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1. Introduction

In a recent article Ciaurri et al. [1] have studied mixed norm estimates
for Riesz transforms on compact rank one symmetric spaces. Let M
be such a space with ∆M and ∇M standing for the Laplace–Beltrami
operator and the Riemannian gradient. Consider the shifted Laplacian

−∆̃M = −∆M + λM where λM ≥ 0 and the associated Riesz transform
RMf = |∇M (−∆̃M )−

1
2 f |. Then it is well known that RM is bounded

on Lp(M), 1 < p < ∞. In the above mentioned article [1] the authors
have studied mixed norm estimates for the Riesz transform RM .

On M there is a natural geodesic polar coordinate system that iden-
tifies M with (0, π) × SM , where SM is a Euclidean unit sphere whose
dimension depends on the symmetric space. Let (θ, ω) stand for this
coordinate system. Then the Laplace–Beltrami operator −∆M can be
written as −∆M = J(α,β) − ρM (θ)∆SM where ρM (θ) is a non-negative
function and J(α,β) stands for the Jacobi differential operator

(1.1) J(α,β) = − d2

dθ2
− (α− β) + (α+ β + 1) cos θ

sin θ

d

dθ
+

(
α+ β + 1

2

)2

.

Let dµα,β(θ) = (sin θ
2 )2α+1(cos θ2 )2β+1 dθ stand for the Jacobi measure

on (0, π). We define the mixed norm space Lp,2(M) to be the space of
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all functions f(θ, ω) for which

‖f‖Lp,2(M) =

(∫ π

0

(∫
SM

|f(θ, ω)|2 dσ(ω)

) p
2

dµα,β

) 1
p

<∞.

Then the main result proved in [1] (see Theorem 1.1) states that for
1 < p <∞

(1.2) ‖RMf‖Lp,2(M) ≤ C‖f‖Lp,2(M).

This estimate is proved by means of vector valued inequalities for a
sequence of Jacobi–Riesz transforms which we proceed to define now.

There is an orthonormal basis for L2((0, π), dµα,β(θ)) consisting of

Jacobi polynomials P(α,β)
k (θ) which are eigenfunctions of the Jacobi op-

erator J(α,β), see Subsection 2.2. Let R(α,β)f = d
dθJ

− 1
2

(α,β)f be the Riesz

transform associated to the Jacobi operator J(α,β). For j = 0, 1, 2, . . .

let uj(θ) = (sin θ
2 )a j(cos θ2 )b j where a ≥ 1, b = 0, or b ≥ 1. In [1] the

authors have proved the following result.

Theorem 1.1. Let α, β > − 1
2 , 1 < p, r < ∞ and let uj be as above.

Then∥∥∥∥(∑
j,k

|ujR(α+a j,β+b j)(u
−1
j fj,k)|r

) 1
r

∥∥∥∥
Lp(w,dµα,β)

≤ C
∥∥∥∥(∑

j,k

|fj,k)|r
) 1
r

∥∥∥∥
Lp(w,dµα,β)

for all fj,k ∈ Lp(w, dµα,β), w ∈ Aα,βp .

In Theorem 1.1, Aα,βp stands for the Muckenhoupt’s Ap-class of
weights functions defined with respect to the measure dµα,β . This the-
orem is proved using sharp estimates for the Jacobi–Riesz kernels (see
Theorem 1.2 in [1]) and an extrapolation theorem of Rubio de Fran-
cia [5]. Estimating the Jacobi–Riesz kernels is a difficult problem as
can be seen from the work of Nowak–Sjögren [4] where the authors have
proved that the kernels satisfy Calderón–Zygmund estimates. For the
proof of Theorem 1.1 stated above one needs estimates for the Jacobi–
Riesz kernels R(α+a j,β+b j) which are uniform in j. In [1] the authors
have succeeded in obtaining such estimates. In order to prove the mixed
norm estimates (1.2) one also needs vector valued inequalities for the

operators T
(α,β)
M =

√
ρM (θ)J−

1
2

(α,β).
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The point of departure of this paper is the observation that the roles
of the mixed norm estimates (1.2) for the Riesz transform RM and the

vector-valued inequalities for R(α,β) and T
(α,β)
M can be reversed. Indeed,

Riesz transforms associated to compact rank one symmetric spaces have
been well studied in the literature and their Lp boundedness are well
known. Using a lemma of Herz and Rivière along with an idea of Ru-
bio de Francia it is not difficult to prove mixed norm estimates for the
Riesz transforms from which vector valued inequalities for Jacobi–Riesz
transforms can be deduced. In principle, this procedure can be carried
out for any compact rank one symmetric space. In [10] Strichartz has
studied the boundedness of the Riesz transforms on complete Riemann-
ian manifolds which includes compact Riemannian symmetric spaces. It
should be possible to prove mixed norm estimates in the general setting
but the computations involved may not be simple. We plan to return to
this problem in the future.

For the sake of simplicity, in this article we only treat the case of S3

which already demonstrates the main ideas involved. The choice of the
symmetric space S3 has the added advantage of being identified with
the compact Lie group SU(2). Riesz transforms on compact Lie groups
have been studied by means of the very elegant Littlewood–Paley–Stein
theory (see Stein [9]) and hence there is a painless proof of mixed norm
estimates which does not require detailed estimates on Riesz kernels.

Let SU(2) be the special unitary group i.e., the group of 2×2 unitary
matrices having determinant one. Then any g ∈ SU(2) can be written

as g =
(
a b
−b̄ ā

)
with |a|2 + |b|2 = 1. If a = x1 + i x2, b = x3 + i x4

with xj ∈ R then
(
a b
−b̄ ā

)
7→ (x1, x2, x3, x4) gives a one to one corre-

spondence between SU(2) and the unit sphere S3 in R4. Note that
S3 = SO(4)/SO(3) and hence S3 is a rank one symmetric space of
compact type. Here SO(n) stands for the special orthogonal group of
n× n real matrices and SO(n− 1) is identified with the isotropy group
of the vector e1 = (1, 0, . . . , 0).

If su(2) stands for the Lie algebra of SU(2) then it consists of all com-
plex, skew-adjoint matrices of trace zero. A basis for su(2) is provided
by the Pauli matrices

X =

(
0 1
−1 0

)
, Y =

(
0 i
i 0

)
, Z =

(
i 0
0 −i

)
.

We also denote the left-invariant vector fields corresponding to the
matrices above by the same symbol. The Laplace–Beltrami operator ∆
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on SU(2) is then given by

∆ = −(X2 + Y 2 + Z2).

It turns out that ∆ coincides with the spherical Laplacian ∆S3 on the
sphere S3. The operators X∆−

1
2 , Y∆−

1
2 , and Z∆−

1
2 are the Riesz

transforms on SU(2) and by Littlewood–Paley–Stein theory they are all
bounded on Lp(SU(2)), 1 < p < ∞. Here Lp(SU(2)) is the Lp-space
taken with respect to the Haar measure dg on SU(2).

The identification of SU(2) with S3 allows us to define geodesic polar
coordinates on SU(2). Write any (x1, x2, x3, x4) ∈ S3 as (cos θ, ω1 sin θ,
ω2 sin θ, ω3 sin θ) where ω = (ω1, ω2, ω3) ∈ S2. Then the matrix g asso-
ciated to this x ∈ S3 belongs to SU(2). In other words the map

Φ: (0, π)× S2 → SU(2)

defined by

(1.3) Φ(θ, ω) =

(
cos θ + i ω1 sin θ (ω2 + i ω3) sin θ
−(ω2 − i ω3) sin θ cos θ − i ω1 sin θ

)
gives us a coordinate system on SU(2). In this coordinate system the
Haar measure dg on SU(2) is given by sin2 θ dθ dσ(ω) where dσ(ω) is the
surface measure on S2. Thus for a function f on SU(2),∫

SU(2)

f(g) dg =

∫ π

0

∫
S2

(f ◦ Φ)(θ, ω) sin2 θ dσ(ω) dθ.

In terms of these coordinates we introduce the mixed norm spaces
Lp,2(SU(2)) as the space of all functions f on SU(2) for which the norms

(1.4) ‖f‖p,2 =

(∫ π

0

(∫
S2

|f ◦ Φ(θ, ω)|2 dσ(ω)

) p
2

sin2 θ dθ

) 1
p

are finite.
Let Rf = (Z,X, Y )(∆ + 1)−

1
2 f be the vector of Riesz transforms

on SU(2). Here we have considered (∆ + 1) instead of ∆ which simply
has the effect of shifting the spectrum by 1 and hence making the eigen-
values of certain associated Jacobi operators into perfect squares. For
the vector Rf of Riesz transforms we have the following result. In what
follows we use the notation 〈Rf,Rf〉 to denote

(1.5) |X(∆ + 1)−
1
2 f |2 + |Y (∆ + 1)−

1
2 f |2 + |Z(∆ + 1)−

1
2 f |2.

Theorem 1.2. For any 1 < p < ∞, there exists a constant C = Cp
such that

‖〈Rf,Rf〉 12 ‖p,2 ≤ Cp‖f‖p,2
for all f ∈ Lp,2(SU(2)).
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By expanding f in terms of eigenfunctions of ∆ which involve Jacobi
polynomials and spherical harmonics on S2, we can deduce a vector val-
ued inequality for a sequence of Jacobi–Riesz transforms. The relevant
parameters appearing in the expansion are (n+ 1

2 , n+ 1
2 ) and hence for

the sake of simplicity of notation we write Rn instead of R(n+ 1
2 ,n+ 1

2 ) for

the Riesz transforms associated to the Jacobi operator J(n+ 1
2 ,n+ 1

2 ).

Theorem 1.3. Let un(θ) = (sin θ)n. For any 1 < p <∞ there exists a
constant C depending only on p such that

∫ π

0

 ∞∑
n=0

2n+1∑
j=1

|unRn(u−1
n fn,j)|2


p
2

sin2 θ dθ

≤ C
∫ π

0

 ∞∑
n=0

2n+1∑
j=1

|fn,j |2


p
2

sin2 θ dθ

for any sequence of functions fn,j, j = 1, 2, . . . , (2n+ 1), n = 0, 1, 2, . . .

from Lp((0, π), sin2 θ dθ).

Note that Theorem 1.1 of Ciaurri et al. [1] is more general than the
result above. However, by treating all possible compact rank one sym-
metric spaces we can cover some of the parameters (α, β). We use the
notation (·, ·)H for the inner product on a Hilbert space H.

2. Preliminaries

2.1. The Laplace–Beltrami operators on S3 and SU(2). In this
subsection we calculate the spherical gradient∇S3 and the Laplacian ∆S3

in the coordinate system (θ, ω), θ ∈ (0, π), and ω ∈ S2. Note that every
element of S3 is of the form (cos θ, ω sin θ). In the same way, we can
write ω as (cosϕ, sinϕ cosψ, sinϕ sinψ). Let ∇Sd−1 stand for the spher-

ical part of the gradient ∇ on Rd and ∇j
Sd−1 stand for the components.

A simple calculation shows that

∇1
S3 = − sin θ

∂

∂θ
,

∇2
S3 = cos θ cosϕ

∂

∂θ
+

1

sin θ
∇1

S2 ,

∇3
S3 = cos θ sinϕ cosψ

∂

∂θ
+

1

sin θ
∇2

S2 ,

∇4
S3 = cos θ sinϕ sinψ

∂

∂θ
+

1

sin θ
∇3

S2 .
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From these expressions it is easy to check that

∆S3 = −
(
∂2

∂θ2
+ 2 cot θ

∂

∂θ
+

1

sin2 θ
∆S2

)
.

Let g ∈ SU(2) be given by x = (x1, x2, x3, x4) ∈ S3. Then the left
invariant vector fields X, Y , and Z corresponding to the Pauli matrices
can be calculated. We get

Xf(g) =

[(
x1

∂

∂x3
− x3

∂

∂x1

)
+

(
x2

∂

∂x4
− x4

∂

∂x2

)]
f(g),

Y f(g) =

[(
x3

∂

∂x2
− x2

∂

∂x3

)
+

(
x1

∂

∂x4
− x4

∂

∂x1

)]
f(g),

Zf(g) =

[(
x1

∂

∂x2
− x2

∂

∂x1

)
+

(
x4

∂

∂x3
− x3

∂

∂x4

)]
f(g).

If we convert these expressions into geodesic polar coordinates we obtain

X = ω2
∂

∂θ
+ cot θ∇2

S2 + ω1∇3
S2 − ω3∇1

S2 ,

Y = ω3
∂

∂θ
+ cot θ∇3

S2 + ω2∇1
S2 − ω1∇2

S2 ,

Z = ω1
∂

∂θ
+ cot θ∇1

S2 + ω3∇2
S2 − ω2∇3

S2 .

The operator ∆ = −(X2 + Y 2 + Z2) turns out to be simply ∆S3 as can
be easily checked. Thus

(2.1) ∆ = −
(
∂2

∂θ2
+ 2 cot θ

∂

∂θ
+

1

sin2 θ
∆S2

)
= ∆S3 .

The calculations leading to the formulas in this subsection are cumber-
some but can be done. We refer to Chapter 11 of [7] and Chapter 1
of [2] for these calculations.

2.2. Jacobi expansions and Jacobi–Riesz transforms. In this sub-
section we introduce the Jacobi polynomials and Jacobi trigonometric
polynomials. We also give the expression for the Jacobi–Riesz transform
(Riesz transform associated to Jacobi operator J(α,β) as in (1.1)) for

functions in L2((0, π), dµα,β). The Jacobi polynomials of degree k ≥ 0
and type α, β > −1 are given by

(2.2) P
(α,β)
k (x)=(1−x)−α(1+x)−β

(−1)k

2kk!

(
d

dx

)k
{(1−x)k+α(1+x)k+β},
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for x ∈ (−1, 1). The system {P (α,β)
k }k≥0 forms an orthogonal basis for

the Hilbert space L2((−1, 1), (1 − x)α(1 + x)β dx). After making the
change of variable x = cos θ, we obtain the normalised Jacobi trigono-
metric polynomials which are given by

(2.3) P(α,β)
k (θ) = dα,βk P

(α,β)
k (cos θ),

where the normalizing factor is

dα,βk = 2
α+β+1

2 ‖P (α,β)
k ‖−1

L2((−1,1), (1−x)α(1+x)β dx)

=

(
(2k + α+ β + 1)Γ(k + 1)Γ(k + α+ β + 1)

Γ(k + α+ 1)Γ(k + β + 1)

) 1
2

.

The trigonometric polynomials P(α,β)
k are eigenfunctions of the Jacobi

differential operator J(α,β) in (1.1), with eigenvalue λα,βk = (k+ α+β+1
2 )2.

That is to say

J(α,β)P
(α,β)
k = λα,βk P

(α,β)
k .

Moreover, the system {P(α,β)
k }k≥0 forms a complete orthonormal basis

of L2((0, π), dµα,β(θ)). For further references about Jacobi polynomials,
see Chapter IV in [11].

We have the decomposition (see [1])

J(α,β) = δ∗δ +

(
α+ β + 1

2

)2

,

where δ = d
dθ , and δ∗ is its formal adjoint in L2((0, π), dµα,β(θ)), that is,

δ∗ = − d

dθ
−
(
α+

1

2

)
cot

θ

2
+

(
β +

1

2

)
tan

θ

2
.

The Jacobi–Riesz transform is formally defined asR(α,β) =δ(J(α,β))
−1/2.

For a function f ∈ L2((0, π), dµα,β(θ)) we can write

f =

∞∑
k=0

cα,βk (f)P(α,β)
k
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in L2((0, π), dµα,β(θ)), where cα,βk (f) = (f,P(α,β)
k )L2((0,π),dµα,β(θ)). And

then the Riesz transform can be precisely written as

R(α,β)f(θ)=
∞∑
k=0

1

(k+ α+β+1
2 )

cα,βk (f)δP(α,β)
k (θ)

=−1

2

∞∑
k=1

(k(k+α+β+1))1/2

(k+ α+β+1
2 )

cα,βk (f)(sin θ)P(α+1,β+1)
k−1 (θ).

(2.4)

It can be checked thatR(α,β) is a bounded operator on L2((0, π),dµα,β(θ)).
It is known that (see [4]) R(α,β) is a Calderón–Zygmund operator on the
space ((0, π), | · |, dµα,β) of homogeneous type.

2.3. Spherical harmonics and eigenfunctions of ∆. Let Hm(S3)
stand for the space of spherical harmonics of degree m on S3. Then it
is well known that L2(S3) is the orthogonal direct sum of Hm(S3) as
m ranges over N, the set of all natural numbers (including 0). More-
over, every element Y ∈ Hm(S3) is an eigenfunction of ∆S3 with eigen-
value m(m+2). The space Hm(S3) can be further decomposed in terms
of spherical harmonics on S2.

For each λ > − 1
2 , x ∈ (−1, 1) let Cλk (x) stand for the ultraspherical

polynomials defined by

Cλk (x) =
Γ(λ+ 1

2 )Γ(k + 2λ)

Γ(2λ)Γ(k + λ+ 1
2 )
P

(λ− 1
2 ,λ−

1
2 )

k (x),

see (4.7.1) in [11]. Let ψm,n(θ) = am,n(sin θ)nCn+1
m−n(cos θ) where am,n

are normalising constants chosen in such a way that∫ π

0

|ψm,n(θ)|2 sin2 θ dθ = 1.

Let Yn,j(ω), j = 1, 2, . . . , (2n + 1) be an orthonormal basis for Hn(S2),
the space of spherical harmonics of degree n on S2. Then it can be shown
that the functions ψm,n(θ)Yn,j(ω), m− n ≥ 0 are eigenfunctions of ∆S3

with eigenvalues m(m + 2). In fact, these functions are the spherical
harmonics of degree m on S3 in the coordinate system (θ, ω), see (1.5.6)
in [2] and also [8]. Hence if g = Φ(θ, ω) then the functions

ϕm,n,j(g) = ψm,n(θ)Yn,j(ω), 0 ≤ n ≤ m, 0 ≤ j ≤ 2n+ 1

are eigenfunctions of the operator ∆ on SU(2).
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The spectral decomposition of the operator (∆ + 1) = ∆S3 + 1 is
therefore given by

(∆ + 1)f(g) =

∞∑
m=0

(m+ 1)2Pmf(g),

where the projections Pm are defined by

Pmf(g) =

m∑
n=0

2n+1∑
j=1

(f, ϕm,n,j)L2(SU(2))ϕm,n,j(g).

By the spectral theorem the operator (∆ + 1)−
1
2 is given by

(2.5) (∆+1)−
1
2 f(g)=

∞∑
m=0

(m+1)−1
m∑
n=0

2n+1∑
j=1

(f, ϕm,n,j)L2(SU(2))ϕm,n,j(g).

Since we are interested in mixed norm estimates it is useful to rewrite
(∆ + 1)−

1
2 f in a more convenient form.

By letting F (θ, ω) = f ◦ Φ(θ, ω) and defining

Fn,j(θ) =

∫
S2

F (θ, ω)Yn,j(ω) dσ(ω)

we have the expansion

(2.6) F (θ, ω) =

∞∑
n=0

2n+1∑
j=1

Fn,j(θ)Yn,j(ω).

From this it is clear that∫
S2

|F (θ, ω)|2 dσ(ω) =

∞∑
n=0

2n+1∑
j=1

|Fn,j(θ)|2.

For each n and j the function Fn,j(θ) can be expanded in terms of
ψm+n,n(θ):

Fn,j(θ) =

∞∑
m=0

(∫ π

0

Fn,j(η)ψm+n,n(η) sin2 η dη

)
ψm+n,n(θ).

Recalling the definition of ϕm,n,j we see that

(2.7)

∫ π

0

Fn,j(θ)ψm+n,n(θ) sin2 θ dθ =

∫
SU(2)

f(g)ϕm+n,n,j(g) dg.

Thus we have

(2.8) Fn,j(θ) =

∞∑
m=0

(f, ϕm+n,n,j)L2(SU(2))ψm+n,n(θ).
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Since ϕm,n,j(g) are eigenfunctions of (∆ + 1) with eigenvalues (m+ 1)2

we see that

(∆ + 1)−
1
2 f(g) =

∞∑
n=0

2n+1∑
j=1

F̃n,j(θ)Yn,j(ω),

where

(2.9) F̃n,j(θ)=

∞∑
m=0

(m+n+1)−1(Fn,j , ψm+n,n)L2((0,π),sin2 θ dθ)ψm+n,n(θ).

In view of the definition of ψm,n(θ) it is not difficult to see that

(Fn,j , ψm+n,n)L2((0,π),sin2 θ dθ)ψm+n,n(θ)

=(sin θ)nP(n+ 1
2 ,n+ 1

2 )
m (θ)

∫ π

0

Fn,j(η)(sin η)−nP(n+ 1
2 ,n+ 1

2 )
m (η)(sin η)2n+2dη,

where P(α,β)
m (θ) stand for the Jacobi polynomials normalised in the space

L2((0, π), dµα,β). By letting Jn stand for the Jacobi operator J(n+ 1
2 ,n+ 1

2 )

and recalling that P(n+ 1
2 ,n+ 1

2 )
m (θ) are eigenfunctions of Jn with eigenval-

ues (m+ n+ 1)2 we infer that

(2.10) F̃n,j(θ) = un(θ)J
− 1

2
n (u−1

n Fn,j)(θ),

where un(θ) = (sin θ)n. Thus we have the expression

(2.11) (∆ + 1)−
1
2 f(g) =

∞∑
n=0

2n+1∑
j=1

un(θ)J
− 1

2
n (u−1

n Fn,j)(θ)Yn,j(ω).

This formula plays a crucial role in the study of mixed norm estimates
for Riesz transforms on SU(2).

3. Mixed norm estimates for the Riesz transforms

In this section we present a proof of Theorem 1.2. As we have men-
tioned in the introduction we will prove the result by making use of a
lemma of Herz and Rivière and following an idea of Rubio de Francia [6].

Consider the vector of Riesz transforms Rf = (Z,X, Y )(∆ + 1)−
1
2 f .

Denote the components of R by Rj , j = 1, 2, 3. Thus R1f = Z(∆ +

1)−
1
2 f , etc. Given a unit vector ζ ∈ S2 let us consider the operator

Tζf =

3∑
j=1

ζjRjf = ζ · Rf.
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Since the Riesz transforms are bounded on Lp(SU(2)), 1 < p < ∞, it
follows that Tζ are bounded on Lp(SU(2)) for the same range of p. Now
we make use of the following lemma of Herz and Rivière [3].

Lemma 3.1. Let (G,µ) and (H, ν) be arbitrary measure spaces and
T : Lp(G) → Lp(G) a bounded linear operator. Then if p ≤ q ≤ 2 or

p ≥ q ≥ 2, there exists a bounded linear operator T̃ : Lp(G;Lq(H)) →
Lp(G;Lq(H)) with ‖T̃‖ ≤ ‖T‖ such that for F ∈ Lp(G;Lq(H)) of the
form F (x, ξ) = f(ξ)u(x) where f ∈ Lp(G) and u ∈ Lq(H) we have

(T̃F )(ξ, x) = (Tf)(ξ)u(x).

Let K = SO(3). By taking H = K in the lemma we see that Tζ has

an extension denoted by T̃ζ to Lp(SU(2), L2(K)) as a bounded linear
operator. Given f ∈ Lp(SU(2)) and k ∈ K let us define

ρ(k)f(g) = (f ◦ Φ)(θ, k ω), g = Φ(θ, ω).

Then f̃(g, k) = ρ(k)f(g) belongs to Lp(SU(2), L2(K)) and hence by the
lemma above∫

SU(2)

(∫
K

|T̃ζ f̃(g, k)|2 dk
) p

2

dg ≤ C
∫
SU(2)

(∫
K

|f̃(g, k)|2 dk
) p

2

dg.

Note that C can be taken independent of ζ ∈ S2 since the norm of Tζ
on Lp(SU(2)) is a bounded function of ζ and the norm of the extended

operator T̃ζ is bounded by that of Tζ . We can now easily prove the
following result.

Theorem 3.2. We have for j = 1, 2, 3 and 1 < p <∞ the mixed norm
estimates

‖Rjf‖Lp,2(SU(2)) ≤ C‖f‖Lp,2(SU(2)).

Proof: A simple calculation, using the fact that S2 = SO(3)/SO(2)
shows that∫
SU(2)

(∫
K

|f̃(g, k)|2 dk
)p

2

dg=

∫ π

0

(∫
S2

|f ◦ Φ(θ, ω)|2 dσ(ω)

)p
2

sin2 θ dθ.

In view of this it is enough to prove the inequality∫
SU(2)

(∫
K

|(ρ(k)Tζf)(g)|2 dk
)p

2

dg≤C
∫
SU(2)

(∫
K

|ρ(k)f(g)|2 dk
)p

2

dg.
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Now we claim that

(3.1) (ρ(k)Tζf)(g) = (k−1ζ) · R(ρ(k)f)(g) =

3∑
j=1

(k−1ζ)jRj(ρ(k)f)(g).

Assuming the claim for a moment, we first complete the proof.

Since Rj are bounded on Lp(SU(2)), by Lemma 3.1, they have

extensions R̃j to Lp(SU(2), L2(K)). Moreover, the extensions satisfy

R̃j f̃(g, k) = Rj(ρ(k)f)(g) on a dense class of functions. To see this,

note that in view of Peter–Weyl Theorem for K the functions f̃(g, k)
can be expanded in terms of matrix coefficients of irreducible unitary
representations π of K. Thus

f̃(g, k) =
∑
π∈K̂

dπ∑
i,l=1

fi,l(g)πi,l(k),

where K̂ is the unitary dual of K. From the definition of the extension,

it follows that for each summand R̃j(fi,lπi,l)(g, k) = Rj(fi,l)(g)πi,l(k).

Hence R̃j f̃(g, k) = Rj(ρ(k)f)(g) for all functions f for which f̃(g, k) has
a finite Peter–Weyl expansion. Consequently, in view of the assumed
claim, we have

ρ(k)Tζf(g) =

3∑
j=1

(k−1ζ)jR̃j f̃(g, k)

which gives the estimate(∫
SU(2)

(∫
K

|ρ(k)Tζf(g)|2 dk
) p

2

dg

) 1
p

≤
3∑
j=1

(∫
SU(2)

(∫
K

|R̃j f̃(g, k)|2 dk
) p

2

dg

) 1
p

≤ C

(∫
SU(2)

(∫
K

|f̃(g, k)|2 dk
) p

2

dg

) 1
p

.

Thus we are left with proving claim (3.1).

In order to prove claim (3.1) we make use of the following expression
for Rf . By writing the vector fields X, Y , and Z in geodesic polar
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coordinates we obtain

(Rf) ◦ Φ(θ, ω) =

(
ω
∂

∂θ
+ cot θ∇S2 +N

)
(∆ + 1)−

1
2 (f ◦ Φ)(θ, ω),

where Nf = ∇S2f × ω is the cross product of the vectors ∇S2f and ω
in R3. In view of this

(3.2) Tζf =

(
ζ · ω ∂

∂θ
+ cot θ ζ · ∇S2 + ζ ·N

)
(∆ + 1)−

1
2 f.

In order to compute Tζ(ρ(k)f) we make use of the following facts:
(i) since ρ(k) acts on the ω-variable, it commutes with ∆ = ∆S3 ; (ii) the
spherical gradient ∇S2 is related to the gradient ∇ on R3 via the equa-
tion ∇S2h(ω) = ∇h(ω) − ω(ω · ∇S2h(ω)) (see equation 1.8.12 in [2])
and (iii) for any x, u ∈ R3 and k ∈ K, k u · ∇h(kx) = u · ∇(ρ(k)h)(x)
which follows by direct calculation. In order to deal with the term Nf
we also need the relation ∇ = 1

r∇S2 + ω ∂
∂r and the fact that for k ∈ K,

k(u× v) = k u× k v for any two vectors. Using these facts in (3.2) it is
easy to check that (

Tζρ(k)f
)

(g) =
(
ρ(k)Tkζf

)
(g)

or

ρ(k)(Tζf)(g) = (k−1ζ) · R(ρ(k)f)(g) =

3∑
j=1

(k−1ζ)jRj(ρ(k)f)(g).

Hence the claim is proved.

4. Vector valued inequalities for Jacobi–Riesz
transforms

With the aim of proving Theorem 1.3 let us return to the expression

(∆ + 1)−
1
2 f(g) =

∞∑
n=0

2n+1∑
j=1

F̃n,j(θ)Yn,j(ω)

obtained in Section 2. Recall (2.9) that

F̃n,j(θ) =

∞∑
m=0

(m+ n+ 1)−1(Fn,j , ψm+n,n)L2((0,π),sin2 θ dθ)ψm+n,n(θ).

In view of the expression

Rf(g) =

(
ω
∂

∂θ
+ cot θ∇S2 +N

)
(∆ + 1)−

1
2 f(g)
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we infer that Rf(g) =
∑3
j=0R(j)f(g) with

R(1)f(g) =

∞∑
n=0

2n+1∑
j=1

∂

∂θ
F̃n,j(θ)Yn,j(ω)ω,

R(2)f(g) =

∞∑
n=0

2n+1∑
j=1

cot θF̃n,j(θ)∇S2Yn,j(ω),

R(3)f(g) =

∞∑
n=0

2n+1∑
j=1

F̃n,j(θ)∇S2Yn,j × ω.

Using these expressions along with some orthogonality properties of the
spherical harmonics Yn,j and ∇S2Yn,j we can prove the following result.

Theorem 4.1. With notations as above we have∫
S2

〈Rf(θ, ω),Rf(θ, ω)〉 dσ(ω)

=

∞∑
n=0

2n+1∑
j=1

(∣∣∣∣ ∂∂θ F̃n,j(θ)
∣∣∣∣2 +

n(n+ 1)

sin2 θ
|F̃n,j(θ)|2

)
.

In order to prove this theorem we need several properties of the spher-
ical harmonics. It is known that ω · ∇S2Yn,j(ω) = 0 for any spherical
harmonic and also∫

S2

∇S2Yn,j(ω) · ∇S2Ym,l(ω) dσ(ω) = n(n+ 1)δn,mδj,l

see (1.4.9) and (1.8.14) in [2]. We also require the following results.

Proposition 4.2. Let Yn and Ym be spherical harmonics of degree n
and m respectively on S2. Then

(a) ∇S2 ×∇S2Yn(ω) = ω ×∇S2Yn(ω),

(b) (∇S2Yn(ω)× ω) · (∇S2Ym(ω)× ω) = ∇S2Yn(ω) · ∇S2Ym(ω),

(c)
∫
S2 ∇S2Yn(ω) · (∇S2Ym(ω)× ω) dσ(ω) = 0.

We postpone a proof of this proposition to the next section. Using
the result of this proposition along with the expressions for the compo-
nents R(j)f of Rf , it is immediately seen that Theorem 4.1 is true.

The mixed norm estimates proved in Theorem 3.2 leads to the follow-
ing result.
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Theorem 4.3. With notations as above we have

(a)

∫ π

0

( ∞∑
n=0

2n+1∑
j=1

∣∣∣ ∂
∂θ
F̃n,j(θ)

∣∣∣2) p
2

sin2 θ dθ

≤ C
∫ π

0

( ∞∑
n=0

2n+1∑
j=1

|Fn,j(θ)|2
) p

2

sin2 θ dθ,

(b)

∫ π

0

( ∞∑
n=0

2n+1∑
j=1

n2

sin2 θ
|F̃n,j(θ)|2

) p
2

sin2 θ dθ

≤ C
∫ π

0

( ∞∑
n=0

2n+1∑
j=1

|Fn,j(θ)|2
) p

2

sin2 θ dθ.

In order to prove Theorem 1.3 we only need to reinterpret the inequal-
ity (a) of the theorem above as a vector valued inequality for Jacobi–
Riesz transforms. We have already made the observation that

F̃n,j(θ) = un(θ)J
− 1

2
n (u−1

n Fn,j)(θ).

Recalling that un(θ) = (sin θ)n, this gives us

∂

∂θ
F̃n,j(θ) =

n

sin θ
F̃n,j(θ) + un(θ)

∂

∂θ
J
− 1

2
n (u−1

n Fn,j)(θ).

Since ∂
∂θJ

− 1
2

n (u−1
n Fn,j)(θ) = Rn(u−1

n Fn,j), the inequalities (a) and (b)
together give us

∫ π

0

 ∞∑
n=0

2n+1∑
j=1

un(θ)2|Rn(u−1
n Fn,j)|2


p
2

sin2 θ dθ

≤ C
∫ π

0

 ∞∑
n=0

2n+1∑
j=1

|Fn,j(θ)|2


p
2

sin2 θ dθ.

Thus Theorem 1.3 is proved.

5. Some calculations related to spherical harmonics

In this section we prove some properties of spherical harmonics. First
we introduce some notations which we use further before going to state
the properties. Let ∇ stand for the gradient on Rd, which can be written
in spherical coordinates as

∇ =
1

r
∇Sd−1 + ω

∂

∂r
,
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where ∇Sd−1 stands for the spherical (angular) part of the gradient ∇
on Rd, and ω is the unit vector along the direction of x, i.e, x = r ω,
r = |x|. Let ∇j , ∇j

Sd−1 , and ωj stand for the jth component of ∇, ∇Sd−1 ,

and ω respectively. In the same way, the Laplacian ∆Rd = −
∑d
j=1

∂2

∂x2
j

on Rd can be written in spherical coordinates as

∆Rd = −
(
∂2

∂r2
+
d− 1

r

∂

∂r
+

1

r2
∆Sd−1

)
,

where ∆Sd−1 is the spherical part of ∆Rd (also called the Laplace–Bel-
trami operator on Sd−1). Note that ∇Sd−1 · ∇Sd−1 = −∆Sd−1 . Let
Hm(Sd−1) stand for the space of spherical harmonics of degreem on Sd−1.
Then it is well known that L2(Sd−1) is the orthogonal direct sum
of Hm(Sd−1) as m ranges over N, the set of all natural numbers (in-
cluding 0). Moreover, every element Y ∈ Hm(Sd−1) is an eigenfunction
of ∆Sd−1 with eigenvalue m(m + d − 2). Now we state and prove some
properties of the spherical gradient and spherical harmonics.

Proposition 5.1.

(1) (a) For f, g ∈ C1(Sd−1), the space of all continuously differen-
tiable functions on Sd−1,∫

Sd−1

f(ω)∇Sd−1g(ω) dσ(ω)

= −
∫
Sd−1

g(ω)[∇Sd−1f(ω)− (d− 1)f(ω)ω] dσ(ω),

where dσ(ω) is the surface measure on Sd−1.

(b) Furthermore, for f ∈ C2(Sd−1), the space of all twice con-
tinuously differentiable functions defined on Sd−1, and g ∈
C1(Sd−1)∫

Sd−1

∇Sd−1f(ω) · ∇Sd−1g(ω) dσ(ω) =

∫
Sd−1

g(ω)∆Sd−1f(ω) dσ(ω).

(c) For any smooth vector-valued function F and any smooth
scalar valued function g defined on Sd−1,∫

Sd−1

∇Sd−1g(ω)·F (ω) dσ(ω) =

∫
Sd−1

g(ω)[(d−1)ω−∇Sd−1 ]·F (ω) dσ(ω).

(2) Let Y ∈ Hm(Sd−1). Then we have the following.

(a) For i, j = 1, 2, . . . , d, ∇iSd−1ωj =

{
−ωi ωj , if i 6= j;

1− ω2
j , if i = j.
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(b) ∇Sd−1 · ω = d− 1.

(c) ∇iSd−1ωj − ∇jSd−1ωi = 0; in particular for d = 3, we have
∇S2 × ω = 0̄, (here the symbol “×” cross denotes the cross
product of vectors in R3).

(d) (∇iSd−1∇jSd−1−∇jSd−1∇iSd−1)Y (ω)=(ωi∇jSd−1−ωj∇iSd−1)Y (ω).

Proof: For the proof of (1)(a) and (1)(b), see Proposition 1.8.7 in [2].
And (1)(c) follows from (1)(a) by applying componentwise.

For (2)(a) consider the identity ∇ixj = ∂
∂xi

(xj) = δi j . If we write
this identity in spherical coordinates, then we have(

1

r
∇iSd−1 + ωi

∂

∂r

)
(r ωj) = δi j

which implies (2)(a). For (2)(b), consider ∇Sd−1 · ω =
∑d
j=1∇

j
Sd−1ωj .

By making use of (2)(a), we have ∇Sd−1 · ω =
∑d
j=1(1− ω2

j ) = (d− 1),

which proves (2)(b). Moreover, (2)(c) is obvious by (2)(a) and (2)(b).
For (2)(d), consider the identity

(∇i∇j −∇j∇i)Y (r ω) = 0,

where Y (r ω) = rmY (ω). We will write the above in spherical coordi-
nates to get (2)(d). First consider

∇i∇jY (r ω) =

(
1

r
∇iSd−1 + ωi

∂

∂r

)(
1

r
∇j

Sd−1 + ωj
∂

∂r

)
Y (rω)

= rm−2
[
∇iSd−1∇jSd−1Y (ω)mY (ω)∇iSd−1ωj

+ (m− 1)ωi∇jSd−1Y (ω)

+mωj∇iSd−1Y (ω) +m(m− 1)ωi ωjY (ω)
]
.

(5.1)

Similarly we have that

∇j∇iY (r ω) = rm−2
[
∇j

Sd−1∇iSd−1Y (ω) +mY (ω)∇j
Sd−1ωi

+ (m− 1)ωj∇iSd−1Y (ω)

+mωi∇jSd−1Y (ω) +m(m− 1)ωi ωjY (ω)
]
.

(5.2)

If we subtract (5.2) from (5.1), then we have that

0 = rm−2[(∇iSd−1∇jSd−1−∇jSd−1∇iSd−1)Y (ω)+(ωj∇iSd−1−ωi∇jSd−1)Y (ω)]

which implies (2)(d). Note that we have used (2)(c) and the fact that
Y (r ω) = rmY (ω) to get the above.
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Proof of Proposition 4.2: By making use of the definition of cross prod-
uct of vectors in R3 and (2)(d) in Proposition 5.1, (a) can be proved.

For (b), if we use the formula, for vectors a, b, c, and d ∈ R3,

(a× b) · (c× d) = (a · c)(b · d)− (a · d)(b · c)

and the fact ω·∇Sd−1Y (ω)=0 for any spherical harmonic Y ∈ Hm(Sd−1),
then we can see that

(∇Sd−1Yn(ω)× ω) · (∇Sd−1Ym(ω)× ω) = (∇Sd−1Yn · ∇Sd−1Ym)(ω · ω)

= ∇Sd−1Yn(ω) · ∇Sd−1Ym(ω).

For (c), first we note that, for R3-valued smooth functions F and G

(5.3) ∇S2 · (F ×G) = G · (∇S2 × F )− F · (∇S2 ×G).

By appealing to (1)(c) of Proposition 5.1, the integral in (c) is equal to∫
S2

Yn(ω)(2ω −∇S2) · (∇S2Ym(ω)× ω) dσ(ω)

which is equal to

−
∫
S2

Yn(ω)∇S2 · (∇S2Ym(ω)× ω) dσ(ω).

By using (5.3), (a) of Proposition 4.2, (2)(c) of Proposition 5.1 and the
fact that a · (a× b) = 0, we have

= −
∫
S2

Yn(ω)[ω · (∇S2 ×∇S2Ym(ω))−∇S2Ym(ω) · (∇S2 × ω)] dσ(ω)

= −
∫
S2

Yn(ω)[ω · (ω ×∇S2Ym(ω))− 0] dσ(ω) = 0.

This completes the proof of Proposition 4.2.
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