Christian Richter, Mathematisches Institut, Friedrich-Schiller-Universität, D-07740 Jena, Germany. email: richterc@minet.uni-jena.de

ITERATED REDUCED CLUSTER FUNCTIONS

Abstract

Given a multifunction F between topological spaces X and Y, the reduced cluster function $C^r(F; \cdot) : X \to 2^Y$ of F is defined by $C^r(F; x) = \bigcap \operatorname{cl}(F(U \setminus \{x\})), U$ running through the neighborhood system of x. By transfinite recursion, one defines iterated reduced cluster functions $C^{r,\alpha}(F; \cdot)$ for all ordinals $\alpha > 0$.

We characterize multifunctions F that are invariant in the sense of $C^r(F; \cdot) = F$. For every countable ordinal α , we describe the family of all iterated reduced cluster functions $C^{r,\alpha}(F; \cdot)$ of arbitrary multifunctions $F: X \to 2^Y$ and the family of all iterated reduced cluster functions $C^{r,\alpha}(f; \cdot)$ of arbitrary functions $f: X \to Y$, provided that X and Y are metrizable spaces and Y is separable.

1 Definitions and Basic Properties.

Let $F: X \to 2^Y$ be a multifunction mapping a topological space X into the subsets of a topological space Y. The empty set is allowed to be a value of F. The cluster set $C(F; x_0)$ and the reduced cluster set $C^r(F; x_0)$ of F at a point $x_0 \in X$ are defined by

 $C(F; x_0) = \bigcap_{U \in \mathcal{U}(x_0)} \operatorname{cl}(F(U))$

and

$$C^{r}(F; x_{0}) = \bigcap_{U \in \mathcal{U}(x_{0})} \operatorname{cl}(F(U \setminus \{x_{0}\})).$$

respectively, where $cl(\cdot)$ is the closure operator, $\mathcal{U}(x_0)$ the family of all open neighborhoods of x_0 , and F(U) the union $F(U) = \bigcup_{x \in U} F(x)$. Obviously,

$$C(F;x_0) = C^r(F;x_0) \cup cl(F(x_0)).$$
(1)

Key Words: Cluster set, reduced cluster set, reduced cluster function of order α . Mathematical Reviews subject classification: Primary 54C50, 54C60; Secondary 54C08. Received by the editors July 22, 2003 Communicated by: Clifford E. Weil

^{*}This research was supported by DFG Grant RI 1087/2.

In the context of single-valued functions $f : X \to \mathbb{R}$ these concepts can be found in [4], p. 184, [5], pp. 188, 196, [1], pp. 140–141 (see also [11]). The application of the original definitions to set-valued maps follows the approach of [6], [7].

The sets $C(F; x_0)$ and $C^r(F; x_0)$ describe the local accumulation behavior of F in the entourage of x_0 . Following the interpretation of [4], we consider $C(F; \cdot)$ and $C^r(F; \cdot)$ as multifunctions associated to F. We speak of the *cluster* function $C(F; \cdot)$ and the *reduced cluster function* $C^r(F; \cdot)$ of F.

The cluster function $C(F; \cdot)$ has the following simple meaning.

Proposition 1. Let X and Y be topological spaces and let $F : X \to 2^Y$ be a multifunction. Then the graph of $C(F; \cdot)$ is the closure of the graph of F with respect to the product topology on $X \times Y$.

PROOF. Let G be the multifunction whose graph is the closure of that of F. Then

$$graph(G) = \{(x, y) \in X \times Y : \forall U \in \mathcal{U}(x) (y \in cl(F(U)))\}.$$

Hence, for all $x \in X$,

$$G(x) = \left\{ y \in Y : \forall U \in \mathcal{U}(x) \left(y \in \operatorname{cl}(F(U)) \right) \right\} = \bigcap_{U \in \mathcal{U}(x)} \operatorname{cl}(F(U)) = C(F; x).$$

A basic consequence of Proposition 1 is

$$C(C(F;\cdot);\cdot) = C(F;\cdot)$$

for all $F: X \to 2^Y$. Accordingly, an iteration of the cluster function $C(F; \cdot)$ is not useful. However, we shall see that the behavior of the reduced cluster function $C^r(F; \cdot)$ is quite different, though its definition is very close to that of $C(F; \cdot)$.

Proposition 2. Let X be a T_1 -space, Y an arbitrary topological space, and $F: X \to 2^Y$ a multifunction. Then

- (a) $C^r(F;\cdot) = C^r(C(F;\cdot);\cdot)$ and
- (b) $C^r(F;\cdot) = C(C^r(F;\cdot);\cdot)$, that is, the graph of $C^r(F;\cdot)$ is closed.

PROOF. (a) The inclusion $C^r(F; \cdot) \subseteq C^r(C(F; \cdot); \cdot)$ is obvious, because $F \subseteq C(F; \cdot)$. The converse can be obtained as follows.

$$C^{r}(C(F; \cdot); x_{0}) = \bigcap_{U \in \mathcal{U}(x_{0})} \operatorname{cl}(C(F; U \setminus \{x_{0}\}))$$

=
$$\bigcap_{U \in \mathcal{U}(x_{0})} \operatorname{cl}\left(\bigcup_{x \in U \setminus \{x_{0}\}} \bigcap_{V \in \mathcal{U}(x)} \operatorname{cl}(F(V))\right)$$

$$\subseteq \bigcap_{U \in \mathcal{U}(x_{0})} \operatorname{cl}\left(\bigcup_{x \in U \setminus \{x_{0}\}} \operatorname{cl}(F(U \setminus \{x_{0}\}))\right)$$

=
$$\bigcap_{U \in \mathcal{U}(x_{0})} \operatorname{cl}(F(U \setminus \{x_{0}\})) = C^{r}(F; x_{0}).$$

The inclusion " \subseteq " is based on the T₁ property of X. (b) Clearly, $C^r(F; \cdot) \subseteq C(C^r(F; \cdot); \cdot)$. On the other hand,

$$C(C^{r}(F; \cdot); x_{0}) = \bigcap_{U \in \mathcal{U}(x_{0})} \operatorname{cl}(C^{r}(F; U))$$

= $\bigcap_{U \in \mathcal{U}(x_{0})} \operatorname{cl}\left(\bigcup_{x \in U} \bigcap_{V \in \mathcal{U}(x)} \operatorname{cl}(F(V \setminus \{x\}))\right)$
 $\subseteq \bigcap_{U \in \mathcal{U}(x_{0})} \operatorname{cl}\left(\bigcup_{x \in U} \operatorname{cl}(F(U \setminus \{x_{0}\}))\right)$
= $\bigcap_{U \in \mathcal{U}(x_{0})} \operatorname{cl}(F(U \setminus \{x_{0}\})) = C^{r}(F; x_{0}).$

This completes the proof.

The following example justifies the restriction to T₁-spaces X in Proposition 2. Let $X = \mathbb{R}$ be equipped with the system of open sets $\{\emptyset, \mathbb{R}\} \cup \{(x, \infty) : x \in \mathbb{R}\}$. Then X is a T₀-space. We consider

$$f(x) = \begin{cases} 0, & x \neq 0, \\ 1, & x = 0. \end{cases}$$

This yields

$$\begin{split} C^{r}(f;x) &= \begin{cases} \{0,1\}, & x < 0, \\ \{0\}, & x \ge 0, \end{cases} \quad C(C^{r}(f;\cdot);x) = \begin{cases} \{0,1\}, & x \le 0, \\ \{0\}, & x > 0, \end{cases} \\ C(f;x) &= \begin{cases} \{0,1\}, & x \le 0, \\ \{0\}, & x > 0, \end{cases} \quad C^{r}(C(f;\cdot);x) = \begin{cases} \{0,1\}, & x \le 0, \\ \{0\}, & x > 0. \end{cases} \end{split}$$

In particular, $C^r(f;0) \neq C^r(C(f;\cdot);0)$ and $C^r(f;0) \neq C(C^r(f;\cdot);0)$.

Part (a) of Proposition 2 shows that all reduced cluster functions can be obtained as reduced cluster functions of multifunctions with closed graph. Moreover, since $C^r(F; \cdot) \subseteq C(F; \cdot)$, we obtain

$$C^{r}(C^{r}(F; \cdot); \cdot) \subseteq C^{r}(C(F; \cdot); \cdot) = C^{r}(F; \cdot).$$

The function $f : \mathbb{R} \to \mathbb{R}$ defined by

$$f(x) = \begin{cases} 0, & x \notin \left\{\frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots\right\},\\ 1 - x, & x \in \left\{\frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots\right\} \end{cases}$$

illustrates that the inclusion $C^r(C^r(F;\cdot);\cdot)\subseteq C^r(F;\cdot)$ is a strict one in general. Indeed,

$$C^{r}(f;x) = \begin{cases} \{0\}, & x \neq 0, \\ \{0,1\}, & x = 0 \end{cases} \text{ and } C^{r}(C^{r}(f;\cdot);x) \equiv \{0\}.$$

This justifies the definition of iterated reduced cluster functions.

Let $F: X \to 2^Y$ be a multifunction between topological spaces X and Y and let $\alpha > 0$ be an ordinal number. We define the *reduced cluster function* $C^{r,\alpha}(F; \cdot)$ of F of order α by

$$C^{r,\alpha}(F;x) = \begin{cases} C^{r}(F;x) & \text{if } \alpha = 1, \\ C^{r}(C^{r,\beta}(F;\cdot);x) & \text{if } \alpha = \beta + 1, \beta > 0, \\ \bigcap_{\beta < \alpha} C^{r,\beta}(F;x) & \text{if } \alpha \text{ is a limit ordinal.} \end{cases}$$

Proposition 2 shows that $(C^{r,\alpha}(F; \cdot))_{\alpha>0}$ is a decreasing transfinite sequence of multifunctions with closed graphs, provided that X is a T₁-space.

The reduced cluster function $C^r(F; \cdot)$ and its iterations $C^{r,\alpha}(F; \cdot)$ of a multifunction F with closed graph can be considered as a particular derivative within the system of all closed subsets of $X \times Y$ and as its iterations in the sense of [8], p. 270: One considers closed subsets of $X \times Y$ as graphs of multifunctions.

2 A Continuity Property of Invariant Multifunctions.

For every $F: X \to 2^Y$, there exists a smallest ordinal $\alpha_0 = \alpha_0(F)$ such that $C^{r,\alpha_0}(F; \cdot) = C^{r,\alpha_0+1}(F; \cdot)$ or, equivalently, $C^{r,\alpha_0}(F; \cdot) = C^{r,\alpha}(F; \cdot)$ for all $\alpha \ge \alpha_0$. The multifunction $C^{r,\alpha_0}(F; \cdot)$ shows a pleasant behavior in so far as it remains invariant under formation of its reduced cluster function. The ordinal α_0 indicates in some sense the distance between F and its "invariant derivative" $C^{r,\alpha_0}(F; \cdot)$. In the present section we study properties of invariant multifunctions.

The following local reformulation of the invariance $C^r(F; \cdot) = F$ is a simple consequence of (1), since $C^r(F; x_0)$ is a closed set.

Proposition 3. Let X and Y be topological spaces, $F: X \to 2^Y$ a set-valued function, and $x_0 \in X$. Then $C^r(F; x_0) = F(x_0)$ if and only if $C(F; x_0) = F(x_0)$ and $F(x_0) \subseteq C^r(F; x_0)$.

The inclusion $F(x_0) \subseteq C^r(F; x_0)$ can be considered as a local continuity property of F at the point x_0 . In fact, in [10] the inclusion $f(x_0) \in C^r(f; x_0)$ in the case of a single-valued function $f: \mathbb{R} \to \mathbb{R}$ defines so-called S_{∞} -continuity of f at x_0 , the reduced cluster set $C^r(f; x_0)$ coinciding with Thomson's S_{∞} cluster set (S_{∞}) - $\Lambda(f, x_0)$ (see pp. 3, 4, 70).

Proposition 4. Let X and Y be topological spaces, $F: X \to 2^Y$ a set-valued function, and $x_0 \in X$. Then the following are equivalent. (i) $F(x_0) \subseteq C^r(F; x_0)$.

(*ii*) $C^{r}(F; x_{0}) = C(F; x_{0}).$

(iii) There is no open subset $V_0 \subseteq Y$ such that x_0 is an isolated point of the set $F^-(V_0) = \{x \in X : F(x) \cap V_0 \neq \emptyset\}.$

PROOF. The equivalence (i) \Leftrightarrow (ii) follows from (1).

 $\neg(i) \Rightarrow \neg(ii)$. If $F(x_0) \not\subseteq C^r(F; x_0)$, we can fix $y_0 \in F(x_0) \setminus C^r(F; x_0)$. Since $y_0 \notin C^r(F; x_0)$, there exists a neighborhood $U_0 \in \mathcal{U}(x_0)$ such that $y_0 \notin \operatorname{cl}(F(U_0 \setminus \{x_0\}))$. We put $V_0 = Y \setminus \operatorname{cl}(F(U_0 \setminus \{x_0\}))$. Then $(U_0 \setminus \{x_0\}) \cap F^-(V_0) = \emptyset$. On the other hand, $x_0 \in F^-(V_0)$, for $y_0 \in F(x_0) \cap V_0$. Hence $U_0 \cap F^-(V_0) = \{x_0\}$, which shows that x_0 is an isolated point of $F^-(V_0)$.

 $\neg(\text{iii}) \Rightarrow \neg(\text{i})$. Now we assume that x_0 is an isolated point of $F^-(V_0)$ for some open $V_0 \subseteq Y$. Then there exists a neighborhood $U_0 \in \mathcal{U}(x_0)$ such that $U_0 \cap F^-(V_0) = \{x_0\}$, that is, $F(U_0 \setminus \{x_0\}) \cap V_0 = \emptyset$ and $F(x_0) \cap V_0 \neq \emptyset$. Since V_0 is open, we obtain $\operatorname{cl}(F(U_0 \setminus \{x_0\}) \cap V_0 = \emptyset$ and therefore $C^r(F; x_0) \cap V_0 = \emptyset$. Thus

$$F(x_0) \setminus C^r(F; x_0) \supseteq (F(x_0) \cap V_0) \setminus (C^r(F; x_0) \cap V_0) \neq \emptyset,$$

which proves that $F(x_0) \not\subseteq C^r(F; x_0)$.

Propositions 1, 3, and 4 yield the following characterization of invariant multifunctions.

Theorem 1. A multifunction $F : X \to 2^Y$ between topological spaces X and Y is invariant in the sense of $C^r(F; \cdot) = F$ if and only if F has a closed graph and, for every open subset $V \subseteq Y$, the set $F^-(V) = \{x \in X : F(x) \cap V \neq \emptyset\}$ has no isolated points.

Application to the particular open set V = Y shows that, for an invariant multifunction $F = C^r(F; \cdot)$, the set $\{x \in X : F(x) \neq \emptyset\}$ does not contain isolated points, that is, $\{x \in X : F(x) \neq \emptyset\}$ is a perfect subset of X.

We close this section with the remarkable observation that every multifunction $F: X \to 2^Y$ between a metrizable space X and a separable metrizable space Y fails the continuity property $F(x) \subseteq C^r(F; x)$ only on a "small" set of points $x \in X$. A subset $A \subseteq X$ is called locally finite if every point $x_0 \in X$ possesses a neighborhood $U_0 \subseteq \mathcal{U}(x_0)$ whose intersection with A is finite. The following proposition generalizes a theorem from [2].

Proposition 5. Let X be a metrizable space, Y a separable metrizable space, and $F: X \to 2^Y$ a multifunction. Then the set

$$M = \{ x \in X : F(x) \not\subseteq C^r(F;x) \}$$

is a countable union of locally finite subsets of X.

PROOF. We suppose that X and Y are equipped with corresponding metrics d_X and d_Y . For all $x \in M$, we choose a value $f(x) \in F(x) \setminus C^r(F; x)$. We define

$$M(k) = \left\{ x \in M : \text{ for every } \tilde{x} \in M \setminus \{x\}, d_X(x, \tilde{x}) > \frac{1}{k} \text{ or } d_Y(f(x), f(\tilde{x})) > \frac{1}{k} \right\}$$

for integers $k \ge 1$. Then $M = \bigcup_{k\ge 1} M(k)$, for otherwise there would exist a point $x_0 \in M$ and a sequence $(x_k)_{k\ge 1} \subseteq M \setminus \{x_0\}$ such that $\lim_{k\to\infty} x_k = x_0$ and $\lim_{k\to\infty} f(x_k) = f(x_0)$. However, since $f(x_k) \in F(x_k)$, this would yield $f(x_0) \in C^r(F; x_0)$ contrary to the choice of $f(x_0)$.

Let $(y_l)_{l\geq 1}$ be a dense sequence in Y and

$$M(k,l) = \{ x \in M(k) : f(x) \in B(y_l; \frac{1}{2k}) \},\$$

 $B(y_l; \frac{1}{2k})$ denoting the closed ball of radius $\frac{1}{2k}$ centered at y_l . Accordingly, $M = \bigcup_{k \ge 1} M(k) = \bigcup_{k,l \ge 1} M(k,l)$. The sets M(k,l) are locally finite. Indeed, any two distinct points $x_0, x_1 \in M(k,l)$ satisfy

$$d_Y(f(x_0), f(x_1)) \le d_Y(f(x_0), y_l) + d_Y(y_l, f(x_1)) \le \frac{1}{2k} + \frac{1}{2k} = \frac{1}{k}$$

and in turn $d_X(x_0, x_1) > \frac{1}{k}$, since $x_0, x_1 \in M(k)$.

Proposition 5 requires several comments.

1. A countable union of locally finite subsets of a metric space (X, d_X) is a countable union of topologically discrete subsets of X and vice versa. Obviously, every locally finite set is discrete. Conversely, every discrete set $A \subseteq X$ is the countable union $A = \bigcup_{k>1} A_k$ of the locally finite sets

$$A_k = \left\{ x \in A : d_X(x, \tilde{x}) > \frac{1}{k} \text{ for all } \tilde{x} \in A \setminus \{x\} \right\}.$$

If X is separable, then every locally finite set is countable. Thus in this case a countable union of locally finite subsets is a countable subset of X.

2. Application of Proposition 5 to the multifunction $C^r(F; \cdot)$ shows that $\{x \in X : C^r(F; x) \neq C^r(C^r(F; \cdot); x)\} = \{x \in X : C^r(F; x) \not\subseteq C^r(C^r(F; \cdot); x)\}$ is a countable union of locally finite sets. By transfinite induction, all sets $\{x \in X : C^r(F; x) \neq C^{r,\alpha}(F; x)\}, \alpha > 0$ being a countable ordinal, have a representation of the same kind.

Consequently, for every countable $\alpha > 0$, $\{x \in X : F(x) \not\subseteq C^{r,\alpha}(F;x)\}$ is a countable union of locally finite sets, too.

Since $\{x \in X : C(F;x) \neq C^r(F;x)\} = \{x \in X : F(x) \not\subseteq C^r(F;x)\}$ by Proposition 4, the sets $\{x \in X : C(F;x) \neq C^{r,\alpha}(F;x)\}$ are countable unions of locally finite sets as well for all countable ordinals $\alpha > 0$.

3. In [2] Collingwood proves the claim of Proposition 5 for single-valued functions f mapping the plane unit disc D into the two-dimensional Euclidean

sphere S, then the exceptional set $\{x \in D : f(x) \notin C^r(f;x)\}$ describing as a countable set. He claims that this statement would be true for maps f into any complete metric space Y. This is not the case as the following example illustrates.

Let X = Y = D be the plane unit disc equipped with the Euclidean metric d_X and with the discrete metric d_Y defined by $d_Y(x_1, x_2) = 1$ for $x_1 \neq x_2$, respectively. Then the identity $f: X \to Y$, f(x) = x, yields $C^r(f; x) = \emptyset$ for all $x \in X$ and thus $\{x \in X : f(x) \notin C^r(f; x)\} = X$ is not countable.

3 Characteristic Properties of Iterated Reduced Cluster Functions.

In this section we ask for multifunctions $G: X \to 2^Y$ that can appear as reduced cluster functions $G = C^{r,\alpha}(F; \cdot)$ of fixed order $\alpha > 0$. We shall give a corresponding characterization if X is a metrizable space, Y a separable metrizable space, and α a countable ordinal.

The sequence $(C^{r,\alpha}(F; \cdot))_{\alpha>0}$ associated to a set-valued function F between second countable spaces X and Y stabilizes already for some countable ordinal α_0 . Indeed, $(C^{r,\alpha}(F; \cdot))_{\alpha>0}$ can be seen as a decreasing transfinite sequence of closed graphs in the second countable space $X \times Y$ which, by Theorem 6.9 of [8], satisfies $C^{r,\alpha_0}(F; \cdot) = C^{r,\alpha_0+1}(F; \cdot)$ for some countable α_0 . Consequently, in the case of second countable spaces X and Y the study of countable ordinals α is not a restriction, but in fact covers arbitrary ordinals α .

The theorems to be presented make use of the concept of the iterated Cantor-Bendixson derivatives X^{α} of a topological space X (see Definition 6.10 of [8]). The first Cantor-Bendixson derivative X' is defined by

$$X' = \{ x \in X : x \text{ is not isolated in } X \}.$$

The iterated Cantor-Bendixson derivatives for arbitrary ordinals α are

$$X^{\alpha} = \begin{cases} X & \text{if } \alpha = 0, \\ \left(X^{\beta}\right)' & \text{if } \alpha = \beta + 1, \beta \ge 0, \\ \bigcap_{\beta < \alpha} X^{\beta} & \text{if } \alpha \text{ is a limit ordinal} \end{cases}$$

The derivatives X^{α} can easily be described by the aid of iterated reduced cluster functions. Given two topological spaces X and Y, we consider the multifunction

$$\mathbf{I}_A(x) = \begin{cases} Y, & x \in A, \\ \emptyset, & x \notin A \end{cases}$$

as an indicator function of a subset $A \subseteq X$. Obviously, $C^r(\mathbf{I}_X; \cdot) = \mathbf{I}_{X'}$. Transfinite induction then yields

$$C^{r,\alpha}(\mathbf{I}_X;\cdot) = \mathbf{I}_{X^{\alpha}}$$

for all ordinals $\alpha > 0$.

Now we characterize the variety of iterated reduced cluster functions of a fixed countable order α attainable from arbitrary multifunctions (Theorem 2) and from single-valued functions (Theorem 3). These are the central results of the present paper. The proofs will be given in Sections 4 and 5.

Theorem 2. Let X be a metrizable space, Y a separable metrizable space, $\alpha > 0$ a countable ordinal, and $G : X \to 2^Y$ a multifunction. Then the following are equivalent.

(i) There exists $F: X \to \{\{y\} : y \in Y\} \cup \{\emptyset\}$ such that $C^{r,\alpha}(F; \cdot) = G$. (ii) There exists $F: X \to 2^Y$ such that $C^{r,\alpha}(F; \cdot) = G$. (iii) $C(G; \cdot) = G$ and $G(x) = \emptyset$ for all $x \in X \setminus X^{\alpha}$.

It is remarkable that multifunctions F whose values are restricted to singletons and the empty set give rise to the same iterated reduced cluster functions as arbitrary multifunctions do.

Theorem 3. Let X be a metrizable space, Y a separable metrizable space, $\alpha > 0$ a countable ordinal, and $G : X \to 2^Y$ a multifunction. Then the following are equivalent.

(i) There exists $f: X \to Y$ such that $C^{r,\alpha}(f; \cdot) = G$.

(ii) There exists $F: X \to 2^Y \setminus \{\emptyset\}$ such that $C^{r,\alpha}(F; \cdot) = G$.

If Y is compact then (i) and (ii) are equivalent to

(iii) $C(G; \cdot) = G$ and $\{x \in X : G(x) = \emptyset\} = X \setminus X^{\alpha}$.

If Y is not compact then (i) and (ii) are equivalent to (iii)' $C(G; \cdot) = G$, $G(x) = \emptyset$ for all $x \in X \setminus X^{\alpha}$, and $\{x \in X : G(x) = \emptyset\}$ is a countable union of locally finite subsets of X.

Let us point out once more that multifunctions with arbitrary non-empty values do not give rise to a larger class of iterated reduced cluster functions than single-valued functions do.

In contrast with that, the class of multifunctions G that can be obtained as cluster functions $G = C(F; \cdot)$ of multifunctions $F: X \to 2^Y \setminus \{\emptyset\}$ in general is strictly larger than the family of cluster functions of single-valued functions $f: X \to Y$. Proposition 1 shows that every multifunction $G: X \to 2^Y$ with closed graph appears as the cluster function of some $F: X \to 2^Y$. Indeed, we can put F = G. Set-valued functions G that can be obtained as the cluster function $G = C(f; \cdot)$ of a single-valued function $f: X \to Y$, however, are more restrictive. Clearly, f must be a selection of $G = C(f; \cdot)$, so that necessarily $G(x) \neq \emptyset$ for all $x \in X$. We cite the following characterization from the forthcoming paper [9]. Therein card(\cdot) denotes the cardinality of a set.

Theorem 4. Let X be a completely metrizable space, Y a Polish space, and G a multifunction mapping X into the non-empty subsets of Y. Then G is the cluster function of a function $f: X \to Y$ if and only if

$$C^{r}(G;x) \subseteq G(x)$$
 and $\operatorname{card}(G(x) \setminus C^{r}(G;x)) \leq 1$

for all $x \in X$.

For example, the multifunction $G : \mathbb{R} \to 2^{\mathbb{R}} \setminus \{\emptyset\},\$

$$G(x) = \begin{cases} \{0\}, & x \neq 0, \\ \{-1, 0, 1\}, & x = 0, \end{cases}$$

clearly has a closed graph, but G is not the cluster function $G = C(f; \cdot)$ of a function $f : \mathbb{R} \to \mathbb{R}$, because $\operatorname{card}(G(0) \setminus C^r(G; 0)) = 2$.

4 Proof of Theorem 2.

The implication (i) \Rightarrow (ii) is trivial.

If (ii) is satisfied, then, by Proposition 2 (b) and by the inductive definition of $C^{r,\alpha}(\cdot;\cdot)$, $G = C^{r,\alpha}(F;\cdot)$ has a closed graph. Proposition 1 yields $C(G;\cdot) =$ G. The claim $G(x) = C^{r,\alpha}(F;x) = \emptyset$ for all $x \in X \setminus X^{\alpha}$ follows inductively from the simple fact that $C^{r}(F;x) = \emptyset$ for $x \in X \setminus X'$. This way we obtain (ii) \Rightarrow (iii).

The implication (iii) \Rightarrow (i), however, requires more efforts.

Lemma 1. Let (X, d_X) be a metric space and let $\varepsilon > 0$. Then there exists a disjoint family $\{H(i, j) : i, j \in \{1, 2, 3, ...\}\}$ of locally finite sets $H(i, j) \subseteq X$ such that, for every $x_0 \in X'$ and all $i, j \ge 1$, there is $x_1 \in H(i, j)$ such that $d_X(x_0, x_1) \le \frac{\varepsilon}{i}$.

PROOF. For $(i_1, j_1), (i_2, j_2) \in \{(i, j) : i, j \ge 1\}$, we say that $(i_1, j_1) \prec (i_2, j_2)$ if either $i_1 + j_1 < i_2 + j_2$ or $i_1 + j_1 = i_2 + j_2$ and $i_1 < i_2$. The sets H(i, j) are going to be defined by induction with respect to the order \prec . Let $i_0, j_0 \ge 1$ be fixed and assume that H(i, j) is already defined for all $(i, j) \prec (i_0, j_0)$. Since X is paracompact (see [3], p. 300), there exists a locally finite cover \mathcal{C} of Xby open subsets C of diameter diam $(C) \le \frac{\varepsilon}{i_0}$. Let

$$\mathcal{C}' = \{ C \in \mathcal{C} : C \cap X' \neq \emptyset \}.$$

We can fix a point $x_C \in C \setminus \bigcup_{(i,j) \prec (i_0,j_0)} H(i,j)$ for every $C \in \mathcal{C}'$, because C contains a non-isolated point and the set $\bigcup_{(i,j) \prec (i_0,j_0)} H(i,j)$ is locally finite. Then we put $H(i_0,j_0) = \{x_C : C \in \mathcal{C}'\}.$

By definition, $H(i_0, j_0)$ is locally finite and disjoint with all sets H(i, j), $(i, j) \prec (i_0, j_0)$. If $x_0 \in X'$, then there is $C \in \mathcal{C}'$ such that $x_0 \in C$. The corresponding point $x_1 = x_C \in H(i_0, j_0)$ satisfies the required estimate $d_X(x_0, x_1) \leq \operatorname{diam}(C) \leq \frac{\varepsilon}{i_0}$.

Lemma 2. Let (X, d_X) be a metric space, (Y, d_Y) a separable metric space, $G : X \to 2^Y$ a multifunction such that $C(G; \cdot) = G$ and $G(x) = \emptyset$ for all $x \in X \setminus X'$, and let $\varepsilon > 0$. Then there exists $F : X \to \{\{y\} : y \in Y\} \cup \{\emptyset\}$ such that $F(x) \subseteq G(B(x; \varepsilon))$ for all $x \in X$ and $C^r(F; \cdot) = G$.

PROOF. Let $i \geq 1$ be an integer. Since Y is separable and paracompact (see [3], p. 300), there exists a locally finite countable open cover $C_i = \{C_{i,j} : j \geq 1\}$ of Y such that diam $(C_{i,j}) \leq \frac{\varepsilon}{i}$ for all $C_{i,j} \in C_i$. We reduce the sets $H(i,j) \subseteq X$ from Lemma 1 by putting

$$H'(i,j) = \left\{ x \in H(i,j) : G\left(B\left(x;\frac{\varepsilon}{i}\right)\right) \cap C_{i,j} \neq \emptyset \right\}.$$

For every $x \in H'(i, j)$, we choose a value

$$f(x) \in G\left(B\left(x; \frac{\varepsilon}{i}\right)\right) \cap C_{i,j}.$$
(2)

Then we define

$$F(x) = \begin{cases} \{f(x)\} & \text{if } x \in \bigcup_{i,j \ge 1} H'(i,j), \\ \emptyset & \text{if } x \in X \setminus \bigcup_{i,j \ge 1} H'(i,j). \end{cases}$$

The definition immediately implies $F(x) \subseteq G(B(x;\varepsilon))$ for all $x \in X$.

For the proof of $C^r(F; \cdot) = G$ let $x_0 \in X$ be fixed. First we suppose $y_0 \in G(x_0)$ for showing that $G(x_0) \subseteq C^r(F; x_0)$. For every $i \ge 1$, there exists $j_i \ge 1$ such that $y_0 \in C_{i,j_i}$, since C_i covers Y. We obtain $x_0 \in X'$, because $G(x_0) \supseteq \{y_0\} \neq \emptyset$. Therefore, by Lemma 1, we find $x_i \in H(i, j_i)$ such that $d_X(x_0, x_i) \le \frac{\varepsilon}{i}$. In fact, $x_i \in H'(i, j_i)$, because

$$G(B(x_i; \frac{\varepsilon}{i})) \cap C_{i,j_i} \supseteq G(x_0) \cap C_{i,j_i} \supseteq \{y_0\} \neq \emptyset.$$

Moreover, $d_Y(y_0, f(x_i)) \leq \frac{\varepsilon}{i}$, since $y_0 \in C_{i,j_i}$, $f(x_i) \in G(B(x_i; \frac{\varepsilon}{i})) \cap C_{i,j_i} \subseteq C_{i,j_i}$, and $\operatorname{diam}(C_{i,j_i}) \leq \frac{\varepsilon}{i}$.

The sequence $(x_i)_{i\geq 1}$ satisfies $\lim_{i\to\infty} x_i = x_0$ and $\lim_{i\to\infty} f(x_i) = y_0$. The points $x_i, i \geq 1$, are mutually distinct, for the sets $H(i, j_i)$ are pairwise disjoint by Lemma 1. This yields $y_0 \in C^r(F; x_0)$ and in turn proves the inclusion $G(x_0) \subseteq C^r(F; x_0)$. For the proof of the converse we consider $y_0 \in C^r(F; x_0)$. There exists a sequence of distinct points $(x_k)_{k\geq 1} \subseteq \bigcup_{i,j\geq 1} H'(i,j)$ such that

$$\lim_{k \to \infty} x_k = x_0 \text{ and } \lim_{k \to \infty} f(x_k) = y_0.$$
(3)

We determine integers $i(k), j(k) \ge 1$ by $x_k \in H'(i(k), j(k))$. Next we infer $\lim_{k\to\infty} i(k) = \infty$.

Let us suppose the contrary, that is, there exists a subsequence $(x_{k_l})_{l\geq 1}$ of $(x_k)_{k\geq 1}$ such that

$$\sup\{i(k_l) : l \ge 1\} = i_0 < \infty.$$

The cover $C_0 = C_1 \cup \ldots \cup C_{i_0} = \{C_{i,j} : 1 \le i \le i_0, j \ge 1\}$ is locally finite being a finite union of locally finite covers. Thus there exists a neighborhood $V \subseteq Y$ of y_0 that intersects only finitely many sets from C_0 , that is, there is $j_0 \ge 0$ such that

$$V \cap C_{i,j} = \emptyset \text{ for all } 1 \le i \le i_0, j > j_0.$$

$$\tag{4}$$

Since $\lim_{l\to\infty} f(x_{k_l}) = y_0$, we obtain $(f(x_{k_l}))_{l\geq l_0} \subseteq V$ for suitable $l_0 \geq 1$. Equation (2) then shows that $f(x_{k_l}) \in V \cap C_{i(k_l),j(k_l)}$ for $l \geq l_0$. Now (4) yields $j(k_l) \leq j_0$ for $l \geq l_0$. This gives

$$(x_{k_l})_{l \ge l_0} \subseteq \bigcup_{1 \le i \le i_0, 1 \le j \le j_0} H(i, j).$$

However, $(x_{k_l})_{l \ge l_0}$ contains infinitely many points in every neighborhood of the limit x_0 , whereas $\bigcup_{1 \le i \le i_0, 1 \le j \le j_0} H(i, j)$ is a locally finite set. This contradiction shows that $\lim_{k \to \infty} i(k) = \infty$.

Using (3), the property $f(x_k) \in G(B(x_k; \frac{\varepsilon}{i(k)}))$ coming from (2), and $\lim_{k\to\infty} i(k) = \infty$, we conclude $y_0 \in C(G; x_0) = G(x_0)$. This completes the proof of the claim $C^r(F; x_0) \subseteq G(x_0)$.

Lemma 3. Let (X, d_X) be a metric space, (Y, d_Y) a separable metric space, $\alpha > 0$ a countable ordinal, $G: X \to 2^Y$ a multifunction such that $C(G; \cdot) = G$ and $G(x) = \emptyset$ for all $x \in X \setminus X^{\alpha}$, and let $\varepsilon > 0$. Then there exists $F: X \to \{\{y\} : y \in Y\} \cup \{\emptyset\}$ such that $F(x) \subseteq \operatorname{cl}(G(B(x; \varepsilon)))$ for all $x \in X$ and $C^{r,\alpha}(F; \cdot) = G$.

PROOF. We proceed by induction on α . Lemma 2 gives the claim for $\alpha = 1$. We suppose that the claim is true for all ordinals β with $0 < \beta < \alpha$.

First we assume that $\alpha = \beta + 1$ for some $\beta > 0$. We consider the closed subspace X^{β} of X. The restriction $G|_{X^{\beta}} : X^{\beta} \to 2^{Y}$ obviously satisfies $C_{X^{\beta}}(G|_{X^{\beta}}; \cdot) = G|_{X^{\beta}}, C_{X^{\beta}}(\cdot; \cdot)$ denoting the cluster function with respect to the space X^{β} , and $G|_{X^{\beta}}(x) = \emptyset$ for all $x \in X^{\beta} \setminus (X^{\beta})'$. Thus Lemma 2 provides a multifunction $F_{0}|_{X^{\beta}} : X^{\beta} \to 2^{Y}$ such that

$$F_0|_{X^\beta}(x) \subseteq G(B(x;\frac{\varepsilon}{3})) \text{ for all } x \in X^\beta$$
 (5)

and

$$C^r_{X^\beta}(F_0|_{X^\beta}; \cdot) = G|_{X^\beta}.$$
(6)

We extend $F_0|_{X^\beta}$ to $F_0: X \to 2^Y$ by putting $F_0(x) = \emptyset$ for all $x \in X \setminus X^\beta$. Then we define $F_1: X \to 2^Y$ by $F_1 = C(F_0; \cdot)$. We obtain

$$C(F_1; \cdot) = F_1 \tag{7}$$

by Proposition 1,

$$F_1(x) = \emptyset \text{ for all } x \in X \setminus X^\beta, \tag{8}$$

because $F_0(x) = \emptyset$ for all $x \in X \setminus X^\beta$ and X^β is closed,

$$F_1(x) \subseteq \operatorname{cl}\left(G\left(B\left(x; \frac{2\varepsilon}{3}\right)\right)\right) \text{ for all } x \in X$$
(9)

by (5), and

$$C^r(F_1; \cdot) = G \tag{10}$$

by (6) and (8) together with $G(x) = \emptyset$ for all $x \in X \setminus X^{\beta}$.

Application of the induction hypothesis to (7) and (8) finally yields a multifunction $F: X \to \{\{y\} : y \in Y\} \cup \{\emptyset\}$ such that $F(x) \subseteq \operatorname{cl}\left(F_1\left(B\left(x; \frac{\varepsilon}{3}\right)\right)\right)$ for all $x \in X$ and $C^{r,\beta}(F; \cdot) = F_1$. Properties (9) and (10) immediately imply the claims $F(x) \subseteq \operatorname{cl}(G(B(x; \varepsilon)))$ for all $x \in X$ and $C^{r,\alpha}(F; \cdot) = G$. This completes the case $\alpha = \beta + 1$.

Now let α be a limit ordinal, that is, $\alpha = \lim_{\beta < \alpha} \beta$. We fix an enumeration $\alpha = \{\beta_1, \beta_2, \beta_3, \ldots\}$ of α . Since $G(x) = \emptyset$ for all $x \in X \setminus X^{\beta_i}$, $i \ge 1$, the induction hypothesis gives us multifunctions $F_i : X \to 2^Y$, $i \ge 1$, such that $F_i(x) \subseteq \operatorname{cl}\left(G(B(x; \frac{\varepsilon}{3i}))\right)$ for all $x \in X$ and $C^{r,\beta_i}(F_i; \cdot) = G$. We define $F_0 : X \to 2^Y$ by $F_0(x) = \bigcup_{i\ge 1} F_i(x)$. Obviously,

$$F_0(x) \subseteq \operatorname{cl}\left(G\left(B\left(x;\frac{\varepsilon}{3}\right)\right)\right) \text{ for all } x \in X.$$
 (11)

Next we show that

$$C^{r,\alpha}(F_0;\cdot) = G. \tag{12}$$

Indeed,

$$C^{r,\alpha}(F_0;\cdot) = \bigcap_{i \ge 1} C^{r,\beta_i}(F_0;\cdot) \supseteq \bigcap_{i \ge 1} C^{r,\beta_i}(F_i;\cdot) = G.$$

For the verification of the converse inclusion let $j \ge 1$ be fixed and let i_j be determined by $\beta_{i_j} = \max\{\beta_1, \ldots, \beta_j\}$. We obtain

$$C^{r,\alpha}(F_0; x_0) \subseteq C^{r,\beta_{i_j}}(F_0; x_0) = C^{r,\beta_{i_j}} \left(\bigcup_{1 \le i \le j} F_i(\cdot) \cup \bigcup_{i > j} F_i(\cdot); x_0 \right) = \bigcup_{1 \le i \le j} C^{r,\beta_{i_j}}(F_i; x_0) \cup C^{r,\beta_{i_j}} \left(\bigcup_{i > j} F_i(\cdot); x_0 \right).$$

ITERATED REDUCED CLUSTER FUNCTIONS

For $1 \leq i \leq j$, we have $C^{r,\beta_{i_j}}(F_i;x_0) \subseteq C^{r,\beta_i}(F_i;x_0) = G(x_0)$, since $\beta_i \leq \beta_{i_j}$. Moreover, $C^{r,\beta_{i_j}}(\bigcup_{i>j}F_i(\cdot);x_0) \subseteq C(\bigcup_{i>j}F_i(\cdot);x_0) \subseteq \operatorname{cl}(G(B(x_0;\frac{\varepsilon}{3j})))$, for $F_i(x) \subseteq \operatorname{cl}(G(B(x;\frac{\varepsilon}{3i})))$. This yields

$$C^{r,\alpha}(F_0;x_0) \subseteq G(x_0) \cup \operatorname{cl}\left(G\left(B\left(x_0;\frac{\varepsilon}{3j}\right)\right)\right) = \operatorname{cl}\left(G\left(B\left(x_0;\frac{\varepsilon}{3j}\right)\right)\right)$$

for all $j \ge 1$. Consequently,

$$C^{r,\alpha}(F_0;x_0) \subseteq \bigcap_{j \ge 1} \operatorname{cl}\left(G\left(B\left(x_0;\frac{\varepsilon}{3j}\right)\right)\right) = C(G;x_0) = G(x_0),$$

which completes the verification of (12).

The multifunction F_0 defined so far satisfies the required claims of Lemma 3 up to the restriction of its values to $\{\{y\} : y \in Y\} \cup \{\emptyset\}$. Therefore we put $G_0 = C^r(F_0; \cdot)$. Then, by (11),

$$G_0(x) \subseteq \operatorname{cl}\left(G\left(B\left(x;\frac{2\varepsilon}{3}\right)\right)\right) \text{ for all } x \in X.$$
 (13)

Proposition 2 (b) yields

$$C(G_0; \cdot) = G_0$$
 and $G_0(x) = \emptyset$ for all $x \in X \setminus X'$.

Thus, by Lemma 2, there exists $F: X \to \{\{y\} : y \in Y\} \cup \{\emptyset\}$ such that

$$F(x) \subseteq G_0(B(x; \frac{\varepsilon}{3}))$$
 for all $x \in X$ and $C^r(F; \cdot) = G_0$.

The first property and (13) yield the claim $F(x) \subseteq cl(G(B(x;\varepsilon)))$ for all $x \in X$. The second equation shows $C^r(F; \cdot) = C^r(F_0; \cdot)$ and, by (12), in turn $C^{r,\alpha}(F; \cdot) = G$. This completes the proof.

Lemma 3 clearly proves the implication (iii) \Rightarrow (i) of Theorem 2.

5 Proof of Theorem 3.

The implication (i) \Rightarrow (ii) is trivial.

Let us suppose that F is a set-valued function as in claim (ii). Theorem 2 shows that $C(G; \cdot) = G$ and $G(x) = \emptyset$ for all $x \in X \setminus X^{\alpha}$.

If Y is compact, then $C^r(F; x) \neq \emptyset$ for every $x \in X'$, since

$$C^{r}(F;x) = \bigcap_{U \in \mathcal{U}(x)} \operatorname{cl}(F(U \setminus \{x\}))$$

is an intersection of compact sets such that every finite intersection of them is non-empty. By induction, we obtain $G(x) = C^{r,\alpha}(F; x) \neq \emptyset$ for all $x \in X^{\alpha}$. This yields (ii) \Rightarrow (iii). Now assume Y not to be compact. For proving (ii) \Rightarrow (iii)' it remains to show that $\{x \in X : C^{r,\alpha}(F;x) = \emptyset\}$ is a countable union of locally finite sets for every $F : X \to 2^Y \setminus \{\emptyset\}$. This follows from the second remark after Proposition 5 which says that even the larger set $\{x \in X : F(x) \not\subseteq C^{r,\alpha}(F;x)\}$ can be expressed as a countable union of locally finite sets.

The following lemma is the main tool for the proof of the remaining implications (iii) \Rightarrow (i) and (iii)' \Rightarrow (i), respectively.

Lemma 4. Let (X, d_X) be a metric space, (Y, d_Y) a separable metric space, $\alpha > 0$ a countable ordinal, and $G: X \to 2^Y \setminus \{\emptyset\}$ a multifunction that satisfies condition (iii) of Theorem 3 if Y is compact or condition (iii)' of Theorem 3 if Y is not compact, respectively. Then there exists a function $g: X \to Y$ such that $C^{r,\alpha}(g; x) \subseteq G(x)$ for all $x \in X$.

PROOF. It suffices to find $g: X \to Y$ such that

$$C^r(g;x) \subseteq G(x) \text{ for all } x \in X^{\alpha},$$
(14)

since then $C^{r,\alpha}(g;x) \subseteq C^r(g;x) \subseteq G(x)$ for $x \in X^{\alpha}$ and $C^{r,\alpha}(g;x) = \emptyset = G(x)$ for $x \in X \setminus X^{\alpha}$.

First we assume that Y is compact. Moreover, we assume that $X^{\alpha} \neq \emptyset$, for otherwise claim (14) is trivially satisfied by any function $g: X \to Y$. Since X^{α} is closed and, by (iii), $G(x) \neq \emptyset$ for all $x \in X^{\alpha}$, we can choose a function g such that

$$g(x) \in \begin{cases} G(x) & \text{if } x \in X^{\alpha}, \\ G(B(x; 2d_X(x; X^{\alpha}))) & \text{if } x \notin X^{\alpha}, \end{cases}$$

where $d_X(x; X^{\alpha}) = \inf\{d_X(x, \tilde{x}) : \tilde{x} \in X^{\alpha}\}.$

For the proof of (14) let $x_0 \in X^{\alpha}$ and $y_0 \in C^r(g; x_0)$. Then there exists a sequence $(x_i)_{i\geq 1} \subseteq X$ such that $\lim_{i\to\infty} x_i = x_0$ and $\lim_{i\to\infty} g(x_i) = y_0$. The choice of g yields

$$g(x_i) \in G(B(x_i; 2d_X(x_i, x_0))) \subseteq G(B(x_0; 3d_X(x_i, x_0)))$$

and hence

$$y_0 \in \bigcap_{j \ge 1} \operatorname{cl}((g(x_i))_{i \ge j}) \subseteq \bigcap_{\varepsilon > 0} \operatorname{cl}(G(B(x_0;\varepsilon))) = C(G;x_0) = G(x_0),$$

which proves (14).

Now we assume that Y is not compact. Then there exists a sequence $(y_k)_{k\geq 1}$ of distinct points of Y such that every subset of $(y_k)_{k\geq 1}$ is closed. According to condition (iii)' there exists a representation

$$\{x \in X : G(x) = \emptyset\} = \bigcup_{k \ge 1} M(k)$$

with locally finite disjoint sets $M(k) \subseteq X$. We choose g such that

$$g(x) \in \begin{cases} G(x) & \text{if } x \in X \setminus \bigcup_{k \ge 1} M(k) \\ \{y_k\} & \text{if } x \in M(k). \end{cases}$$

Again we consider $y_0 \in C^r(g; x_0)$ for proving (14). We obtain a sequence $(x_i)_{i\geq 1} \subseteq X \setminus \{x_0\}$ of distinct points such that $\lim_{i\to\infty} x_i = x_0$ and $\lim_{i\to\infty} g(x_i) = y_0$. Without loss of generality, either $(x_i)_{i\geq 1} \subseteq X \setminus \bigcup_{k\geq 1} M(k)$ or $(x_i)_{i\geq 1} \subseteq \bigcup_{k>1} M(k)$. In the first case

$$y_0 \in C(G; x_0) = G(x_0),$$

because $g(x_i) \in G(x_i)$. The latter case, however, does not appear. Indeed, if $(x_i)_{i\geq 1} \subseteq \bigcup_{k\geq 1} M(k)$, then $(g(x_i))_{i\geq 1}$ would be a convergent subsequence of $(y_k)_{k\geq 1}$. The choice of $(y_k)_{k\geq 1}$ then would imply $y_0 = \lim_{i\to\infty} g(x_i) = y_{k_0}$ for some $k_0 \geq 1$ and $g(x_i) = y_{k_0}$ for all $i \geq i_0$. Thus $(x_i)_{i\geq i_0} \subseteq M(k_0)$. This is impossible, since $(x_i)_{i\geq i_0}$ contains infinitely many points of every neighborhood of x_0 , whereas $M(k_0)$ is locally finite. This completes the proof of (14).

Now the implications (iii) \Rightarrow (i) and (iii)' \Rightarrow (i) are easy to infer. According to part (iii) \Rightarrow (i) of Theorem 2 there exists $F: X \rightarrow \{\{y\} : y \in Y\} \cup \{\emptyset\}$ such that $C^{r,\alpha}(F; \cdot) = G$. Lemma 4 provides a function $g: X \rightarrow Y$ with $C^{r,\alpha}(g; \cdot) \subseteq G$. We define $f: X \rightarrow Y$ by

$$\{f(x)\} = \begin{cases} F(x) & \text{if } F(x) \neq \emptyset, \\ \{g(x)\} & \text{if } F(x) = \emptyset. \end{cases}$$

Then $F(x) \subseteq \{f(x)\} \subseteq F(x) \cup \{g(x)\}$ and

$$G(x) = C^{r,\alpha}(F;x) \subseteq C^{r,\alpha}(f;x) \subseteq C^{r,\alpha}(F;x) \cup C^{r,\alpha}(g;x) = G(x)$$

for all $x \in X$. This yields $C^{r,\alpha}(f; \cdot) = G$ and completes the proof of (iii) \Rightarrow (i) and (iii)' \Rightarrow (i), respectively.

References

- G. Aumann, *Reelle Funktionen*, Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen 68, Springer-Verlag, Berlin, Göttingen, Heidelberg, 1954.
- [2] E. F. Collingwood, Cluster set theorems for arbitrary functions with applications to function theory, Ann. Acad. Sci. Fenn. Ser. A I, 336/8 (1963), 15 pp.

- [3] R. Engelking, *General topology*, Sigma Series in Pure Mathematics 6, Heldermann Verlag, Berlin, 1989.
- [4] H. Hahn, Theorie der reellen Funktionen, Band I, Verlag Julius Springer, Berlin, 1921.
- [5] H. Hahn, Reelle Funktionen, Erster Teil: Punktfunktionen, Akademische Verlagsgesellschaft m.b.H., Leipzig, 1932, reprinted by Chelsea Publishing Company, New York, 1948.
- [6] J. E. Joseph, Regularity, normality and multifunctions, Proc. Amer. Math. Soc., 70 (1978), 203–206.
- [7] J. E. Joseph, Multifunctions and cluster sets, Proc. Amer. Math. Soc., 74 (1979), 329–337.
- [8] A. S. Kechris, *Classical descriptive set theory*, Graduate Texts in Mathematics 156, Springer-Verlag, Berlin, Heidelberg, New York, 1994.
- [9] C. Richter, The cluster function of single-valued functions, submitted.
- [10] B. S. Thomson, *Real functions*, Lecture Notes in Mathematics 1170, Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 1985.
- [11] J. D. Weston, Some theorems on cluster sets, J. London Math. Soc., 33 (1958), 435–441.