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Abstract: Theorems on the existence of invariant KAM tori are established for

perturbations of Hamiltonian systems which are circle bundle flows. By averaging
the perturbation over the bundle flow one obtains a Hamiltonian system on the orbit

(quotient) space by a classical theorem of Reeb. A non-degenerate critical point of the

system on the orbit space gives rise to a family of periodic solutions of the perturbed
system. Conditions on the critical points are given which insure KAM tori for the

perturbed flow.
These general theorems are used to show that the near circular periodic solutions

of the planar lunar problem are orbitally stable and are surrounded by KAM 2-tori.

For the spatial case it is shown that there are periodic solutions of two types, either
near circular equatorial, that is, the infinitesimal particle moves close to the plane

of the primaries following near circular trajectories and the other family where the

infinitesimal particle moves along the axis perpendicular to the plane of the primaries
following near rectilinear trajectories. We prove that the two solutions are elliptic

and are surrounded by invariant 3-tori applying a recent theorem of Han, Li, and Yi.

In the spatial case a second averaging is performed, and the corresponding or-
bit space (called the twice-reduced space) is constructed. The flow of the averaged

Hamiltonian on it is given and several families of invariant 3-tori are determined using

Han, Li, and Yi Theorem.
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1. Introduction

In an earlier paper [36] the authors investigated the existence, char-
acteristic multipliers and stability of periodic solutions of a Hamiltonian
vector field which is a small perturbation of a vector field tangent to the
fibers of a circle bundle. Our primary examples are the planar and spa-
tial lunar problems of celestial mechanics, i.e., the restricted three-body
problem where the infinitesimal particle is close to one of the primaries.
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By averaging the perturbation over the fibers of the circle bundle
one obtains a Hamiltonian system on the orbit (quotient) space of the
circle bundle. We stated and proved results which have hypotheses on
the reduced system and draw conclusions about the full system. Then
we applied the general results to the planar and spatial lunar problems.
After scaling, the lunar problem is a perturbation of the Kepler problem,
which after regularization is a circle bundle flow. We found the classical
near circular periodic solutions in the planar case and the near circular
equatorial and certain near rectilinear periodic solutions in the spatial
case. Then we computed their approximate multipliers and showed that
there is a “twist”. However, the twist was too degenerate to apply the
classical KAM Theorem on invariant tori as stated in [2].

In this paper we prove sharper general stability theorems that show
when a degenerate twist is adequate to establish invariant tori near a pe-
riodic solution. For two-degrees-of-freedom problems it is enough to ap-
peal to the classical invariant curve theorem [28], but higher-dimensional
problems require the more delicate recent result of Han, Li, and Yi [16].

Then we apply these general theorems to show that the circular pe-
riodic solutions of the planar lunar problem are enclosed by invariant
2-tori, hence orbitally stable and in the spatial case that there are in-
variant 3-tori enclosing the periodic solutions that are near circular equa-
torial or near rectilinear in the vertical axis.

We also deal with the axial symmetry reduction in the spatial lunar
problem. This is achieved by performing a second averaging, specifically,
normalizing the argument of the node. After truncating higher-order
terms the third component of the angular momentum becomes an inte-
gral of the normalized Hamiltonian and we build the corresponding orbit
space called the twice-reduced space. This leads to the appearance of
elliptic relative equilibria of the normalized Hamiltonian for some combi-
nations of the parameters. This allows us to obtain invariant KAM tori
related to these equilibria. Because of the degeneracy of the averaged
Hamiltonian we cannot apply the usual KAM Theorems to conclude the
existence of invariant tori. Again we resort to the theorem by Han, Li,
and Yi [16] to overcome this difficulty. Using some local action-angle
coordinates that we construct specifically for the different types of ellip-
tic relative equilibria, we establish the existence of KAM 3-tori for the
Hamiltonian of the spatial restricted three-body problem in the lunar
case.

The paper has five sections. In Section 2 we give the general results
that will be used in subsequent sections. Some of the results of Sec-
tion 2 are classic, some others are recent. Some of the results collected
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in this section appeared in [36] but Subsections 2.2, 2.3, and 2.4 are new
(leaving apart Theorem 2.4). Section 3 contains the application to the
planar lunar problem, leading to the existence of families of KAM 2-tori
around the near circular orbits. In Section 4 we deal with the spatial
case by constructing the orbit space which is a symplectic manifold of
dimension four. We analyze the relative equilibria and their stability,
concluding with the existence of two families of KAM 3-tori, one related
to motions that are near circular equatorial and the other related with
motions near rectilinear. Section 5 is devoted to a further reduction for
the spatial problem. After averaging with respect to the node we trun-
cate higher-order terms and obtain a Hamiltonian which has the third
component of the angular momentum as an integral. Thus we can carry
out a second reduction process, the so-called axial symmetry reduction,
passing from the four-dimensional orbit space to an orbit space of di-
mension two, the twice-reduced space. The analysis of the flow on this
space is made in detail and we can reconstruct some families of KAM 3-
tori using Theorem 2.4. This is achieved after constructing appropriate
sets of action-angle pairs in the three types of relative equilibria that are
elliptic.

The analysis performed in Sections 3 and 4 is a continuation of the
work initiated in [36] but the conclusions on the existence of the invariant
2- and 3-tori that we present in this paper are new. On the other hand
part of the study in Section 5 has appeared in [9, 21, 22, 32] but the
analysis of these papers is incomplete. A rather complete analysis was
provided by Sommer [35] but, in our opinion, it is very involved so we
have tried to simplify it in our presentation. Nevertheless Sommer builds
a specific theorem for dealing with Hamiltonians where the perturbation
appears at three different scales, making it very degenerate, and it is
to her credit that she obtained a KAM-type result that applies to the
spatial lunar problem which establishes the existence of new families of
invariant 3-tori. Han, Li, and Yi [16] have a more general result which
includes that of Sommer and it is precisely this result, Theorem 2.4, that
we apply to obtain our KAM tori. Moreover we connect the results of
Section 5 with those of Section 4 to clarify some points that are a bit
obscure in Sommer’s presentation.

2. Perturbation theorems

2.1. The orbit space. In this subsection we summarize some general
results from our earlier paper [36]. Let (M,Ω) be a symplectic manifold
of dimension 2n, H0 : M → R a smooth Hamiltonian which defines a



356 K. R. Meyer, J. F. Palacián, P. Yanguas

Hamiltonian vector field Y0 = (dH0)# with symplectic flow φt0. Let
I ⊂ R be an interval such that each h ∈ I is a regular value of H0

and N0(h) = H−1
0 (h) is a compact connected circle bundle over the

orbit space B(h) with projection π : N0(h) → B(h). Assume that the
vector field Y0 is everywhere tangent to the fibers of N0(h), i.e., that
all the solutions of Y0 in N0(h) are periodic. We assume that all these
periodic solutions have periods smoothly depending only on the value
of the Hamiltonian, i.e., the period is a smooth function T = T (h)
(sometimes the dependence on h will be omitted in the notation).

Now we state two of Reeb’s classic Theorems [33] in more modern
terminology referring to our earlier paper for proofs. Our proofs gave
more insight on the Hamiltonian structure and therefore lead to further
applications. The original reduction theorem is the following

Theorem 2.1. The orbit space B inherits a symplectic structure ω
from (M,Ω), i.e., (B,ω) is a symplectic manifold.

Now look at a perturbation of this situation. Let ε be a small pa-
rameter, H1 : M → R smooth, Hε = H0 + εH1, Yε = Y0 + ε Y1 = dH#

ε ,
Nε(h) = H−1

ε (h), and φtε the flow defined by Yε. We shall refer to this
as the full system.

Let the average of H1 be

H =
1

T

∫ T

0

H1(φt0) dt,

which is a smooth function on B(h), and let φ̄t be the flow on B(h)

defined by Y = dH#
. We refer to this as the reduced system.

A critical point of H is non-degenerate if the Hessian at the critical
point is non-singular.

Theorem 2.2. If H has a non-degenerate critical point at π(p) = p ∈ B
with p ∈ N0, then there are smooth functions p(ε) and T (ε) for ε small
with p(0) = p, T (0) = T , p(ε) ∈ Nε, and the solution of Yε through p(ε)
is T (ε)-periodic.

Let the characteristic exponents of the critical point Y (p) be λ1, λ2, . . . ,
λ2n−2.Then the characteristic multipliers of the periodic solution through
p(ε) are

1, 1, 1 + ε λ1 T +O(ε2), 1 + ε λ2 T +O(ε2), . . . , 1 + ε λ2n−2 T +O(ε2).

That is to say, a non-degenerate critical point of the reduced system
gives rise to a periodic solution of the full system. The essence of the
proof of Theorem 2.2 is the existence of symplectic coordinates for a
tubular neighborhood of the orbit through p.
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Lemma 2.1. Let p ∈ N0(h), with h ∈ I fixed. Then there are symplec-
tic coordinates (I, θ, y), valid in a tubular neighborhood of the periodic
solution φt0(p) of Y0(h), where (I, θ) are action-angle coordinates, and
y ∈ N , where N is an open neighborhood of the origin in R2n−2. The
point p corresponds to (I, θ, y) = (0, 0, 0).

In these coordinates H0 is only a function of I, i.e., H0 = H0(I). A
local cross section is θ = α, and a local cross section in an energy level
is θ = α, I = β, where α, β are constants. In addition to that, y ∈ N
are coordinates in the cross section in the energy level.

The Hamiltonian is

(1) Hε(I, θ, y) = H0(I) + εH1(I, θ, y) = H0(I) + εH(I, y) +O(ε2).

2.2. Invariant 2-tori. Sometimes one can detect invariant tori using
KAM Theory and at times even stability. First let us consider a simple
two-degree-of-freedom system where the orbit space is two-dimensional.

Theorem 2.3. Let n = 2 and let p be as in Theorem 2.2 and Lemma 2.1.
Suppose there are symplectic action-angle variables (I1, θ1) at p in B such
that

(2) H = ω1 I1 + ε k(I, I1) +O(ε2),

where ω1 is non-zero and

(3)
∂2k(I, I1)

∂I2
1

6= 0.

Then for sufficiently small ε > 0 encircling the periodic solutions given in
Theorem 2.2 there are invariant KAM tori of dimension 2. In particular
the periodic solutions are orbitally stable.

Proof: Take the cross section at p given by Lemma 2.1 with θ = 0 and
I = 0. The first return time is Tε = T +O(ε2).

On B the equations are

İ1 = O(ε2), θ̇1 = −ω1 − ε
∂k

∂I1
(0, I1) +O(ε2).

Integrate these equations by a time Tε to find the period map P : (I1,θ1)→
(I ′1, θ

′
1) where

I ′1 = I1 +O(ε2), θ′1 = θ1 − ω1 T − ε T
∂k

∂I1
(0, I1) +O(ε2).

By (3) the twist assumption of Moser’s invariant curve Theorem [28]
holds which implies the existence of arbitrarily small invariant curves
encircling p in the cross section. These invariant curves produce invariant
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tori in the phase space of the full system defined by (1) and so the
periodic solutions are orbitally stable.

2.3. Higher-order tori. First we state the result of Han, Li, and
Yi [16], because it gives invariant tori in systems with a degenerate
twist of the type we encounter in the lunar problem and other similar
problems [26]. Refer to those papers for comments about other results
that yield KAM tori in degenerate situations.

Starting with a Hamiltonian system of the form

(4) H(I, ϕ, ε)=h0(In0)+εm1h1(In1)+· · ·+εmaha(Ina)+εma+1p(I, ϕ, ε),

where (I, ϕ) ∈ Rn × Tn are action-angle variables with the standard
symplectic structure dI ∧dϕ, and ε > 0 is a sufficiently small parameter.
The Hamiltonian H is real analytic in (I, φ, ε) and in particular p is
smooth in ε. The parameters a, m, ni (i = 0, 1, . . . , a) and mj (j =
1, 2, . . . , a), are positive integers satisfying n0 ≤ n1 ≤ · · · ≤ na = n,
m1 ≤ m2 ≤ · · · ≤ ma = m, Ini = (I1, . . . , Ini

), for i = 1, 2, . . . , a.
The Hamiltonian H(I, ϕ, ε) is considered in a bounded closed region

Z × Tn × [0, ε∗] ⊂ Rn × Tn × [0, ε∗] for some fixed ε∗ with 0 < ε∗ < 1.
For each ε the integrable part of H,

Xε(I) = h0(In0) + εm1 h1(In1) + · · ·+ εma ha(Ina),

admits a family of invariant n-tori T εζ = {ζ} × Tn with linear flows

{x0 + ωε(ζ)t}, where, for each ζ ∈ Z, ωε(ζ) = ∇Xε(ζ) is the frequency
vector of the n-torus T εζ and ∇ is the gradient operator. When ωε(ζ)
is non-resonant, the flow on the n-torus T εζ becomes quasi-periodic with
slow and fast frequencies of different scales. We refer the integrable
part Xε and its associated tori {T εζ } as the intermediate Hamiltonian
and tori, respectively.

Let Īni = (Ini−1+1, . . . , Ini
), i = 0, 1, . . . , a (where n−1 = 0, hence

Īn0 = In0), and define

Ω =
(
∇Īn0h0(In0), . . . ,∇Īnahna

(Ina)
)

such that for each i = 0, 1, . . . , a, ∇Īni denotes the gradient with respect
to Īni .

The following theorem gives the right setting in which one can ensure
the persistence of KAM tori for Hamiltonians like (4).
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Theorem 2.4 (Han, Li, and Yi [16]). Let δ be given with 0 < δ < 1/5.
Assume there is a positive integer s such that

(5) Rank
{
∂αI Ω(I) | 0 ≤ |α| ≤ s

}
= n, ∀ I ∈ Z.

Then there exists an ε0 > 0 and a family of Cantor sets Zε ⊂ Z, 0 < ε <
ε0, such that each ζ ∈ Zε corresponds to a real analytic, invariant, quasi-
periodic n-torus T

ε

ζ of the Hamiltonian (4) which is slightly deformed

from the intermediate n-torus T εζ . The measure of Z \Zε is O(εδ/s) and

the family {T εζ : ζ ∈ Zε, 0 < ε < ε0} varies Whitney smoothly.

The beauty of this level of generalization is that if the conditions of
Theorem 2.4 apply to the Hamiltonian on the orbit space then conditions
of Theorem 2.4 apply to the full system. This follows by using Lemma 2.1
in conjunction with Han, Li, and Yi’s Theorem.

However for one of our applications we require something less, namely

Theorem 2.5. Let p be as in Theorem 2.2 and suppose there are sym-
plectic action-angle variables (I1, . . . , In−1, θ1, . . . , θn−1) at p in B such
that

(6) H =

n−1∑
k=1

ωk Ik +
εj

2

n−1∑
k=1

n−1∑
l=1

Ckl Ik Il +O(εj+1),

where j ≥ 0, the ωk’s are non-zero, the coefficients Ckl’s are independent
of ε and satisfy Ckl = Clk, and all the cubic and higher-order terms in
I1, . . . , In−1 are included in O(εj+1).

Assume that detCkl 6= 0. That is, assume the system has been put into
Birkhoff normal form and a “twist” condition is satisfied. Furthermore,
assume dT/dh 6= 0, i.e., assume the period varies with H0 in a non-
trivial way.

Then for sufficiently small ε > 0 near the periodic solution given in
Theorem 2.2 there are invariant KAM tori of dimension n.

Proof: The numbering system of our notation and that of Han, Li,
and Yi as stated in Theorem 2.4 are slightly different. Let the Ij ’s
be I, I1, . . . , In−1 where I is as in Lemma 2.1 and I1, . . . , In−1 are as
above. If you think of I as I0 then we have shifted the indexes down by
1.

Combining (1) with (2) gives

(7) Hε(I, θ, y) = H0(I) + ε

n−1∑
k=1

ωk Ik +
εj+1

2

n−1∑
k=1

n−1∑
l=1

Ckl Ik Il+O(εj+2).
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The assumption that dT/dh 6= 0 is equivalent to ∂2H0/∂I
2 6= 0. Now

condition (5) is satisfied since it is clear that the rank of

∂αI Ω(I) =

[
∂2H0/∂I

2 0

0 C

]

is n where C is the matrix [Ckl] and s = 1.

2.4. Regularization. In our subsequent applications of Theorems 2.4
and 2.5, the term H0 will be the Hamiltonian of the Kepler problem.
For the consideration of circular solutions (in the planar and the spatial
cases) or equatorial solutions (in the spatial case) of the restricted three-
body problem, classical Poincaré-like coordinates assure that dT/dh 6= 0,
but for the rectilinear ones which pass close to collisions we will need to
use regularized coordinates. The Kepler problem has a removable singu-
larity due to collisions of the infinitesimal with the primary. Removing
the singularity is called regularization. It is important in our study of
collision and near-collision periodic solutions and their related invariant
tori.

Moser [29] shows that the n-dimensional Kepler problem can be reg-
ularized in the sense that there is a symplectomorphism that takes the
Kepler flow for a fixed negative energy level to the geodesic flow onto
the unit tangent bundle of the punctured n-sphere, Ŝn, punctured at
the north pole. The geodesic flow of the unit sphere over the north pole
corresponds to the collision orbits and by adding it back in effect adds
the collisions in a regular flow.

Let E be the whole negative energy region of the Kepler problem,
the elliptic region, and let T+Ŝn be the tangent bundle of the punc-
tured sphere minus the zero section. Ligon and Schaaf [24] show how to

transform canonically the whole elliptic region E to the bundle T+Ŝn.
This transformation takes the usual Hamiltonian of the Kepler prob-
lem to a Hamiltonian D on T+Ŝn. Hamiltonian D extends naturally
to T+Sn thus making effective the regularization of the Kepler problem
for all negative energies. Also see [10] and the simpler approach given
by Heckman and de Laat in [18].

For the Kepler problem or the flow defined by D the period is constant
on energy levels and dT/dh 6= 0 even at the regularized collision orbits.
This is precisely what we need to assure the existence of families of
invariant 2-tori in Section 3 and invariant 3-tori in Sections 3 and 4,
even around the near rectilinear periodic solutions in Subsection 4.3.
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3. The planar lunar problem

3.1. The averaged Hamiltonian for the planar problem. Here
we briefly summarize the normalization and reduction as given in [36].
For us the lunar problem is the restricted three-body problem where
the infinitesimal is close to one of the primaries. We start with the
Hamiltonian of the planar restricted three-body problem given by:

(8) H =
1

2
(y2

1 + y2
2)− (x1 y2 − x2 y1)

− µ√
(x1 − 1 + µ)2 + x2

2

− 1− µ√
(x1 + µ)2 + x2

2

.

First we perform the linear change from y2 and x1 to y2 − µ and x1 − µ
respectively to bring one primary to the origin. Then, we introduce
a small parameter ε by replacing y = (y1, y2) by ε−1(1 − µ)1/3 y and
x = (x1, x2) by ε2(1 − µ)1/3 x. By doing so we restrict H to the case
where the infinitesimal is moving around one of the primaries. This
change is symplectic with multiplier ε−1(1 − µ)−2/3, thus H must be
replaced by ε−1(1− µ)−2/3H.

Next we scale time by dividing t by ε3 and multiplying H by ε3. Then
we expand the resulting Hamiltonian in powers of ε to get

(9) Hε =
1

2
(y2

1 + y2
2)− 1√

x2
1 + x2

2

− ε3(x1 y2 − x2 y1) +
1

2
ε6 µ(−2x2

1 + x2
2) +O(ε8).

The zeroth-order term is the Hamiltonian of the Kepler problem and
the O(ε3) term is due to the rotating coordinates. It is not until O(ε6)
that the other primary influences the motion. This applies for the whole
treatment of the lunar planar and spatial restricted three-body problems
in this section and in Sections 4 and 5.

To construct this flow on the orbit space of (9) we used in [36] a blend
of polar and Delaunay coordinates so that the Hamiltonian is ready for
the elimination of the mean anomaly ` to high order by means of the
normalization of Delaunay [12, 13]. This normalization is effectively
the average of the perturbation over the periodic motions of the Kepler
problem.

The orbit space for the regularized planar Kepler problem is a 2-
sphere S2 [29]. A coordinate system for the reduced space is a = G +
LA, where G is the angular momentum vector, L is the square root
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of the semimajor axis, and A is the perigee vector1. One has A =
e(cos g, sin g, 0) and then a1 = e cos g, a2 = e sin g and a3 = G, with G

the third component of G, and e =
√

1−G2/L2 the eccentricity. One
can check that |a| = L and the vector a uniquely determines an orbit
of the Kepler problem on the energy level h = −1/(2L2). Each point
on the sphere a2

1 + a2
2 + a2

3 = L2 corresponds to a bounded orbit of the
Kepler problem. The points (0, 0,±L) correspond to circular motions,
the circle a3 = 0 corresponds to collision motions, and the other points on
the sphere correspond to elliptic motions. The complement of (0, 0,±L)∪
{a3 = 0} is the orbit space of the elliptic domain E .

We now have

(10) H = −a3 −
3

4
ε3 µL2(3 a2

1 − 2 a2
2) +O(ε5).

We note that this Hamiltonian is well defined and smooth on the excep-
tional set (0, 0,±L) ∪ {a3 = 0} so (10) is the Hamiltonian on the full
orbit space S2.

The Hamiltonian (10) has two non-degenerate critical points, a maxi-
mum at a = (0, 0,−L) and a minimum at a = (0, 0, L), which correspond
to near circular periodic solutions of the planar restricted three-body
problem of period T (ε) = T + O(ε3). These are the classical Hill’s or-
bits of the restricted problem, which are the continuation of the circular
solutions of the Kepler problem (see [7, 25] and the references therein).
The maximum gives the prograde orbit and the minimum the retrograde
one.

Since H = −a3 + · · · the linearized equations about (0, 0,±L) are
ȧ1 = a2, ȧ2 = −a1, and so the characteristic exponents at these critical
points are ±i.

Thus, these near circular periodic solutions are elliptic with charac-
teristic multipliers 1, 1, 1 + ε3 T i+O(ε6) and 1− ε3 T i+O(ε6).

To see if Theorem 2.3 applies at (0, 0,±L) we need several changes of
variables. We start by moving the equilibria (0, 0,±L) to the origin of a
coordinate system. Therefore, we define

a1 = a1, a2 = a2, a3 = a3 ∓ L,

1The vector A points to the perigee which is often attributed to Laplace, Runge, Lenz
and others. But since Newton and Kepler knew that perigee was fixed we choose this
neutral name.
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and then we introduce (local) symplectic coordinates Q and P as:

Q =
√

2
La1√

2L± a3

=
√

2(L∓G) cos g,

P = ±
√

2
La2√

2L± a3

= ±
√

2(L∓G) sin g.

By recalling that (`, g, L,G) are symplectic variables, it is straightfor-
ward to check that (Q,P ) are symplectic. These coordinates are valid
in the hemispheres ±a3 > 0 (i.e., ±G < L).

Now, to write H in these coordinates first note that

1

2
(Q2 + P 2) = L∓G = L∓ a3,

and also

a2
1 =

Q2

2L2
(L± a3), a2

2 =
P 2

2L2
(L± a3).

Making this change of variables and omitting additive constants gives

H = ±1

2
(Q2 + P 2)− 3

16
ε3 µ(2P 2 − 3Q2)(Q2 + P 2 − 4L) +O(ε5).

Change to action-angle variables by

Q =
√

2 I1 cos θ1, P =
√

2 I1 sin θ1

to get

H = ±I1 −
3

4
ε3 µ I1(2L− I1)(−2 + 5 cos2 θ1) +O(ε5),

then average over θ1 to get

H = ±I1 −
3

8
ε3 µ I1(2L− I1) +O(ε5).

To apply Theorem 2.3 make the identification k = − 3
8µ I1(2L − I1).

Now

(11)
∂2k

∂I2
1

=
3

4
µ,

and it does not vanish. So the hypotheses of Theorem 2.3 hold (after
replacing ε3 by δ and considering δ the small parameter of Section 2).
Moreover, the measure of the frequencies of the invariant curves appear-
ing in the proof of Theorem 2.3 is positive. Also, we can be assured that
there are invariant 2-tori surrounding the periodic solutions arbitrarily
close to it. Thus we have proved the following
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Proposition 3.1. The near circular periodic solutions of the planar
lunar problem are orbitally stable and enclosed by invariant KAM 2-tori
for small enough ε.

4. The spatial lunar problem

4.1. The averaged Hamiltonian for the spatial problem. Again
we summarize results from [36]. As in the planar case we start with the
Hamiltonian of the spatial problem given in the rotating frame by

(12) H =
1

2
(y2

1 + y2
2 + y2

3)− (x1 y2 − x2 y1)

− µ√
(x1 − 1 + µ)2 + x2

2 + x2
3

− 1− µ√
(x1 + µ)2 + x2

2 + x2
3

.

Then we move one primary to the origin, introduce a small parameter ε
that ensures that the infinitesimal is close to a primary, scale the Hamil-
tonian as in the planar case, and expand the Hamiltonian in powers of ε.
Then, we obtain:

(13) Hε =
1

2
(y2

1 + y2
2 + y2

3)− 1√
x2

1 + x2
2 + x2

3

− ε3(x1 y2 − x2 y1) +
1

2
ε6 µ(−2x2

1 + x2
2 + x2

3) +O(ε8).

Next we express the Hamiltonian in mixed polar-nodal and Delaunay
coordinates and eliminate the mean anomaly to a fixed order using Lie
transformations [11, 25]. The normalized Hamiltonian reads

Hε=− 1

2L2
− ε3N

+
1

16
ε6 µL4

(
(2+3 e2)

(
1−3 c2−3(1−c2) cos(2 ν)

)
+30 c e2 sin(2 g) sin(2 ν)

−15 e2 cos(2 g)
(
1−c2+(1+c2) cos(2 ν)

))
+O(ε8),

(14)

where G = |G|, N is the projection of G onto the axis x3 (note that
N coincides with G in the planar version of the Delaunay coordinates)
and ν is the argument of the node, e.g. the angular coordinate conjugate
to N ; finally c = N/G represents the cosine of the inclination angle, I,
of the orbital plane with respect to the equatorial plane and it is enough
to consider I ∈ [0, π]. The transformed Hamiltonian, after truncating
higher-order terms, depends on the two angles g and ν and their associ-
ated momenta G and N respectively, whereas L is an integral of motion.
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Applying reduction theory, once higher-order terms have been dropp-
ed, the Hamiltonian H is defined on the orbit space which is the four-di-
mensional manifold S2 × S2 [29]. A similar argument to that given for
the planar Kepler problem in Subsection 3.1 shows that S2×S2 is indeed
the orbit space of the regularized spatial Kepler problem since collision
orbits can be studied in this space as we show below.

We can use the set of variables given by a = (a1, a2, a3) and b =
(b1, b2, b3) with the constraints a2

1 + a2
2 + a2

3 = b21 + b22 + b23 = L2 to pa-
rameterize S2×S2, where a = G+LA and b = G−LA. The vector A
represents the three-dimensional perigee vector. Note that the expres-
sions of the components of A and a in terms of the Delaunay coordinates
are not the same as in the planar case, see [8, 31]. A representation of
the space S2 × S2 is given in Figure 1: on the left, the red point repre-
sents the vector a on the sphere |a| = L whereas on the right one, the
green point accounts for the vector b on the sphere |b| = L.

a3 b3

a1 a2 b1 b2

×

Figure 1. A single motion in the orbit space S2 × S2

is given through the two points on their corresponding
spheres.

As 2G = ((a1+b1)2+(a2+b2)2+(a3+b3)2)1/2, then G = 0 if and only
if a1+b1 = a2+b2 = a3+b3 = 0, a2

1+a2
2+a2

3 = L2 and b21+b22+b23 = L2. So
the subset of S2×S2 defined byR = {(a,−a) ∈ R6 | a2

1+a2
2+a2

3 = L2} is
a two-dimensional set consisting of collision trajectories. As in Delaunay
variables the circular orbits satisfy G = L this implies that a1 = b1,
a2 = b2 and a3 = b3. Thus the circular orbits define the two-dimensional
set given by C = {(a,a) ∈ R6 | a2

1 + a2
2 + a2

3 = L2}. On the other
hand equatorial motions satisfy G = |N | and are given by the two-
dimensional set Eq = {(a,b) ∈ R6 | a2

1 + a2
2 + a2

3 = L2, b1 = −a1, b2 =
−a2, b3 = a3}. The use of the variables a and b extends the use of
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the Delaunay variables, as we can include equatorial, circular and linear
trajectories [31, 36]. Finally, the other points on S2×S2 correspond to
elliptic motions of the spatial Kepler problem.

After several simplifications and manipulations over Hε, the normal
form Hamiltonian expressed in the invariants a and b is

H = −1

2
(a3 + b3)

− 3

8
ε3 µL2

(
a2

1 − a2
2 − a2

3 + b21 − b22 − b23 − 4 a1 b1

+ 2 a2 b2 + 2 a3 b3
)

+O(ε5).

(15)

Now, as the Hamiltonian starts as H = − 1
2 (a3 + b3) + · · · it has

a non-degenerate maximum at (a,b) = (0, 0,−L, 0, 0,−L) and a non-
degenerate minimum at (a,b) = (0, 0, L, 0, 0, L), which by Reeb’s Theo-
rem 2.2 correspond to elliptic periodic solutions of the spatial restricted
three-body problem (12) of period T (ε) = T + O(ε3). These are the
near circular equatorial solutions (also called near circular coplanar so-
lutions as the small particle moves on the plane determined by the mo-
tion of the two primaries) already encountered in the planar case. The
Hamiltonian H also has two non-degenerate critical points of index 2 at
(a,b) = (0, 0,±L, 0, 0,∓L) which correspond to the near rectilinear mo-
tions whose projection in the coordinate space leads to periodic orbits
in the vertical axis x3. They are indeed the near rectilinear trajectories
found by Belbruno [3] for small µ.

One sees that the characteristic exponents of all critical points of Y
are ±i (double).

Thus, the characteristic multipliers of the four families of periodic
solutions of the system defined by the Hamiltonian (12) are 1, 1, 1 +
ε3 T i, 1 + ε3 T i, 1− ε3 T i, 1− ε3 T i plus terms of order O(ε6).

4.2. The circular equatorial points (0, 0,±L, 0, 0,±L). We first
move the Hamiltonian to the origin by

a1 = a1, a2 = a2, a3 = a3 ± L, b1 = b1, b2 = b2, b3 = b3 ± L,

then we change variables by

Q1 =
a2√

2L± a3

, Q2 =
b2√

2L± b3
,

P1 = ∓ a1√
2L± a3

, P2 = ∓ b1√
2L± b3

,
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with inverse

a1 =∓P1

√
2L− P 2

1 −Q2
1, a2 =Q1

√
2L− P 2

1 −Q2
1, a3 =∓(P 2

1 +Q2
1),

b1 =∓P2

√
2L− P 2

2 −Q2
2, b2 =Q2

√
2L− P 2

2 −Q2
2, b3 =∓(P 2

2 +Q2
2).

The change is canonical, with Q1 and Q2 as coordinates and P1 and P2

as their associated momenta.
The resulting Hamiltonian is obtained after writing H in terms of

the Qi’s and Pi’s and dropping constant terms, so

H=±1

2
(P 2

1 +Q2
1)± 1

2
(P 2

2 +Q2
2)

− 3

4
ε3µL2

(
L(P 2

1 + P 2
2 )− L(Q2

1 +Q2
2)

−(2P1 P2−Q1Q2)
√

2L− P 2
1 −Q2

1

√
2L− P 2

2 −Q2
2

−(P 2
2 −Q2

1)(P 2
2 +Q2

2)−P 2
1 (P 2

1 −P 2
2 +Q2

1−Q2
2)
)

+O(ε5).

The Hamiltonian H is valid in a neighborhood of (0, 0,±L, 0, 0,±L).
Now we scale by Qj = ε−3/2Qj and P j = ε−3/2 Pj for j ∈ {1, 2}. The

canonical structure is preserved by dividing H by ε3. After expansion of
this Hamiltonian in powers of ε we obtain

H=±1

2
(P

2

1 +Q
2

1)± 1

2
(P

2

2 +Q
2

2)

− 3

4
ε3µL3

(
P

2

1 + P
2

2 − 4P 1 P 2 −Q
2

1 −Q
2

2 + 2Q1Q2

)
+

3

8
ε6µL2

(
2(P

4

1−P
3

1 P 2−P
2

1 P
2

2−P 1 P
3

2+P
4

2)+(P
2

1+P
2

2)Q1Q2

+2(P
2

1−P 1 P 2+P
2

2)(Q
2

1−Q
2

2)+Q1Q2(Q1−Q2)2
)

+O(ε8).

For (0, 0, L, 0, 0, L) the eigenvalues associated with the linear differential
equation given through the quadratic part of H are

(16) ±
√

1 + 2 ε i = ±ω1 i, ±
√

1− 2 ε− 24 ε2 i = ±ω2 i
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with ε = 3
4ε

3 µL3 and ω1 > 1 > ω2 > 0. For the point (0, 0,−L, 0, 0,−L)
the eigenvalues are

(17) ±
√

1− 2 ε i = ±ω1 i, ±
√

1 + 2 ε− 24 ε2 i = ±ω2 i.

In this case ω2 > 1 > ω1 > 0. We remark that if ε = 0, then ω1 = ω2 = 1,
thus the quadratic part of H is in 1 : −1 resonance. So we keep ε small
but positive so that we can apply KAM Theory. As a consequence ω1

and ω2 are close to 1 but different from it.
The eigenvectors related to ω1 and ω2 form a basis of R4, thus the

quadratic part of H is brought into normal form through a canonical
change of variables. This linear change must be applied to H. The
columns of the matrix are the eigenvectors scaled so that the matrix
is symplectic. After defining the new variables by (q1, q2, p1, p2) the
quadratic part of H becomes

±ω1 i q1 p1 ± ω2 i q2 p2.

The values of the frequencies ω1 and ω2 are given in (16) if the quadratic
part is ω1 i q1 p1 +ω2 i q2 p2, whereas if the quadratic part is −ω1 i q1 p1−
ω2 i q2 p2 we take the frequencies from (17). From now on when referring
to (0, 0, L, 0, 0, L) we assume that ω1 and ω2 are as in (16), and when we
study the point (0, 0,−L, 0, 0,−L) we take the frequencies from (17).

We introduce

q1 =
√
I1(cosϕ1 − i sinϕ1), q2 =

√
I2(cosϕ2 − i sinϕ2),

p1 =
√
I1(sinϕ1 − i cosϕ1), p2 =

√
I2(sinϕ2 − i cosϕ2),

and the change satisfies dq1 ∧ dp1 + dq2 ∧ dp2 = dI1 ∧ dϕ1 + dI2 ∧ dϕ2.
This transforms the quadratic terms of H into ±ω1 I1 ± ω2 I2, while the
quartic terms are converted into a finite Fourier series in ϕ1 and ϕ2

whose coefficients are homogeneous quadratic polynomials in I1 and I2.
Now we average H over ϕ1 and ϕ2, obtaining

H = ±ω1 I1 ± ω2 I2 −
(ω2

1 − 1)2(ω2
1 + 3)

24µL4 ω2
1

I2
1

+
(ω2

1 − 1)2(21ω2
1 − 13)

6µL4 ω1 ω2
I1 I2

− (ω2
1 − 1)2(24ω4

1 − 119ω2
1 + 91)

24µL4 ω2
2

I2
2 + · · · .

The coefficients of I1, I2, I2
1 , I2

2 , and I1 I2 may be expressed in terms
of ε, and expanding them in powers of ε around 0 yields expressions such
that the leading terms of the coefficients of I1 and I2 are independent
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of ε while the coefficients of I2
1 , I2

2 , and I1 I2 are factorized by ε2. The
generating functions computed in the averaging process in the two cases
are enormous, but they are finite Fourier series in the angles ϕ1 and ϕ2.

At this point we can compute the determinant of the Hessian asso-
ciated with H. First we calculate the constraint relating ω1 with ω2

through ε using (16) or (17), obtaining

ω2 =
√

(2ω2
1 − 1)(4− 3ω2

1).

We end up with the same expression for the points (0, 0, L, 0, 0, L) and
(0, 0,−L, 0, 0,−L), which is

det


∂2H
∂I2

1

∂2H
∂I1∂I2

∂2H
∂I2∂I1

∂2H
∂I2

2

=
(ω2

1−1)4(24ω6
1−1811ω4

1 +1918ω2
1−403)

144µ2 L8 ω2
1 ω

2
2

+· · · .

The determinant vanishes when ω1∈{0.53692 . . . , 0.88488 . . . , 1, 8.62479

. . . }, however ω1 is near 1 (either above or below, but it never reaches
this value as ε cannot be zero). Next we express the coefficients of H in
terms of ε, divide the result by ε6 as the quadratic terms of H start at
that order, compute the Hessian, and we obtain:

det


∂2H
∂I2

1

∂2H
∂I1∂I2

∂2H
∂I2∂I1

∂2H
∂I2

2

 = −153

16
µ2 L4 +O(ε3).

Thus Theorem 2.5 applies after setting δ = ε6, using δ as the small
parameter of (6), then j = 1.

According to [16] one has that the measure of the set omitted from
the established invariant tori related to Theorem 2.4 is of order O(εb)
with b =

∑a
i=1mi(ni − ni−1). In this case, we need to write down the

Hamiltonian normal form Hε arranged in powers of ε. This is achieved
after putting the frequencies ωi’s in terms of ε, undoing the scalings (ex-
cepting the stretching of coordinates passing from Qj ’s and Pj ’s to Qj ’s

and P j ’s as we want that the normal form will be valid in a neighborhood
of the points (0, 0,±L, 0, 0,±L)), expanding the resulting expression in
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powers of ε and incorporating the dropped terms to get H. We get

Hε = − 1

2L2
∓ ε3L± ε6(I1 + I2) +

3

4
ε9µL3(I1 − I2)

− 3

32
ε12µL2

(
4(I2

1−8I1 I2−I2
2 )±3µL4(I1+25 I2)

)
+O(ε15).

(18)

From (18) we infer that a = 4, m1 = 3, m2 = 6, m3 = 9, m4 = 12,
n0 = n1 = 1, n2 = n3 = n4 = 3, therefore b = 12, besides s = 1. Thus,
we conclude

Proposition 4.1. There are families of invariant KAM 3-tori around
the near circular coplanar periodic solutions of the full system intro-
duced by the Hamiltonian (12). These invariant tori form a majority
in the sense that the measure of the complement of their union is of
order O(ε12).

Although we do not know about the non-linear stability of the families
of periodic solutions, we can say something more about the stability of
the equilibria (0, 0,±L, 0, 0,±L) of the reduced system on the base space.
Since the Hamiltonian H is positive or negative definite at these points,
the classical theorem already known to Dirichlet [14, 25] applies.

Proposition 4.2. The relative equilibrium points (0, 0,±L, 0, 0,±L) are
stable on the reduced space S2 × S2.

4.3. The rectilinear points (0, 0,±L, 0, 0,∓L). After moving the
origin to the point of interest through

a1 = a1, a2 = a2, a3 = a3 ± L, b1 = b1, b2 = b2, b3 = b3 ∓ L,

we introduce the local symplectic coordinates

Q1 =
a2√

2L± a3

, Q2 =
b2√

2L∓ b3
,

P1 = ∓ a1√
2L± a3

, P2 = ± b1√
2L∓ b3

,

with inverse

a1 =∓P1

√
2L− P 2

1 −Q2
1, a2 =Q1

√
2L− P 2

1 −Q2
1, a3 =∓(P 2

1 +Q2
1),

b1 =±P2

√
2L− P 2

2 −Q2
2, b2 =Q2

√
2L− P 2

2 −Q2
2, b3 =±(P 2

2 +Q2
2).
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The resulting Hamiltonian is obtained after putting H in terms of
the Qi’s and Pi’s and omitting constant terms. We get

H=±1

2
(P 2

1 +Q2
1)∓ 1

2
(P 2

2 +Q2
2)

− 3

4
ε3 µL2

(
3L(P 2

1 + P 2
2 ) + L(Q2

1 +Q2
2)

+(2P1 P2+Q1Q2)
√

2L− P 2
1 −Q2

1

√
2L− P 2

2 −Q2
2

−(P 2
2 +Q2

1)(P 2
2 +Q2

2)−P 2
1 (P 2

1 +P 2
2 +Q2

1+Q2
2)
)

+O(ε5).

The Hamiltonian H is valid in a neighborhood of the points (0, 0,±L,
0, 0,∓L).

Next we scale variables through the change Qj = ε−3/2Qj and P j =

ε−3/2 Pj for j ∈ {1, 2}. To make the change canonical we must divide H
by ε3. Expanding this Hamiltonian in powers of ε (and keeping the same
name for it) we obtain the Hamiltonian:

H = ±1

2
(P

2

1 +Q
2

1)∓ 1

2
(P

2

2 +Q
2

2)

− 3

4
ε3µL3

(
3(P

2

1 + P
2

2) + 4P 1 P 2 +Q
2

1 +Q
2

2 + 2Q1Q2

)
+

3

8
ε6µL2

(
2(P

4

1 + P
3

1 P 2 + P
2

1 P
2

2 + P 1 P
3

2 + P
4

2)

+ 2P 2(P 1 + P 2)Q
2

1 + (P
2

1 + P
2

2)Q1Q2

+ 2(P
2

1 + P 1 P 2 + P
2

2)Q
2

2 +Q1Q2(Q1 +Q2)2
)

+O(ε8).

The eigenvalues associated with the linear vector field given through
the quadratic part of H are the expressions

±
√

1 + 20 ε2 + 2
√

5 ε
√

3 + 20 ε2 i = ±ω1 i,

±
√

1 + 20 ε2 − 2
√

5 ε
√

3 + 20 ε2 i = ±ω2 i,

(19)

where ε stands for 3
4ε

3 µL3 and ω1 > 1 > ω2 > 0. Note that ω1 = ω2 = 1

when ε = 0, and the quadratic part of H is in 1 : −1 resonance. However
when ε 6= 0 the eigenvalues are distinct.
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Thus, the relative equilibria of the reduced system are parametrically
stable and therefore the corresponding periodic solutions of the full sys-
tem (12) dealing with the near rectilinear motions are elliptic.

We keep ε small but positive so that we may perform further nor-
malization. By doing so, both ω1 and ω2 remain close to 1 but different
from it. As the corresponding set of eigenvectors forms a basis of R4,
the quadratic part of H may be brought into normal form through a
canonical change of variables. This linear change has to be applied
to H. The columns of the transformation matrix are the eigenvectors
related to ±ω1 i and ±ω2 i multiplied by scale constants chosen to make
the change symplectic. We do not give the explicit expression for this
change because it is lengthy and the procedure is standard; see for in-
stance [5, 23]. Denoting the new variables by (q1, q2, p1, p2) and using
the same name for the Hamiltonian, its quadratic part becomes in both
cases

−ω1 i q1 p1 + ω2 i q2 p2.

Next we introduce action-angle variables (I1, I2, ϕ1, ϕ2) by means of

q1 =
√
I1(cosϕ1 − i sinϕ1), q2 =

√
I2(cosϕ2 − i sinϕ2),

p1 =
√
I1(sinϕ1 − i cosϕ1), p2 =

√
I2(sinϕ2 − i cosϕ2).

It is easy to check that dq1 ∧ dp1 + dq2 ∧ dp2 = dI1 ∧ dϕ1 + dI2 ∧ dϕ2.
This transformation brings the quadratic terms of H to −ω1 I1 + ω2 I2,
while its quartic terms are converted into a finite Fourier series in ϕ1

and ϕ2 whose coefficients are homogeneous quadratic polynomials in I1
and I2. We do not give the Hamiltonian because it is enormous.

Now we average H over ϕ1 and ϕ2, and we obtain:

H = −ω1 I1 + ω2 I2 +
(7ω6

1 + 13ω4
1 + 13ω2

1 + 3)(ω2
1 − 1)2

30µL4 ω2
1(ω2

1 + 2)2(2ω2
1 + 1)

I2
1

− 2(ω2
1 − 1)2(ω4

1 − 14ω2
1 − 5)(2ω2

2 + 1)

135µL4 ω1(ω2
1 + 2)2 ω2

I1 I2

+
(7ω6

2 + 13ω4
2 + 13ω2

2 + 3)(ω2
2 − 1)2

30µL4 ω2
2(ω2

2 + 2)2(2ω2
2 + 1)

I2
2 + · · · .

The coefficients of I2
1 , I2

2 , and I1 I2 may be expressed in terms of ε,
and after expanding them in powers of ε, one obtains a formula starting
in ε2, while the leading terms of the coefficients of I1 and I2 do not
depend on ε. The generating function responsible for this averaging step
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is too big to be reproduced here, but it is a finite Fourier series in the
angles ϕ1 and ϕ2.

Now we can compute the determinant of the Hessian associated
with H. Using the constraint which relates ω1 and ω2 through (19)
given by

ω2 =

√
4− ω2

1

2ω2
1 + 1

,

we get

det


∂2H
∂I2

1

∂2H
∂I1∂I2

∂2H
∂I2∂I1

∂2H
∂I2

2

=
(ω2

1−1)6(7ω8
1−28ω6

1−534ω4
1−604ω2

1−137)

225µ2 L8 ω2
1(ω2

1 − 4)(ω2
1 + 2)4(2ω2

1 + 1)2
+· · ·

which does not vanish since the (positive) real roots of the determinant
occur for ω1 = 1 or ω1 = 3.37369 . . . , but as ε does not vanish ω1 remains
greater than 1.

Now we need to express the coefficients of H in terms of ε. First of
all we use (19) to put ω1 and ω2 in terms of ε and divide the result by ε6

as the quadratic terms of H start at that order. Then we compute the
Hessian, getting

det


∂2H
∂I2

1

∂2H
∂I1∂I2

∂2H
∂I2∂I1

∂2H
∂I2

2

 =
405

4
ε6 µ4 L10 +O(ε12).

Thus Theorem 2.5 cannot be applied directly as the determinant above
is factorized by ε6. Nevertheless we can still apply Theorem 2.4. Un-
doing the scalings introduced to obtain H as function of the actions I1
and I2 (excepting the stretching of variables that define Qi’s and P i’s in
terms of Qi’s and Pi’s), incorporating the terms dropped in the process,
expressing the ωi’s in terms of ε, expanding the whole Hamiltonian in
terms of ε we end up with

Hε = − 1

2L2
+ ε6(−I1 + I2)− 3

√
15

4
ε9 µL3(I1 + I2)

+
3

32
ε12 µL2

(
16(I1 + I2)2 + 15µL4(−I1 + I2)

)
+O(ε15).

(20)
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The Hamiltonian (20) is valid near the points (0, 0,±L, 0, 0,∓L). Then
Theorem 2.4 can be applied taking a = 3, m1 = 6, m2 = 9, m3 =
12, n0 = 1, n1 = n2 = n3 = 3, In0 = (L), In1 = In2 = In3 =
(L, I1, I2), Īn0 = (L), Īn1 = Īn2 = Īn3 = (I1, I2). If h0 is the Keplerian
Hamiltonian in Delaunay variables and h1, h2, and h3 denote respectively
the terms of (20) factorized by ε6, ε9, and ε12, the vector of frequencies
has dimension six and is given explicitly by

Ω(I) =

(
∂h0

∂L
,
∂h1

∂I1
,
∂h1

∂I2
,
∂h2

∂I1
,
∂h2

∂I2
,
∂h3

∂I1
,
∂h3

∂I2

)

=

(
1

L3
, −1, 1, −3

√
15

4
µL3, −3

√
15

4
µL3,

3(I1 + I2)µL2 − 45

32
µ2 L6, 3(I1 + I2)µL2 +

45

32
µ2 L6

)
and the 4×6-matrix with rows Ω(I), ∂Ω(I)/∂L, ∂Ω(I)/∂I1 and ∂Ω(I)/∂I2
has rank three, leading to the existence of the invariant tori of dimension
three.

We apply Remark 2 of [16, p. 1422] to estimate the measure of the
surviving invariant tori (in the sense of the persistence of the KAM tori
that remain when higher-order terms are added). According to [16] one
has that the measure of the set omitted from the established invariant
tori is of order O(εb) with b =

∑a
i=1mi(ni − ni−1) = 12. As we only

needed the first-order partial derivatives in (5) we have s = 1. Thus, we
conclude

Proposition 4.3. There are families of invariant KAM 3-tori around
the near rectilinear periodic solutions of the full system defined through
the Hamiltonian (12). These invariant tori form a majority in the sense
that the measure of the complement of their union is of order O(ε12).

These invariant tori are the generalization of the punctured 2-tori in
the lunar case of the planar restricted three-body problem studied by
Chenciner and Llibre [4].

Contrarily to the planar case we do not know the non-linear stability
of the periodic solutions. However, we can say something about the
stability of the equilibria (0, 0,±L, 0, 0,∓L) of the reduced system on
the base space.

For the analysis of the stability of these equilibria we use Arnold’s
Theorem [27, 34]. We fix ε small and positive. We need to find H4, i.e.,
the quartic terms of H as functions of the qi’s, pi’s, in other words, the
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quadratic terms of H as functions of I1 and I2, and then compute

H4(ω2, ω1)=
(ω2

1−1)2(ω12
1 −16ω10

1 +66ω8
1−268ω6

1−275ω4
1−132ω2

1−24)

15µL4 ω2
1 (ω2

1 − 4)(2ω4
1 + 5ω2

1 + 2)2

=6 ε6 µL2 +O(ε9).

Since this term does not vanish for ω1 close to (but larger than) 1,
Arnold’s Theorem applies, and thus

Proposition 4.4. The linear equilibria points (0, 0,±L, 0, 0,∓L) are
stable on the orbit space S2 × S2.

Even when H4(ω2, ω1) has ε6 as a factor, Arnold’s Theorem in the
form given in [30] applies (see also [25, 27]). Indeed in theorems pre-
sented in [25, 27, 30], although ε does not appear in the statements,
it is introduced in the proofs by scaling. The proofs rely on the final
theorem in Moser’s classic paper [28] where the invariant curve theorem
allows small twists, i.e., terms multiplied by εa with a > 0. This idea
was already used in the proof of Theorem 2.3.

In Subsection 4.2 we could have used the symplectic coordinates in-
troduced in [20], which are defined to deal with near circular equatorial
motions in S2 × S2. The computations carried out with this set of vari-
ables are a bit shorter than the ones we have applied in Subsection 4.2
but we have wanted to maintain a similar set to the one used for the
linear motions here.

5. The second reduction in the spatial lunar problem

5.1. Elimination of the node and the twice-reduced space. Next
we eliminate the argument of the node by averaging the Hamiltonian (14)
with respect to the angle ν. Our aim is to get more insight in the dy-
namics of the spatial lunar restricted three-body problem, obtaining new
invariant 3-tori of the Hamiltonian (12). The normalized Hamiltonian
has been studied by several authors, see the references [9, 32, 35], and
we summarize the main results here.

After applying the Lie transformation method [11, 25] with the aim
of averaging the angle ν, we end up with the following Hamiltonian

Hε = − 1

2L2
− ε3N

+
1

16
ε6µL4

(
(1− 3 c2)(5− 3 η2)

− 15(1− c2)(1− η2) cos(2 g)
)

+O(ε8),

(21)

where η =
√

1− e2 = G/L.
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After truncating higher-order terms (21) defines a one-degree-of-free-
dom system which is invariant with respect to the Keplerian symmetry
and the axial symmetry, or equivalently, the actions L and N become ap-
proximate integrals of motion. Thus we can reduce the Hamiltonian Hε
after constructing the corresponding orbit space.

The algebra of polynomials on S2 × S2 invariant under the action
associated with this reduction is generated by the πi’s where

(22)
π1 = a2

1 + a2
2, π2 = a1 b2 − a2 b1, π3 = a3,

π4 = b21 + b22, π5 = a1 b1 + a2 b2, π6 = b3,

together with the constraints

(23) π1 + π2
3 = L2, π4 + π2

6 = L2, π2
2 + π2

5 = π1 π4.

Taking the map

πN : S2 × S2 −→ {N} × R3 : (a,b) 7→ (N, τ1, τ2, τ3) ≡ (N, τ),

where

τ1 =
1

2
(π3 − π6), τ2 = π2, τ3 = π5

we define the invariants τ1, τ2, and τ3 in terms of a and b as

(24) τ1 =
1

2
(a3 − b3), τ2 = a1 b2 − a2 b1, τ3 = a1 b1 + a2 b2.

The constraints (23) are used to define the corresponding orbit space.
The space TL,N , called twice-reduced space, is defined as the image
of S2 × S2 by πN , that is,

TL,N = πN (S2 × S2)

=
{
τ ∈ R3 | τ2

2 + τ2
3 =

(
L2 − (τ1 +N)2

)(
L2 − (τ1 −N)2

)}
,

(25)

for 0 ≤ |N | ≤ L and L > 0. The invariants τ2 and τ3 lie in the interval
[N2 − L2, L2 −N2], whereas τ1 belongs to [|N | − L,L− |N |].

It is proved in [8, 9] that when 0 < |N | < L, TL,N is diffeomorphic to
the 2-sphere S2 and therefore the reduction is regular in that region of
the phase space. However, when N = 0 the space TL,0 is a topological
2-sphere with two singular points, namely, the vertices of the surface TL,0
at (±L, 0, 0). Thus, the reduction by the axial symmetry is singular [1].
When |N | = L the space TL,±L is just a point. This case corresponds
to motions that are circular and equatorial at the same time, and needs
to be analyzed on S2 × S2, concretely in neighborhoods of the points
(0, 0,±L, 0, 0,±L).
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The singular points (also called peaks) (±L, 0, 0) of TL,0 and the ex-
ceptional case of TL,±L are the images of the points (0, 0,±L, 0, 0,∓L)
and (0, 0,±L, 0, 0,±L), whereas the rest of the points of TL,N with
0 ≤ |N | < L are images of circles on S2 × S2 by means of πN .

It is instructive to stress that as (±L, 0, 0) are singular points on the
orbit space TL,0, they must be relative equilibria of a reduced system re-

lated to a Hamiltonian function, say H, that is properly defined on these
points. Thus, when reconstructing the flow of a certain system whose
reduced Hamiltonian is H (keeping in mind that H has been obtained
after reducing the full system by the Keplerian and the axial symme-
tries), the points (±L, 0, 0) correspond to families of rectilinear periodic
solutions of the full Hamiltonian, that is, they are the same periodic
solutions reconstructed from the point (0, 0,±L, 0, 0,∓L) on S2 × S2.

This singular reduction was made for the first time by Cushman in
the setting of the artificial satellite theory [8]; see also [6] and the survey
paper [9].

It is possible to express the quantities sin g, cos g and G in terms of τ ,
L, and N . Indeed one gets

2G2 = L2 +N2 − τ2
1 + τ3,

cos g = − τ2√
(L2 −N2)2 − (τ2

1 − τ3)2
,

sin g = τ1

√
2(L2 +N2 − τ2

1 + τ3)

(L2 −N2)2 − (τ2
1 − τ3)2

,

(26)

and this applies when the argument of the perigee g is well defined.
Rectilinear solutions must satisfy G=N=0. Taking also into account

the constraint appearing in (25), we know that they are defined on the
one-dimensional set RL,0 = {τ ∈R3 | τ2 =0, τ3 =τ2

1−L2}. Thus, we may
analyze linear trajectories as the reduction process regularizes this type
of solutions. In particular, the points (±L, 0, 0) correspond with rectilin-
ear motions such that their projection in the coordinate space leads to
rectilinear orbits in the vertical axis x3 as the points (±L, 0, 0) are the
projections by πN of the points (0, 0,±L, 0, 0,∓L) on S2×S2. Circular
motions are concentrated on a unique point on TL,N whose coordinates
are (0, 0, L2−N2), i.e., on the top point of the orbit space, whereas
equatorial (i.e., coplanar with the primaries) trajectories in the twice-
reduced space are represented on the bottom point of the surface TL,N
with coordinates (0, 0, N2−L2).
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A picture of the twice-reduced space is depicted in Figure 2: the
space TL,N with N 6=0 appears on the top left, the space TL,0 on the top
right, and sections τ2 =0 on the lower part. The green points stand for
circular solutions, the red points refer to equatorial solutions, and the
yellow points denote rectilinear vertical solutions. The lower arc drawn
in blue comprise the set of all rectilinear solutions.

L2 −N2

N2 − L2

|N |−L L−|N |
τ1

|N | > 0

τ3 τ3

L2

|N | = 0

−L L

−L2

τ1

τ3 τ3τ2 τ2

τ1 τ1

Figure 2. Twice-reduced space.

5.2. Dynamics of the spatial lunar problem on TL,N . The nor-
malized Hamiltonian (21) is expressed as a function of the τi’s once
higher-order terms are omitted. Hence we can remove the zeroth and
the O(ε3) terms from Hε. After dropping some constant terms and scal-
ing conveniently, the normal form Hamiltonian H in terms of τ reads

(27) H = 4 τ2
1 + τ3 +O(ε2).

The Poisson brackets of the τi’s are:

(28) {τ1, τ2}=2 τ3, {τ1, τ3}=−2 τ2, {τ2, τ3}=−4 τ1(τ2
1 −L2−N2).



Invariant Tori in the Lunar Problem 379

We can determine the equations of motion related to H by means of
the following relations

τ̇i =
∑

1≤j≤3

{τi, τj}
∂H
∂τj

, for i ∈ {1, 2, 3}.

Using the Poisson brackets given in (28) we get

τ̇1 = −2 τ2,

τ̇2 = −4 τ1(τ2
1 + 4 τ3 − L2 −N2),

τ̇3 = 16 τ1 τ2.

(29)

The relative equilibria are the roots of system (29) that satisfy the
constraint of (25) and such that the τi’s lie in their appropriate intervals.
Their coordinates (τ1, τ2, τ3) are obtained explicitly, yielding

(i) (0, 0, L2 −N2),

(ii) (0, 0, N2 − L2),

(iii)
(
±
√
L2 +N2 − 8L |N |√

15
, 0, 2L |N |√

15

)
with |N |/L ∈

[
0,
√

3/5
]
.

The occurrence of the relative equilibria (i)–(iii) is as follows. We
discard the cases |N | = L, e.g., the prograde and retrograde circular
equatorial solutions, since no dynamics can be analyzed as the orbit
space is a point. Moreover, these cases have been already tackled in
Subsection 4.2. Thus we will concentrate on the set with |N | < L where
N/L ∈ (−1, 1).

We start by noting that the equilibria (i) and (ii) are present for all
values of N with 0 ≤ |N | ≤ L. The appearance and disappearance of
the relative equilibria, when N/L varies, is as follows:

• For |N |/L ∈ (
√

3/5, 1) the points (i) and (ii) are the only equilibria
on the surface TL,N .

• If |N |/L=
√

3/5 there are also two equilibria, more concretely the
points (ii) and (i) that collides with the points (iii) at (0, 0, 2

5L
2).

• When 0 < |N |/L <
√

3/5, there are four equilibria, namely the
points (i), (ii) and the two points (iii).
• For N = 0 the coordinates of (iii) become (±L, 0, 0), that is, they

are the singular points of TL,0. On the other hand the points (i)
and (ii) remain as relative equilibria. In particular the point (ii) has
coordinates (0, 0,−L2) and it refers to rectilinear solutions. More
specifically, they are the solutions whose projections on the coor-
dinate space are straight lines on the x1x2-plane passing through
the origin with an arbitrary slope.
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Next we summarize the stability character of the relative equilibria al-
though we shall turn to this issue in Subsubsections 5.3.2, 5.3.3 and 5.3.4
when dealing with the KAM 3-tori.

• The point (i) represents motions of circular type with an inclination

given by cos(I) = N/L. When
√

3/5 < |N |/L < 1 it is a stable

elliptic point (center). If |N |/L =
√

3/5 it is a degenerate center
with normal form P 2 + Q4, therefore stable. It is a hyperbolic
point (saddle) if 0 ≤ |N |/L <

√
3/5.

• The point (ii) corresponds to equatorial trajectories and is elliptic
for all N/L ∈ (−1, 1). The eccentricity is given by (1−N2/L2)1/2.
• The two relative equilibria corresponding to (iii) represent mo-

tions with an inclination given by cos(I) = ±( 3
5 )1/4

√
|N |/L (the

plus sign is for N ≥ 0 whereas the minus is for N < 0) and an
eccentricity e = (1− ( 5

3 )1/2|N |/L)1/2. In fact the two equilibrium
points (iii) correspond to the same trajectories, but reckoned in a
prograde sense for positive N and in a retrograde one for nega-
tive N . They are elliptic for all |N |/L ∈ [0,

√
3/5].

In view of the above description a Hamiltonian (supercritical) pitch-
fork bifurcation of relative equilibria occurs when N/L crosses either the

value −
√

3/5 or
√

3/5 as the two elliptic points (iii) and the hyperbolic
one (i) collide. See further details in [9, 32, 35].

We present in Figure 3 the flow of the Hamiltonian (27) when |N |/L
crosses the value

√
3/5. In particular, when |N |/L .

√
3/5, the two

equilibria (iii) still exist but are located very close to (i).

τ3 τ3 τ3

τ2 τ2 τ2

τ1 τ1 τ1

|N |/L <
√

3/5 |N |/L .
√

3/5 |N |/L >
√

3/5

Figure 3. Sequence of the Hamiltonian pitchfork bi-
furcations that take place when |N |/L passes through√

3/5.
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In Figure 4 we depict the flow of (27) on the twice-reduced space when
N is near zero. The space TL,0 has two singularities at the points (±L,0,0).
When |N | tends to zero the points (iii) move on the surface TL,N away
from the point (0, 0, L2 −N2) reaching the peaks of TL,N when N = 0.
The stability of the point (ii) remains the same regardless of the value
of N in (−1, 1), thus it does not change when N passes through zero.

τ3 τ3 τ3

τ2 τ2 τ2

τ1 τ1 τ1

N . 0 N = 0 N & 0

Figure 4. The flow of (27) on the twice-reduced space
when N is near zero.

We point out that the non-linear stability of the equilibria remains the
same as the linear stability excepting for the degenerate cases at the
pitchfork bifurcation. The reason is that saddles remain as saddles under
perturbation by the Hartman–Grobman Theorem [17] and the linear
centers become also non-linear centers since system (29) is of one degree
of freedom and the classical Dirichlet stability Theorem applies.

5.3. Invariant KAM 3-tori from the second reduction.

5.3.1. Quasi-periodic solutions of the truncated normal form
Hamiltonian. We have made two processes of normalization, trunca-
tion, and reduction (first averaging the mean anomaly and second aver-
aging the argument of the node). So the existence and stability character
of the relative equilibria on the orbit space TL,N are in correspondence
with the existence and stability of invariant 2-tori and quasi-periodic so-
lutions of the Hamiltonian (13) in the full phase space once terms of order
higher than O(ε6) are truncated. Besides, the pitchfork bifurcations oc-

curring at |N |/L =
√

3/5 are reconstructed as pitchfork bifurcations of
invariant 2-tori of the truncated system (13). However we cannot assure
that this dynamics is reflected in the Hamiltonian (12), although we can
use the information of some relative equilibria to obtain KAM tori and
quasi-periodic solutions for the full system.
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Our goal now is to reconstruct partially the dynamics of the system de-
fined through the Hamiltonian (12) obtaining some new invariant 3-tori
and quasi-periodic solutions of the spatial problem using Theorem 2.4.
This will be the purpose of Subsubsections 5.3.2, 5.3.3, and 5.3.4. We
shall make use of the normal form Hamiltonian (27) and the twice-
reduced space (25). Besides we shall discuss the existence of the 3-tori
whose quasi-periodic solutions are of rectilinear type, a situation already
studied in Subsection 4.3. This particular case is associated to the sin-
gular points (±L, 0, 0) and the closed orbits around them. Indeed, these
points are reconstructed to the families of periodic solutions studied in
Subsection 4.3. We shall see that excepting for the 3-tori related to the
peak points we shall need to define local symplectic coordinates in order
to be able to construct a pair of action-angle coordinates, say (J, ϕ), so
as to apply Han, Li, and Yi’s Theorem.

Similar results were obtained by Kummer [21, 22] and by Som-
mer [35]. Kummer performs a second normalization (the one dealing
with the axial symmetry) and computes the twice-reduced space but he
does not apply singular reduction theory and therefore has to exclude
the two singular points that are present when the third component of
the angular momentum vanishes. He builds action-angle variables from
the twice-reduced space in order to apply KAM Theory and concludes
with the existence of some invariant 3-tori but his results are only partial
and his procedure is very intricate.

Sommer also computes the averaged Hamiltonian with respect to the
node and uses singular reduction theory. In particular she follows Cush-
man [9]. Besides she constructs a KAM Theorem to deal with the ap-
pearance of the Hamiltonian function at three different time scales and
applies her theorem to conclude the persistence of invariant 3-tori around
the relative equilibria of (29) that are of elliptic type. Han, Li, and Yi’s
Theorem generalizes Sommer’s Theorem and we use the former together
with different sets of symplectic variables, simplifying considerably the
amount of computations made by Sommer. Moreover we clarify the ex-
istence of the KAM tori that correspond with solutions that are near
rectilinear.

In the following we shall focus on the non-degenerate relative equi-
libria of elliptic type dealt within Subsection 5.2 that are represented
by regular or singular points on TL,N . Thus, we concentrate on the

point (i) for |N |/L ∈ (
√

3/5, 1), the point (ii) for |N |/L ∈ [0, 1) and the

points (iii) for |N |/L ∈ [0,
√

3/5).
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5.3.2. Invariant 3-tori reconstructed from the point (i). We in-
troduce coordinates

(30) Q = ε−1/2
√

2(L−G) cos g, P = ε−1/2
√

2(L−G) sin g.

This change is symplectic with multiplier ε−1 and extends analytically to
the origin of the QP -plane, provided that Q and P are written in terms
of g and G and the computations that carry out satisfy the d’Alembert
characteristic; see [19, 25] and the examples in [26]. After calculating
the inverse of (30) putting g and G in terms of Q and P in the Hamilton-
ian (21), multiplying this Hamiltonian by ε−1, scaling time to adjust its
zeroth term so that it becomes the Kepler Hamiltonian and expanding
the result in power series of ε, we end up with

Hε = − 1

2L2
− ε3N +

1

8
ε6 µL2(L2 − 3N2)

− 3

8
ε7 µL

(
2L2Q2 + (5N2 − 3L2)P 2

)
+O(ε8).

(31)

As |N |/L ∈ (
√

3/5, 1) it is apparent that the point (i) is elliptic.
The argument of the perigee is undefined for circular motions, however

it is straightforward to see that the value of the angle g for points near
(0, 0, L2 −N2) is close to 0 (for N > 0) or to π (for N < 0).

Now we introduce the action-angle pair (J, ϕ) through:

Q = 21/4

√√
5N2 − 3L2 J

L
cosϕ, P = 23/4

√
LJ√

5N2 − 3L2
sinϕ.

The change satisfies dQ ∧ dP = dJ ∧ dϕ and transforms (31) into

(32) Hε = − 1

2L2
− ε3N +

1

8
ε6 µL4(L2 − 3N2)

− 3
√

2

4
ε7 µL2

√
5N2 − 3L2 J +O(ε8).

Now we apply Theorem 2.4 with a = 3, m1 = 3, m2 = 6, m3 = 7, n0 = 1,
n1 = n2 = 2, n3 = 3, In0 = (L), In1 = In2 = (L,N), In3 = (L,N, J),
Īn0 = (L), Īn1 = Īn2 = (N) and Īn3 = (J). One gets

Ω(I) =

(
1

L3
,−1,−3

4
µL4N,−3

√
2

4
µL2

√
5N2 − 3L2

)
and the matrix of order 4 whose rows are Ω(I), ∂Ω(I)/∂L, ∂Ω(I)/∂N ,
and ∂Ω(I)/∂J has rank three. Furthermore, as b =

∑a
i=1mi(ni − ni−1)

and the integer s of Theorem 2.4 is 1, according to [16], the measure
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of excluded tori is of order O(εb), that in this case is O(ε10). So we
conclude

Proposition 5.1. For |N |/L ∈ (
√

3/5, 1) there are families of invariant
KAM 3-tori filled up by the near circular quasi-periodic solutions of the
full system introduced by the Hamiltonian (12). These quasi-periodic
solutions have an inclination given approximately by cos(I) = N/L and
a perigee near 0 when N is positive or near π when N is negative. The
measure of the excluded set of tori is of order O(ε10).

5.3.3. Invariant 3-tori reconstructed from the point (ii). We
could introduce coordinates based on Delaunay elements, similarly to
what is done in Subsubsection 5.3.2, but then the subsequent analysis is
not valid for N = 0. Thus we proceed differently in order to include in
the analysis any value of N in (−1, 1).

Our aim is to find canonical coordinates Q, P such that the normal
form Hamiltonian (21) is written in terms of the new variables (and in
terms of L and N) and we can apply Theorem 2.4. We also require that
our approach will be valid for N = 0 in order to analyze the invariant tori
related to motions that are at the same time equatorial and rectilinear.
See also the picture (c) of Figure 5 with the circles around the point (ii).

We have represented the flow for the case N = 0 in Figure 5 from dif-
ferent points of view, showing the appearance of four relative equilibria,
namely, three elliptic points and one hyperbolic. The circles surrounding
the elliptic points are reconstructed into invariant 3-tori for the spatial
lunar problem.

τ2 τ3 τ2 τ3

τ1 τ2 τ1 τ1

(a) (b) (c) (d)

Figure 5. The flow of (27) for N = 0: (a) viewpoint
from top, (b) viewpoint from right, (c) viewpoint from
bottom and (d) viewpoint from front.

Although the argument of the perigee is not well defined in the case of
equatorial motions the value of g for points near (0, 0, N2−L2) is near 0
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(for N > 0) or near π (for N < 0). This fact is taken into account when
we consider the geometry of the quasi-periodic solutions we will obtain
in the next paragraphs.

As we are working in a neighborhood of the point (0, 0, N2 − L2) we
introduce functions f1(Q,P ;L,N) and f2(Q,P ;L,N), or f1 and f2 for
short, that have to be determined, and are expected to be small. Thus
we make the transformation

(33) τ1 =f1, τ2 =f2, τ3 =−
√
f4

1−2(L2+N2) f2
1 − f2

2 + (L2−N2)2,

where we have used the constraint of (25) to put τ3 in terms of f1 and f2.
Replacing the Poisson brackets between the τi’s given in (28) in terms

of Q and P and taking into account that {Q,P} = 1 we build three par-
tial differential equations (one for each Poisson bracket) whose unknowns
are f1 and f2. Out of the three equations there is an essential expression
that has to be zero, the other equations being redundant. The relevant
equation is

2
√
f4

1 − 2(L2 +N2) f2
1 − f2

2 + (L2 −N2)2 +
∂f1

∂Q

∂f2

∂P
− ∂f1

∂P

∂f2

∂Q
= 0.

As we can choose either f1 or f2 we select a convenient value for f1 = P
and solve for f2, getting

f1(Q,P ;L,N) = P,

f2(Q,P ;L,N) =
√(

(L+N)2 − P 2
)(

(L−N)2 − P 2
)

sin(2Q).
(34)

We note that Q = P = 0 implies f1 = f2 = 0 and τ1 = τ2 = 0 while
τ3 = N2 − L2; besides when Q and P are small, f1 and f2 are small
quantities.

Once f1 and f2 are calculated the final change is

τ1 = P,

τ2 =
√(

(L+N)2 − P 2
)(

(L−N)2 − P 2
)

sin(2Q),

τ3 = −
√(

(L+N)2 − P 2
)(

(L−N)2 − P 2
)

cos(2Q).

(35)

The equation τ1 = P represents the local surface around the equilib-
rium Q = P = 0 in the space QPτ1, which means that (0, 0, N2 − L2)
is a regular point in this chart. In fact we are projecting the Hamil-
tonian function in the QP -plane as the change (33) is valid only in a
neighborhood of the point (0, 0, N2 − L2) on TL,N .

In particular when N = 0 the above transformation reduces to

τ1 = P, τ2 = (L2 − P 2) sin(2Q), τ3 = −(L2 − P 2) cos(2Q).
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Next we put g, sin g and cos g in terms of Q and P by means of (26),
yielding the expression

2G2=L2 +N2 − P 2 −
√(

(L+N)2 − P 2
)(
(L−N)2 − P 2

)
cos(2Q),

cos g=−

√(
(L+N)2 − P 2

)(
(L−N)2 − P 2

)
sin(2Q)√

(L2−N2)2−
(
P 2+

√(
(L+N)2−P 2

)(
(L−N)2−P 2

)
cos(2Q)

)2 ,

sin g=
√
2P

√
L2+N2−P 2−

√(
(L+N)2−P 2

)(
(L−N)2−P 2

)
cos(2Q)√

(L2−N2)2−
(
P 2+

√(
(L+N)2−P 2

)(
(L−N)2−P 2

)
cos(2Q)

)2 ,

(36)

which is a valid expression except for the case of equatorial motions, i.e.,
when Q = P = 0 as then G = |N | and g is undefined. The Hamilton-
ian (21) is put in terms of Q and P using (36). Next we scale Q and P
by doing (Q,P ) = ε1/2(Q,P ), multiply Hε by the multiplier ε−1 and
scale time conveniently. After expanding the Hamiltonian in powers of ε
and dropping constant terms we obtain:

Hε = − 1

2L2
− ε3N − 1

8
ε6 µL2(5L2 − 3N2)

+
3

8
ε7 µL2

(
2 (L2 −N2)Q

2
+

5L2 − 3N2

L2 −N2
P

2
)

+O(ε8).

(37)

The development is valid for 0 ≤ |N | < L, and looking at the term
factorized by ε7, the point (ii) is elliptic even for N = 0 as was already
stated in Subsection 5.2.

The next step is the introduction of an action-angle pair (J, ϕ):

Q = 21/4

√√
5L2 − 3N2 J

L2 −N2
cosϕ, P = 23/4

√
(L2 −N2) J√
5L2 − 3N2

sinϕ,

transforming (37) into

(38) Hε = − 1

2L2
− ε3N − 1

8
ε6 µL2(5L2 − 3N2)

+
3
√

2

4
ε7 µL2

√
5L2 − 3N2 J +O(ε8).



Invariant Tori in the Lunar Problem 387

Note that dQ ∧ dP = dJ ∧ dϕ. Next one can apply Theorem 2.4 where
the values of a, mj ’s, nj ’s, I

nj ’s, Īnj ’s are as in Subsubsection 5.3.2. We
obtain

Ω(I) =

(
1

L3
,−1,

3

4
µL2N,

3
√

2

4
µL2

√
5L2 − 3N2

)
,

and the corresponding matrix of order 4 whose rows are given by Ω(I),
∂Ω(I)/∂L, ∂Ω(I)/∂N , and ∂Ω(I)/∂J has rank three. We get

Proposition 5.2. There are families of invariant KAM 3-tori filled up
by the near equatorial quasi-periodic solutions of the full system intro-
duced by the Hamiltonian (12). These quasi-periodic solutions have an
eccentricity given approximately by (1−N2/L2)1/2 where |N |/L ∈ [0, 1)
and a perigee close to 0 (for positive N) or π (for negative N). When
N ≈ 0 these quasi-periodic motions are near rectilinear equatorial solu-
tions. The measure of the excluded tori is of order O(ε10).

The computations carried out are valid for all N , thus we can conclude
that the KAM 3-tori also exist for N near zero. This fact is not easily
deductible from the exposition made by Sommer [35] in Chapter 5 of
her thesis.

5.3.4. Invariant 3-tori reconstructed from the points (iii). We

consider the points (iii) with |N |/L∈ [0,
√

3/5).The corresponding Delau-

nay coordinates for these equilibria are (g0, G0)=(±π/2, (5/3)1/4
√
L|N |).

In particular, when N = 0 it implies that the Delaunay coordinates for
the points (±L, 0, 0) on the surface TL,0 are (g0, G0) = (±π/2, 0). Note
that even when the argument of the perigee is not properly defined for
rectilinear motions and so we cannot say that g0 takes any value when
G = 0, it is of interest to note that the corresponding quasi-periodic
solutions that will be reconstructed from these points will have perigees
near ±π/2 (specifically π/2 when N > 0 and −π/2 if N < 0).

We start by considering the case N 6= 0 as the subsequent analysis is
not valid when N vanishes.

When |N | > 0 Delaunay elements may be used as they are a well
defined set of coordinates. In fact an adequate transformation is defined
by

(39) Q = ε−1/2(g − g0), P = ε−1/2(G−G0).

This change is canonical with multiplier ε−1. We put g and G in terms
of Q, P , g0, and G0, then we multiply Hε by ε−1 and scale time. Finally
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we expand the Hamiltonian in power series of ε around zero, getting

Hε = − 1

2L2
− ε3N +

5

4
ε6 µL2

(
L−

√
3/5 |N |

)(
L− 2

√
3/5 |N |

)
− 1

8
ε7µL2

(
15
(
L−

√
3/5 |N |

)(
L−

√
5/3|N |

)
Q2 + 36P 2

)
+O(ε15/2).

(40)

Moreover higher-order terms are unbounded for N = 0, what prevents
the discussion of these paragraphs to be extended to N = 0 or small.
Thus for the moment we assume that |N | ≥ N∗ for some N∗ > 0 such
that the ordering established through the small parameter ε remains the
same. We shall deal with the case N ≈ 0 later on.

As |N |/L∈ [N∗/L,
√

3/5) the points (iii) are elliptic in agreement with
Subsection 5.2. Indeed, the points (iii) are also elliptic when |N |/L =√

3/5 but then G0 = L and the coordinates (39) are not adequate to han-
dle the stability analysis and to obtain the related invariant 3-tori. How-
ever it is not a problem because, when |N |/L =

√
3/5, the points (iii)

and the point (ii) coincide and we have analyzed its stability character,
obtaining as well the KAM 3-tori in Proposition 5.2.

We introduce the action-angle variables (J, ϕ) by means of

Q = 2
√

3

√√√√ J√
15
(
L−

√
3/5 |N |

)(
L−

√
5/3 |N |

) cosϕ,

P =
1√
3

√√
15
(
L−

√
3/5 |N |

)(
L−

√
5/3 |N |

)
J sinϕ,

satisfying dQ ∧ dP = dJ ∧ dϕ. This allows us to transform (40) into

Hε = − 1

2L2
− ε3N +

5

4
ε6 µL2

(
L−

√
3/5 |N |

)(
L− 2

√
3/5 |N |

)
− 3

2
ε7µL2

√
15
(
L−

√
3/5 |N |

)(
L−

√
5/3 |N |

)
J+O(ε15/2).

(41)

In order to apply Theorem 2.4 we note that the values of the constants
needed in the hypotheses of the theorem are as in the previous cases.
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This time the frequency vector is

Ω(I) =

(
1

L3
,−1,

3

4
µL2(∓

√
15L+ 4N),

−3

2
µL2

√
15
(
L−

√
3/5 |N |

)(
L−

√
5/3 |N |

))
,

the minus sign in the formula applies for N > 0 while the plus sign
applies forN < 0. The matrix of order 4 whose rows are Ω(I), ∂Ω(I)/∂L,
∂Ω(I)/∂N , and ∂Ω(I)/∂J has rank three.

Now we focus on the case N ≈ 0 (i.e. the case 0 ≤ |N | < N∗), that is,
we analyze the stability of the points (iii) for N small and on the singular
points (±L, 0, 0) for N = 0 and the existence of the related KAM 3-tori.
We scale the normalized Hamiltonian (21) using N = ε4N . Then Hε is
transformed into

(42) Hε = − 1

2L2
+

1

16
ε6µL2

(
5L2−3G2−15(L2−G2) cos(2g)

)
+O(ε7),

where the higher order tems contain the scaled action N .
Omitting higher-order terms we find that the Hamiltonian (42) is the

same as (27) when we take N = 0, i.e., the Hamiltonian defined on TL,0.
Note that the procedure applies for non-null but small N as the above
scaling makes that the case N ≈ 0 is the same as the case N = 0 up to
terms of order seven in ε.

See the four pictures of Figure 5 and the picture in the middle of
Figure 4 with the closed orbits encircling the points (±L, 0, 0).

Inspired in the way it was done in [15, Subsection 4.4] we introduce
a transformation to desingularize the points (±L, 0, 0) as follows:

(43) τ1 =
1

2
w, τ2 =

1

4
(u2 − v2), τ3 =

1

2
u v.

This change is a 2:1-covering and transforms the constraint (25) defining
the space TL,0 into the 2-sphere

QL,0 = u2 + v2 + w2 − 4L2 = 0.

Thus the points (±L, 0, 0) are converted into the points (u, v, w) =
(0, 0,±2L) and these points become regular points of QL,0. The trans-
formation (43) is a change of variables that applies in the neighborhood
of the points (iii) for |N | smaller than N∗ or null.

After removing constant terms and projecting the Hamiltonian into
the uv-plane, the normal form Hamiltonian (27) is

(44) H =
1

2
u v − (u2 + v2) + · · · .
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The pair (u, v) does not form a symplectic chart, indeed the Poisson
bracket between the two is computed as the vector triple product {u, v} =
(∇u×∇v) · ∇QL,0 where ∇ denotes the gradient of a scalar function in
the chart (u, v, w). We get

{u, v} = ±1

2

√
4L2 − u2 − v2,

where the plus sign applies for (L, 0, 0) while the minus is used for
(−L, 0, 0).

The equations of motion associated to (44) are

(45)

u̇ = {u, v}∂H
∂v

= ±1

4
(u− 4 v)

√
4L2 − u2 − v2,

v̇ = −{u, v}∂H
∂u

= ±1

4
(4u− v)

√
4L2 − u2 − v2.

The point (u0, v0) = (0, 0) is a critical point of (45) that corresponds
to (±L, 0, 0) on TL,0.

The eigenvalues associated with the linearized equations around
(u0, v0) are ±

√
15L i. Thus the points (0, 0,±2L) are stable, hence

(±L, 0, 0) are stable points on TL,0, which is equivalent to the fact that
the points (0, 0,±L, 0, 0,∓L) are stable points on S2 × S2. The exis-
tence of the relative equilibria (±L, 0, 0) leads to the existence of two
families of elliptic periodic solutions for the full system (12) that are
of rectilinear type, these solutions already analyzed in Subsection 4.3.
We can say more, e.g., that the points (iii) are also stable for N small,
which is in agreement with the stability character of (iii) for N such that

N∗/L ≤ |N |/L <
√

3/5.
Finally in order to establish the existence of KAM 3-tori when N ≈ 0

for the full system we can use the result of Proposition 4.3 after undoing
the scaling N = ε4N and the transformation to normal form that led
to (21), we go back to the Hamiltonian in normal form given by (15).
Thus repeating the steps of Subsection 4.3 and using Proposition 4.3, we
end up with the existence of KAM 3-tori surrounding the periodic solu-
tions that are near rectilinear and whose projections in the coordinate
space indicate that they move close to the axis x3 up and down. This
implies that there are KAM 3-tori around the points (iii) for small N
(i.e., |N | < N∗) and around the points (±L, 0, 0) for N = 0. In con-
clusion there are invariant 3-tori related to the points (iii) for all N

with 0 < |N |/L <
√

3/5 and there are invariant 3-tori related to the
points (±L, 0, 0) for N = 0. In summary:
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Proposition 5.3. There are families of invariant KAM 3-tori filled with
quasi-periodic solutions of the full system introduced by the Hamilton-
ian (12). These quasi-periodic solutions have approximate inclination

and eccentricity given respectively by cos(I) = ±( 3
5 )1/4

√
|N |/L (the plus

sign applies for N ≥ 0 while the minus sign applies for N < 0) and

(1 − ( 5
3 )1/2|N |/L)1/2 where |N |/L ∈ [0,

√
3/5). The perigee of these

quasi-periodic solutions is near π/2 for positive N and near −π/2 for
negative N . The measure of the excluded tori is of order O(ε10).

In the estimate of the measure of the excluded tori in Proposition 5.3
we have chosen the exponent ten as it is the minimum of the exponents
of Proposition 4.3 and the one corresponding to the Hamiltonian (41),
which is twelve.
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