mathbf{I}_{X^{\prime}}$. Transfinite induction then yields

$$
C^{r, \alpha}\left(\mathbf{I}_{X} ; \cdot\right)=\mathbf{I}_{X^{\alpha}}
$$

for all ordinals $\alpha>0$.
Now we characterize the variety of iterated reduced cluster functions of a fixed countable order $\alpha$ attainable from arbitrary multifunctions (Theorem 2) and from single-valued functions (Theorem 3). These are the central results of the present paper. The proofs will be given in Sections 4 and 5.
Theorem 2. Let $X$ be a metrizable space, $Y$ a separable metrizable space, $\alpha>0$ a countable ordinal, and $G: X \rightarrow 2^{Y}$ a multifunction. Then the following are equivalent.
(i) There exists $F: X \rightarrow\{\{y\}: y \in Y\} \cup\{\emptyset\}$ such that $C^{r, \alpha}(F ; \cdot)=G$.
(ii) There exists $F: X \rightarrow 2^{Y}$ such that $C^{r, \alpha}(F ; \cdot)=G$.
(iii) $C(G ; \cdot)=G$ and $G(x)=\emptyset$ for all $x \in X \backslash X^{\alpha}$.

It is remarkable that multifunctions $F$ whose values are restricted to singletons and the empty set give rise to the same iterated reduced cluster functions as arbitrary multifunctions do.

Theorem 3. Let $X$ be a metrizable space, $Y$ a separable metrizable space, $\alpha>0$ a countable ordinal, and $G: X \rightarrow 2^{Y}$ a multifunction. Then the following are equivalent.
(i) There exists $f: X \rightarrow Y$ such that $C^{r, \alpha}(f ; \cdot)=G$.
(ii) There exists $F: X \rightarrow 2^{Y} \backslash\{\emptyset\}$ such that $C^{r, \alpha}(F ; \cdot)=G$.

If $Y$ is compact then (i) and (ii) are equivalent to
(iii) $C(G ; \cdot)=G$ and $\{x \in X: G(x)=\emptyset\}=X \backslash X^{\alpha}$.

If $Y$ is not compact then (i) and (ii) are equivalent to
$(\text { iii })^{\prime} C(G ; \cdot)=G, G(x)=\emptyset$ for all $x \in X \backslash X^{\alpha}$, and $\{x \in X: G(x)=\emptyset\}$ is a countable union of locally finite subsets of $X$.

Let us point out once more that multifunctions with arbitrary non-empty values do not give rise to a larger class of iterated reduced cluster functions than single-valued functions do.

In contrast with that, the class of multifunctions $G$ that can be obtained as cluster functions $G=C(F ; \cdot)$ of multifunctions $F: X \rightarrow 2^{Y} \backslash\{\emptyset\}$ in general is strictly larger than the family of cluster functions of single-valued functions $f: X \rightarrow Y$. Proposition 1 shows that every multifunction $G: X \rightarrow 2^{Y}$ with closed graph appears as the cluster function of some $F: X \rightarrow 2^{Y}$. Indeed, we can put $F=G$. Set-valued functions $G$ that can be obtained as the cluster
function $G=C(f ; \cdot)$ of a single-valued function $f: X \rightarrow Y$, however, are more restrictive. Clearly, $f$ must be a selection of $G=C(f ; \cdot)$, so that necessarily $G(x) \neq \emptyset$ for all $x \in X$. We cite the following characterization from the forthcoming paper [9]. Therein $\operatorname{card}(\cdot)$ denotes the cardinality of a set.

Theorem 4. Let $X$ be a completely metrizable space, $Y$ a Polish space, and $G$ a multifunction mapping $X$ into the non-empty subsets of $Y$. Then $G$ is the cluster function of a function $f: X \rightarrow Y$ if and only if

$$
C^{r}(G ; x) \subseteq G(x) \text { and } \operatorname{card}\left(G(x) \backslash C^{r}(G ; x)\right) \leq 1
$$

for all $x \in X$.
For example, the multifunction $G: \mathbb{R} \rightarrow 2^{\mathbb{R}} \backslash\{\emptyset\}$,

$$
G(x)=\left\{\begin{array}{cc}
\{0\}, & x \neq 0 \\
\{-1,0,1\}, & x=0
\end{array}\right.
$$

clearly has a closed graph, but $G$ is not the cluster function $G=C(f ; \cdot)$ of a function $f: \mathbb{R} \rightarrow \mathbb{R}$, because $\operatorname{card}\left(G(0) \backslash C^{r}(G ; 0)\right)=2$.

## 4 Proof of Theorem 2.

The implication (i) $\Rightarrow$ (ii) is trivial.
If (ii) is satisfied, then, by Proposition $2(\mathrm{~b})$ and by the inductive definition of $C^{r, \alpha}(\cdot ; \cdot), G=C^{r, \alpha}(F ; \cdot)$ has a closed graph. Proposition 1 yields $C(G ; \cdot)=$ $G$. The claim $G(x)=C^{r, \alpha}(F ; x)=\emptyset$ for all $x \in X \backslash X^{\alpha}$ follows inductively from the simple fact that $C^{r}(F ; x)=\emptyset$ for $x \in X \backslash X^{\prime}$. This way we obtain (ii) $\Rightarrow$ (iii).

The implication (iii) $\Rightarrow$ (i), however, requires more efforts.
Lemma 1. Let $\left(X, d_{X}\right)$ be a metric space and let $\varepsilon>0$. Then there exists a disjoint family $\{H(i, j): i, j \in\{1,2,3, \ldots\}\}$ of locally finite sets $H(i, j) \subseteq X$ such that, for every $x_{0} \in X^{\prime}$ and all $i, j \geq 1$, there is $x_{1} \in H(i, j)$ such that $d_{X}\left(x_{0}, x_{1}\right) \leq \frac{\varepsilon}{i}$.

Proof. For $\left(i_{1}, j_{1}\right),\left(i_{2}, j_{2}\right) \in\{(i, j): i, j \geq 1\}$, we say that $\left(i_{1}, j_{1}\right) \prec\left(i_{2}, j_{2}\right)$ if either $i_{1}+j_{1}<i_{2}+j_{2}$ or $i_{1}+j_{1}=i_{2}+j_{2}$ and $i_{1}<i_{2}$. The sets $H(i, j)$ are going to be defined by induction with respect to the order $\prec$. Let $i_{0}, j_{0} \geq 1$ be fixed and assume that $H(i, j)$ is already defined for all $(i, j) \prec\left(i_{0}, j_{0}\right)$. Since $X$ is paracompact (see [3], p. 300), there exists a locally finite cover $\mathcal{C}$ of $X$ by open subsets $C$ of diameter $\operatorname{diam}(C) \leq \frac{\varepsilon}{i_{0}}$. Let

$$
\mathcal{C}^{\prime}=\left\{C \in \mathcal{C}: C \cap X^{\prime} \neq \emptyset\right\}
$$

We can fix a point $x_{C} \in C \backslash \bigcup_{(i, j) \prec\left(i_{0}, j_{0}\right)} H(i, j)$ for every $C \in \mathcal{C}^{\prime}$, because $C$ contains a non-isolated point and the set $\bigcup_{(i, j) \prec\left(i_{0}, j_{0}\right)} H(i, j)$ is locally finite. Then we put $H\left(i_{0}, j_{0}\right)=\left\{x_{C}: C \in \mathcal{C}^{\prime}\right\}$.

By definition, $H\left(i_{0}, j_{0}\right)$ is locally finite and disjoint with all sets $H(i, j)$, $(i, j) \prec\left(i_{0}, j_{0}\right)$. If $x_{0} \in X^{\prime}$, then there is $C \in \mathcal{C}^{\prime}$ such that $x_{0} \in C$. The corresponding point $x_{1}=x_{C} \in H\left(i_{0}, j_{0}\right)$ satisfies the required estimate $d_{X}\left(x_{0}, x_{1}\right) \leq \operatorname{diam}(C) \leq \frac{\varepsilon}{i_{0}}$.
Lemma 2. Let $\left(X, d_{X}\right)$ be a metric space, $\left(Y, d_{Y}\right)$ a separable metric space, $G: X \rightarrow 2^{Y}$ a multifunction such that $C(G ; \cdot)=G$ and $G(x)=\emptyset$ for all $x \in X \backslash X^{\prime}$, and let $\varepsilon>0$. Then there exists $F: X \rightarrow\{\{y\}: y \in Y\} \cup\{\emptyset\}$ such that $F(x) \subseteq G(B(x ; \varepsilon))$ for all $x \in X$ and $C^{r}(F ; \cdot)=G$.

Proof. Let $i \geq 1$ be an integer. Since $Y$ is separable and paracompact (see [3], p. 300), there exists a locally finite countable open $\operatorname{cover} \mathcal{C}_{i}=\left\{C_{i, j}: j \geq 1\right\}$ of $Y$ such that $\operatorname{diam}\left(C_{i, j}\right) \leq \frac{\varepsilon}{i}$ for all $C_{i, j} \in \mathcal{C}_{i}$. We reduce the sets $H(i, j) \subseteq X$ from Lemma 1 by putting

$$
H^{\prime}(i, j)=\left\{x \in H(i, j): G\left(B\left(x ; \frac{\varepsilon}{i}\right)\right) \cap C_{i, j} \neq \emptyset\right\} .
$$

For every $x \in H^{\prime}(i, j)$, we choose a value

$$
\begin{equation*}
f(x) \in G\left(B\left(x ; \frac{\varepsilon}{i}\right)\right) \cap C_{i, j} . \tag{2}
\end{equation*}
$$

Then we define

$$
F(x)=\left\{\begin{array}{cl}
\{f(x)\} & \text { if } x \in \bigcup_{i, j \geq 1} H^{\prime}(i, j), \\
\emptyset & \text { if } x \in X \backslash \bigcup_{i, j \geq 1} H^{\prime}(i, j) .
\end{array}\right.
$$

The definition immediately implies $F(x) \subseteq G(B(x ; \varepsilon))$ for all $x \in X$.
For the proof of $C^{r}(F ; \cdot)=G$ let $x_{0} \in X$ be fixed. First we suppose $y_{0} \in G\left(x_{0}\right)$ for showing that $G\left(x_{0}\right) \subseteq C^{r}\left(F ; x_{0}\right)$. For every $i \geq 1$, there exists $j_{i} \geq 1$ such that $y_{0} \in C_{i, j_{i}}$, since $\mathcal{C}_{i}$ covers $Y$. We obtain $x_{0} \in X^{\prime}$, because $G\left(x_{0}\right) \supseteq\left\{y_{0}\right\} \neq \emptyset$. Therefore, by Lemma 1, we find $x_{i} \in H\left(i, j_{i}\right)$ such that $d_{X}\left(x_{0}, x_{i}\right) \leq \frac{\varepsilon}{i}$. In fact, $x_{i} \in H^{\prime}\left(i, j_{i}\right)$, because

$$
G\left(B\left(x_{i} ; \frac{\varepsilon}{i}\right)\right) \cap C_{i, j_{i}} \supseteq G\left(x_{0}\right) \cap C_{i, j_{i}} \supseteq\left\{y_{0}\right\} \neq \emptyset .
$$

Moreover, $d_{Y}\left(y_{0}, f\left(x_{i}\right)\right) \leq \frac{\varepsilon}{i}$, since $y_{0} \in C_{i, j_{i}}, f\left(x_{i}\right) \in G\left(B\left(x_{i} ; \frac{\varepsilon}{i}\right)\right) \cap C_{i, j_{i}} \subseteq$ $C_{i, j_{i}}$, and $\operatorname{diam}\left(C_{i, j_{i}}\right) \leq \frac{\varepsilon}{i}$.

The sequence $\left(x_{i}\right)_{i \geq 1}$ satisfies $\lim _{i \rightarrow \infty} x_{i}=x_{0}$ and $\lim _{i \rightarrow \infty} f\left(x_{i}\right)=y_{0}$. The points $x_{i}, i \geq 1$, are mutually distinct, for the sets $H\left(i, j_{i}\right)$ are pairwise disjoint by Lemma 1 . This yields $y_{0} \in C^{r}\left(F ; x_{0}\right)$ and in turn proves the inclusion $G\left(x_{0}\right) \subseteq C^{r}\left(F ; x_{0}\right)$.

For the proof of the converse we consider $y_{0} \in C^{r}\left(F ; x_{0}\right)$. There exists a sequence of distinct points $\left(x_{k}\right)_{k \geq 1} \subseteq \bigcup_{i, j \geq 1} H^{\prime}(i, j)$ such that

$$
\begin{equation*}
\lim _{k \rightarrow \infty} x_{k}=x_{0} \text { and } \lim _{k \rightarrow \infty} f\left(x_{k}\right)=y_{0} \tag{3}
\end{equation*}
$$

We determine integers $i(k), j(k) \geq 1$ by $x_{k} \in H^{\prime}(i(k), j(k))$. Next we infer $\lim _{k \rightarrow \infty} i(k)=\infty$.

Let us suppose the contrary, that is, there exists a subsequence $\left(x_{k_{l}}\right)_{l \geq 1}$ of $\left(x_{k}\right)_{k \geq 1}$ such that

$$
\sup \left\{i\left(k_{l}\right): l \geq 1\right\}=i_{0}<\infty
$$

The cover $\mathcal{C}_{0}=\mathcal{C}_{1} \cup \ldots \cup \mathcal{C}_{i_{0}}=\left\{C_{i, j}: 1 \leq i \leq i_{0}, j \geq 1\right\}$ is locally finite being a finite union of locally finite covers. Thus there exists a neighborhood $V \subseteq Y$ of $y_{0}$ that intersects only finitely many sets from $\mathcal{C}_{0}$, that is, there is $j_{0} \geq 0$ such that

$$
\begin{equation*}
V \cap C_{i, j}=\emptyset \text { for all } 1 \leq i \leq i_{0}, j>j_{0} \tag{4}
\end{equation*}
$$

Since $\lim _{l \rightarrow \infty} f\left(x_{k_{l}}\right)=y_{0}$, we obtain $\left(f\left(x_{k_{l}}\right)\right)_{l \geq l_{0}} \subseteq V$ for suitable $l_{0} \geq 1$. Equation (2) then shows that $f\left(x_{k_{l}}\right) \in V \cap C_{i\left(k_{l}\right), j\left(k_{l}\right)}^{-}$for $l \geq l_{0}$. Now (4) yields $j\left(k_{l}\right) \leq j_{0}$ for $l \geq l_{0}$. This gives

$$
\left(x_{k_{l}}\right)_{l \geq l_{0}} \subseteq \bigcup_{1 \leq i \leq i_{0}, 1 \leq j \leq j_{0}} H(i, j) .
$$

However, $\left(x_{k_{l}}\right)_{l \geq l_{0}}$ contains infinitely many points in every neighborhood of the limit $x_{0}$, whereas $\bigcup_{1 \leq i \leq i_{0}, 1 \leq j \leq j_{0}} H(i, j)$ is a locally finite set. This contradiction shows that $\lim _{k \rightarrow \infty} i(k) \stackrel{i \leq i_{0}, 1 \leq j \leq j_{0}}{=} \infty$.

Using (3), the property $f\left(x_{k}\right) \in G\left(B\left(x_{k} ; \frac{\varepsilon}{i(k)}\right)\right)$ coming from (2), and $\lim _{k \rightarrow \infty} i(k)=\infty$, we conclude $y_{0} \in C\left(G ; x_{0}\right)=G\left(x_{0}\right)$. This completes the proof of the claim $C^{r}\left(F ; x_{0}\right) \subseteq G\left(x_{0}\right)$.

Lemma 3. Let $\left(X, d_{X}\right)$ be a metric space, $\left(Y, d_{Y}\right)$ a separable metric space, $\alpha>0$ a countable ordinal, $G: X \rightarrow 2^{Y}$ a multifunction such that $C(G ; \cdot)=G$ and $G(x)=\emptyset$ for all $x \in X \backslash X^{\alpha}$, and let $\varepsilon>0$. Then there exists $F$ : $X \rightarrow\{\{y\}: y \in Y\} \cup\{\emptyset\}$ such that $F(x) \subseteq \operatorname{cl}(G(B(x ; \varepsilon)))$ for all $x \in X$ and $C^{r, \alpha}(F ; \cdot)=G$.

Proof. We proceed by induction on $\alpha$. Lemma 2 gives the claim for $\alpha=1$. We suppose that the claim is true for all ordinals $\beta$ with $0<\beta<\alpha$.

First we assume that $\alpha=\beta+1$ for some $\beta>0$. We consider the closed subspace $X^{\beta}$ of $X$. The restriction $\left.G\right|_{X^{\beta}}: X^{\beta} \rightarrow 2^{Y}$ obviously satisfies $C_{X^{\beta}}\left(\left.G\right|_{X^{\beta}} ; \cdot\right)=\left.G\right|_{X^{\beta}}, C_{X^{\beta}}(\cdot ; \cdot)$ denoting the cluster function with respect to the space $X^{\beta}$, and $\left.G\right|_{X^{\beta}}(x)=\emptyset$ for all $x \in X^{\beta} \backslash\left(X^{\beta}\right)^{\prime}$. Thus Lemma 2 provides a multifunction $\left.F_{0}\right|_{X^{\beta}}: X^{\beta} \rightarrow 2^{Y}$ such that

$$
\begin{equation*}
\left.F_{0}\right|_{X^{\beta}}(x) \subseteq G\left(B\left(x ; \frac{\varepsilon}{3}\right)\right) \text { for all } x \in X^{\beta} \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
C_{X^{\beta}}^{r}\left(\left.F_{0}\right|_{X^{\beta}} ; \cdot\right)=\left.G\right|_{X^{\beta}} . \tag{6}
\end{equation*}
$$

We extend $\left.F_{0}\right|_{X^{\beta}}$ to $F_{0}: X \rightarrow 2^{Y}$ by putting $F_{0}(x)=\emptyset$ for all $x \in X \backslash X^{\beta}$. Then we define $F_{1}: X \rightarrow 2^{Y}$ by $F_{1}=C\left(F_{0} ; \cdot\right)$. We obtain

$$
\begin{equation*}
C\left(F_{1} ; \cdot\right)=F_{1} \tag{7}
\end{equation*}
$$

by Proposition 1,

$$
\begin{equation*}
F_{1}(x)=\emptyset \text { for all } x \in X \backslash X^{\beta} \tag{8}
\end{equation*}
$$

because $F_{0}(x)=\emptyset$ for all $x \in X \backslash X^{\beta}$ and $X^{\beta}$ is closed,

$$
\begin{equation*}
F_{1}(x) \subseteq \operatorname{cl}\left(G\left(B\left(x ; \frac{2 \varepsilon}{3}\right)\right)\right) \text { for all } x \in X \tag{9}
\end{equation*}
$$

by (5), and

$$
\begin{equation*}
C^{r}\left(F_{1} ; \cdot\right)=G \tag{10}
\end{equation*}
$$

by (6) and (8) together with $G(x)=\emptyset$ for all $x \in X \backslash X^{\beta}$.
Application of the induction hypothesis to (7) and (8) finally yields a multifunction $F: X \rightarrow\{\{y\}: y \in Y\} \cup\{\emptyset\}$ such that $F(x) \subseteq \operatorname{cl}\left(F_{1}\left(B\left(x ; \frac{\varepsilon}{3}\right)\right)\right)$ for all $x \in X$ and $C^{r, \beta}(F ; \cdot)=F_{1}$. Properties (9) and (10) immediately imply the claims $F(x) \subseteq \operatorname{cl}(G(B(x ; \varepsilon)))$ for all $x \in X$ and $C^{r, \alpha}(F ; \cdot)=G$. This completes the case $\alpha=\beta+1$.

Now let $\alpha$ be a limit ordinal, that is, $\alpha=\lim _{\beta<\alpha} \beta$. We fix an enumeration $\alpha=\left\{\beta_{1}, \beta_{2}, \beta_{3}, \ldots\right\}$ of $\alpha$. Since $G(x)=\emptyset$ for all $x \in X \backslash X^{\beta_{i}}, i \geq 1$, the induction hypothesis gives us multifunctions $F_{i}: X \rightarrow 2^{Y}, i \geq 1$, such that $F_{i}(x) \subseteq \operatorname{cl}\left(G\left(B\left(x ; \frac{\varepsilon}{3 i}\right)\right)\right)$ for all $x \in X$ and $C^{r, \beta_{i}}\left(F_{i} ; \cdot\right)=G$. We define $F_{0}: X \rightarrow 2^{Y}$ by $F_{0}(x)=\bigcup_{i \geq 1} F_{i}(x)$. Obviously,

$$
\begin{equation*}
F_{0}(x) \subseteq \operatorname{cl}\left(G\left(B\left(x ; \frac{\varepsilon}{3}\right)\right)\right) \text { for all } x \in X \tag{11}
\end{equation*}
$$

Next we show that

$$
\begin{equation*}
C^{r, \alpha}\left(F_{0} ; \cdot\right)=G \tag{12}
\end{equation*}
$$

Indeed,

$$
C^{r, \alpha}\left(F_{0} ; \cdot\right)=\bigcap_{i \geq 1} C^{r, \beta_{i}}\left(F_{0} ; \cdot\right) \supseteq \bigcap_{i \geq 1} C^{r, \beta_{i}}\left(F_{i} ; \cdot\right)=G .
$$

For the verification of the converse inclusion let $j \geq 1$ be fixed and let $i_{j}$ be determined by $\beta_{i_{j}}=\max \left\{\beta_{1}, \ldots, \beta_{j}\right\}$. We obtain

$$
\begin{aligned}
C^{r, \alpha}\left(F_{0} ; x_{0}\right) & \subseteq C^{r, \beta_{i_{j}}}\left(F_{0} ; x_{0}\right) \\
& =C^{r, \beta_{i_{j}}}\left(\bigcup_{1 \leq i \leq j} F_{i}(\cdot) \cup \bigcup_{i>j} F_{i}(\cdot) ; x_{0}\right) \\
& =\bigcup_{1 \leq i \leq j} C^{r, \beta_{i_{j}}}\left(F_{i} ; x_{0}\right) \cup C^{r, \beta_{i}}\left(\bigcup_{i>j} F_{i}(\cdot) ; x_{0}\right)
\end{aligned}
$$

For $1 \leq i \leq j$, we have $C^{r, \beta_{i_{j}}}\left(F_{i} ; x_{0}\right) \subseteq C^{r, \beta_{i}}\left(F_{i} ; x_{0}\right)=G\left(x_{0}\right)$, since $\beta_{i} \leq \beta_{i_{j}}$. Moreover, $C^{r, \beta_{i}}\left(\bigcup_{i>j} F_{i}(\cdot) ; x_{0}\right) \subseteq C\left(\bigcup_{i>j} F_{i}(\cdot) ; x_{0}\right) \subseteq \operatorname{cl}\left(G\left(B\left(x_{0} ; \frac{\varepsilon}{3 j}\right)\right)\right)$, for $F_{i}(x) \subseteq \operatorname{cl}\left(G\left(B\left(x ; \frac{\varepsilon}{3 i}\right)\right)\right)$. This yields

$$
C^{r, \alpha}\left(F_{0} ; x_{0}\right) \subseteq G\left(x_{0}\right) \cup \operatorname{cl}\left(G\left(B\left(x_{0} ; \frac{\varepsilon}{3 j}\right)\right)\right)=\operatorname{cl}\left(G\left(B\left(x_{0} ; \frac{\varepsilon}{3 j}\right)\right)\right)
$$

for all $j \geq 1$. Consequently,

$$
C^{r, \alpha}\left(F_{0} ; x_{0}\right) \subseteq \bigcap_{j \geq 1} \operatorname{cl}\left(G\left(B\left(x_{0} ; \frac{\varepsilon}{3 j}\right)\right)\right)=C\left(G ; x_{0}\right)=G\left(x_{0}\right),
$$

which completes the verification of (12).
The multifunction $F_{0}$ defined so far satisfies the required claims of Lemma 3 up to the restriction of its values to $\{\{y\}: y \in Y\} \cup\{\emptyset\}$. Therefore we put $G_{0}=C^{r}\left(F_{0} ; \cdot\right)$. Then, by (11),

$$
\begin{equation*}
G_{0}(x) \subseteq \operatorname{cl}\left(G\left(B\left(x ; \frac{2 \varepsilon}{3}\right)\right)\right) \text { for all } x \in X . \tag{13}
\end{equation*}
$$

Proposition 2 (b) yields

$$
C\left(G_{0} ; \cdot\right)=G_{0} \text { and } G_{0}(x)=\emptyset \text { for all } x \in X \backslash X^{\prime} .
$$

Thus, by Lemma 2 , there exists $F: X \rightarrow\{\{y\}: y \in Y\} \cup\{\emptyset\}$ such that

$$
F(x) \subseteq G_{0}\left(B\left(x ; \frac{\varepsilon}{3}\right)\right) \text { for all } x \in X \text { and } C^{r}(F ; \cdot)=G_{0} .
$$

The first property and (13) yield the claim $F(x) \subseteq \operatorname{cl}(G(B(x ; \varepsilon)))$ for all $x \in X$. The second equation shows $C^{r}(F ; \cdot)=C^{r}\left(F_{0} ; \cdot\right)$ and, by (12), in turn $C^{r, \alpha}(F ; \cdot)=G$. This completes the proof.

Lemma 3 clearly proves the implication (iii) $\Rightarrow$ (i) of Theorem 2.

## 5 Proof of Theorem 3.

The implication (i) $\Rightarrow$ (ii) is trivial.
Let us suppose that $F$ is a set-valued function as in claim (ii). Theorem 2 shows that $C(G ; \cdot)=G$ and $G(x)=\emptyset$ for all $x \in X \backslash X^{\alpha}$.

If $Y$ is compact, then $C^{r}(F ; x) \neq \emptyset$ for every $x \in X^{\prime}$, since

$$
C^{r}(F ; x)=\bigcap_{U \in \mathcal{U}(x)} \operatorname{cl}(F(U \backslash\{x\}))
$$

is an intersection of compact sets such that every finite intersection of them is non-empty. By induction, we obtain $G(x)=C^{r, \alpha}(F ; x) \neq \emptyset$ for all $x \in X^{\alpha}$. This yields (ii) $\Rightarrow$ (iii).

Now assume $Y$ not to be compact. For proving (ii) $\Rightarrow(\text { (iii })^{\prime}$ it remains to show that $\left\{x \in X: C^{r, \alpha}(F ; x)=\emptyset\right\}$ is a countable union of locally finite sets for every $F: X \rightarrow 2^{Y} \backslash\{\emptyset\}$. This follows from the second remark after Proposition 5 which says that even the larger set $\left\{x \in X: F(x) \nsubseteq C^{r, \alpha}(F ; x)\right\}$ can be expressed as a countable union of locally finite sets.

The following lemma is the main tool for the proof of the remaining implications (iii) $\Rightarrow$ (i) and (iii) $\Rightarrow(\mathrm{i})$, respectively.
Lemma 4. Let $\left(X, d_{X}\right)$ be a metric space, $\left(Y, d_{Y}\right)$ a separable metric space, $\alpha>0$ a countable ordinal, and $G: X \rightarrow 2^{Y} \backslash\{\emptyset\}$ a multifunction that satisfies condition (iii) of Theorem 3 if $Y$ is compact or condition (iii)' of Theorem 3 if $Y$ is not compact, respectively. Then there exists a function $g: X \rightarrow Y$ such that $C^{r, \alpha}(g ; x) \subseteq G(x)$ for all $x \in X$.
Proof. It suffices to find $g: X \rightarrow Y$ such that

$$
\begin{equation*}
C^{r}(g ; x) \subseteq G(x) \text { for all } x \in X^{\alpha} \tag{14}
\end{equation*}
$$

since then $C^{r, \alpha}(g ; x) \subseteq C^{r}(g ; x) \subseteq G(x)$ for $x \in X^{\alpha}$ and $C^{r, \alpha}(g ; x)=\emptyset=G(x)$ for $x \in X \backslash X^{\alpha}$.

First we assume that $Y$ is compact. Moreover, we assume that $X^{\alpha} \neq \emptyset$, for otherwise claim (14) is trivially satisfied by any function $g: X \rightarrow Y$. Since $X^{\alpha}$ is closed and, by (iii), $G(x) \neq \emptyset$ for all $x \in X^{\alpha}$, we can choose a function $g$ such that

$$
g(x) \in\left\{\begin{array}{cl}
G(x) & \text { if } x \in X^{\alpha} \\
G\left(B\left(x ; 2 d_{X}\left(x ; X^{\alpha}\right)\right)\right) & \text { if } x \notin X^{\alpha}
\end{array}\right.
$$

where $d_{X}\left(x ; X^{\alpha}\right)=\inf \left\{d_{X}(x, \tilde{x}): \tilde{x} \in X^{\alpha}\right\}$.
For the proof of (14) let $x_{0} \in X^{\alpha}$ and $y_{0} \in C^{r}\left(g ; x_{0}\right)$. Then there exists a sequence $\left(x_{i}\right)_{i \geq 1} \subseteq X$ such that $\lim _{i \rightarrow \infty} x_{i}=x_{0}$ and $\lim _{i \rightarrow \infty} g\left(x_{i}\right)=y_{0}$. The choice of $g$ yields

$$
g\left(x_{i}\right) \in G\left(B\left(x_{i} ; 2 d_{X}\left(x_{i}, x_{0}\right)\right)\right) \subseteq G\left(B\left(x_{0} ; 3 d_{X}\left(x_{i}, x_{0}\right)\right)\right)
$$

and hence

$$
y_{0} \in \bigcap_{j \geq 1} \operatorname{cl}\left(\left(g\left(x_{i}\right)\right)_{i \geq j}\right) \subseteq \bigcap_{\varepsilon>0} \operatorname{cl}\left(G\left(B\left(x_{0} ; \varepsilon\right)\right)\right)=C\left(G ; x_{0}\right)=G\left(x_{0}\right)
$$

which proves (14).
Now we assume that $Y$ is not compact. Then there exists a sequence $\left(y_{k}\right)_{k \geq 1}$ of distinct points of $Y$ such that every subset of $\left(y_{k}\right)_{k \geq 1}$ is closed. According to condition (iii) there exists a representation

$$
\{x \in X: G(x)=\emptyset\}=\bigcup_{k \geq 1} M(k)
$$

with locally finite disjoint sets $M(k) \subseteq X$. We choose $g$ such that

$$
g(x) \in \begin{cases}G(x) & \text { if } x \in X \backslash \bigcup_{k \geq 1} M(k) \\ \left\{y_{k}\right\} & \text { if } x \in M(k)\end{cases}
$$

Again we consider $y_{0} \in C^{r}\left(g ; x_{0}\right)$ for proving (14). We obtain a sequence $\left(x_{i}\right)_{i \geq 1} \subseteq X \backslash\left\{x_{0}\right\}$ of distinct points such that $\lim _{i \rightarrow \infty} x_{i}=x_{0}$ and $\lim _{i \rightarrow \infty} g\left(x_{i}\right)=y_{0}$. Without loss of generality, either $\left(x_{i}\right)_{i \geq 1} \subseteq X \backslash \bigcup_{k \geq 1} M(k)$ or $\left(x_{i}\right)_{i \geq 1} \subseteq \bigcup_{k \geq 1} M(k)$. In the first case

$$
y_{0} \in C\left(G ; x_{0}\right)=G\left(x_{0}\right)
$$

because $g\left(x_{i}\right) \in G\left(x_{i}\right)$. The latter case, however, does not appear. Indeed, if $\left(x_{i}\right)_{i \geq 1} \subseteq \bigcup_{k \geq 1} M(k)$, then $\left(g\left(x_{i}\right)\right)_{i \geq 1}$ would be a convergent subsequence of $\left(y_{k}\right)_{k \geq 1}$. The choice of $\left(y_{k}\right)_{k \geq 1}$ then would imply $y_{0}=\lim _{i \rightarrow \infty} g\left(x_{i}\right)=y_{k_{0}}$ for some $k_{0} \geq 1$ and $g\left(x_{i}\right)=y_{k_{0}}$ for all $i \geq i_{0}$. Thus $\left(x_{i}\right)_{i \geq i_{0}} \subseteq M\left(k_{0}\right)$. This is impossible, since $\left(x_{i}\right)_{i \geq i_{0}}$ contains infinitely many points of every neighborhood of $x_{0}$, whereas $M\left(k_{0}\right)$ is locally finite. This completes the proof of (14).

Now the implications (iii) $\Rightarrow$ (i) and (iii) $\Rightarrow$ (i) are easy to infer. According to part (iii) $\Rightarrow$ (i) of Theorem 2 there exists $F: X \rightarrow\{\{y\}: y \in Y\} \cup\{\emptyset\}$ such that $C^{r, \alpha}(F ; \cdot)=G$. Lemma 4 provides a function $g: X \rightarrow Y$ with $C^{r, \alpha}(g ; \cdot) \subseteq G$. We define $f: X \rightarrow Y$ by

$$
\{f(x)\}=\left\{\begin{array}{cl}
F(x) & \text { if } F(x) \neq \emptyset \\
\{g(x)\} & \text { if } F(x)=\emptyset
\end{array}\right.
$$

Then $F(x) \subseteq\{f(x)\} \subseteq F(x) \cup\{g(x)\}$ and

$$
G(x)=C^{r, \alpha}(F ; x) \subseteq C^{r, \alpha}(f ; x) \subseteq C^{r, \alpha}(F ; x) \cup C^{r, \alpha}(g ; x)=G(x)
$$

for all $x \in X$. This yields $C^{r, \alpha}(f ; \cdot)=G$ and completes the proof of (iii) $\Rightarrow($ i) and (iii) ${ }^{\prime} \Rightarrow(\mathrm{i})$, respectively.

## References

[1] G. Aumann, Reelle Funktionen, Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen 68, Springer-Verlag, Berlin, Göttingen, Heidelberg, 1954.
[2] E. F. Collingwood, Cluster set theorems for arbitrary functions with applications to function theory, Ann. Acad. Sci. Fenn. Ser. A I, 336/8 (1963), 15 pp .
[3] R. Engelking, General topology, Sigma Series in Pure Mathematics 6, Heldermann Verlag, Berlin, 1989.
[4] H. Hahn, Theorie der reellen Funktionen, Band I, Verlag Julius Springer, Berlin, 1921.
[5] H. Hahn, Reelle Funktionen, Erster Teil: Punktfunktionen, Akademische Verlagsgesellschaft m.b.H., Leipzig, 1932, reprinted by Chelsea Publishing Company, New York, 1948.
[6] J. E. Joseph, Regularity, normality and multifunctions, Proc. Amer. Math. Soc., 70 (1978), 203-206.
[7] J. E. Joseph, Multifunctions and cluster sets, Proc. Amer. Math. Soc., 74 (1979), 329-337.
[8] A. S. Kechris, Classical descriptive set theory, Graduate Texts in Mathematics 156, Springer-Verlag, Berlin, Heidelberg, New York, 1994.
[9] C. Richter, The cluster function of single-valued functions, submitted.
[10] B. S. Thomson, Real functions, Lecture Notes in Mathematics 1170, Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 1985.
[11] J. D. Weston, Some theorems on cluster sets, J. London Math. Soc., 33 (1958), 435-441.


[^0]:    Key Words: Cluster set, reduced cluster set, reduced cluster function of order $\alpha$.
    Mathematical Reviews subject classification: Primary 54C50, 54C60; Secondary 54C08.
    Received by the editors July 22, 2003
    Communicated by: Clifford E. Weil
    *This research was supported by DFG Grant RI 1087/2.

