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Abstract: We investigate the local integrability in C3 of some three-dimensional

Lotka–Volterra equations at the origin with (p : q : r)-resonance,

ẋ = P = x(p+ ax+ by + cz),

ẏ = Q = y(q + dx+ ey + fz),

ż = R = z(r + gx+ hy + kz).

Recent work on this problem has centered on the case where the resonance is of

“rank-2”. That is, there are two independent linear dependencies of p, q and r

over Q. Here, we consider some situations where there is only one such dependency.
In particular, we give necessary and sufficient conditions for integrability for the case

of (i,−i, λ)-resonance with λ /∈ iR (after a scaling, this is just the case p+ q = 0 with
q/r /∈ R), and also the case of (i− 1,−i− 1, 2)-resonance (a subcase of p+ q+ r = 0)

under the additional assumption that a = k = 0.

Our necessary and sufficient conditions for integrability are given via the search
for two independent first integrals of the form xαyβzγ(1 + O(x, y, z)). However, a

new feature in the case of rank-1 resonance is that there is a distinguished choice
of analytic first integral, and hence it makes sense to seek conditions for just one
(analytic) first integral to exist. We give necessary and sufficient conditions for just
one first integral for the two families of systems mentioned above, except that for the
second family some of the cases of sufficiency have been left as conjectural.
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1. Introduction

The purpose of this paper is to extend some recent work [2, 3] on the
local integrability in C3 at the origin of the three-dimensional Lotka–
Volterra equations

(1)

ẋ = P = x(p+ ax+ by + cz),

ẏ = Q = y(q + dx+ ey + fz),

ż = R = z(r + gx+ hy + kz),
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to more general resonances. Related work on the integrability of Lotka–
Volterra and other three dimensional systems can be found in [1, 4, 6,
7, 8, 9, 10, 11, 12, 13, 14].

Recall that system (1) is integrable at the origin if there exists a change
of coordinates

X = x(1 +O(x, y, z)), Y = y(1 +O(x, y, z)), Z = z(1 +O(x, y, z)),

bringing (1) to a system orbitally equivalent to the linear system:

(2) Ẋ = pXm, Ẏ = qY m, Ż = rZm,

where m = m(X,Y, Z) = 1 + O(X,Y, Z). This is equivalent to the
existence of two first integrals of the form

φ1 = xr1ys1zt1(1 +O(x, y, z)), φ2 = xr2ys2zt2(1 +O(x, y, z)),

where (r1, s1, t1) × (r2, s2, t2) 6= 0. If the change of coordinates can be
chosen so that m ≡ 1, then we say the system is linearizable.

In the works cited above, the resonances at the origin have all been
of “rank-2”. That is, there are two independent linear dependencies
of p, q and r over Q. This condition is satisfied if and only if we can
rescale the system so that p, q and r are in Z. Necessary and sufficient
conditions for integrability can therefore be obtained via the search for
two independent first integrals of the form xαyβzγ(1 +O(x, y, z)), with
α, β and γ in Z. In the case where p, q and r do not all share the same
sign we can reduce our considerations to the search for two analytic first
integrals.

Our aim here is to consider the integrability of the origin of (1) in
the case where there resonance is of rank-1. That is, there is only one
linear dependency of p, q and r over Q. As above, to prove integrability,
we still seek two first integrals of the form xαyβzγ(1 + O(x, y, z)), but
at most one of these can be analytic in this case.

In particular, we give necessary and sufficient conditions for the origin
of system (1) to be integrable in the case of (i : −i : λ)-resonance for
λ /∈ iR, and also for the case of (i − 1 : −i − 1 : 2)-resonance under
the additional assumption that a = k = 0. The first case corresponds,
after a scaling, to the condition p + q = 0 with q/r /∈ R. The latter
case is a subset of those systems with p+ q + r = 0. Unfortunately, the
calculations for more general systems with p + q + r = 0 were beyond
our computational resources, and even in this subcase, the assumption
of a = k = 0 was necessary to make the computations tractable. We
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do not envisage that the more general cases will bring forth any essen-
tially different phenomena to the ones found here, although it would be
interesting to see if these computations could be pursued further.

A new feature in the case of rank-1 resonances in the Siegel domain
is that there is a distinguished choice of analytic first integral of the
form xαyβzγ(1+O(x, y, z)), and hence it makes sense to seek conditions
for just one (analytic) first integral to exist. We give necessary and
sufficient conditions for just one first integral in the cases mentioned
above, except that for (i−1,−i−1, 2)-resonance, a few cases of sufficiency
have been left as conjectural.

2. Definitions

Let

X = P
∂

∂x
+Q

∂

∂y
+R

∂

∂z

be the associated vector field to system (1). Given a polynomial F ∈
C[x, y, z], a surface F = 0 is called an invariant algebraic surface of
system (1), if the polynomial F satisfies the equation

(3) Ḟ = XF = P
∂F

∂x
+Q

∂F

∂y
+R

∂F

∂z
= CFF

for some polynomial CF ∈ C[x, y, z]. Such a polynomial is called the
cofactor of the invariant algebraic curve F = 0. One can note that
from equation (3) that any cofactor has at most degree one since the
polynomial vector field has degree two.

To complete the study of integrals of parametric families, we will also
need the notion of exponential factor which plays the same role as an
invariant algebraic surface in the case when two such surfaces coalesce.
Let E(x, y, z) = exp(f(x, y, z)/g(x, y, z)) where f, g ∈ C[x, y, z], then E
is an exponential factor if

(4) XE = CEE,

for some polynomial CE of degree at most one. The polynomial CE is
called the cofactor of E.

A Darboux function is a function of the form

D =
∏

Fλi
i Eλ0 ,

where the Fi are invariant algebraic surfaces of the system, and E =
exp(f/g) is an exponential factor. Given a Darboux function, D, we can
compute

X(D) = D
(∑

λiCFi
+ λ0CE

)
.
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Clearly, the function D is a non-trivial first integral of the system if and
only if the cofactors CFi

and CE are linearly dependent.
For Darboux integrability in two dimensions, we seek a Darboux func-

tion which is either a first integral or integrating factor for the system.
From the latter, it is possible to find a first integral by quadratures.

In higher dimensions, the role of the integrating factor is taken by
the Jacobi multiplier. In the context of Darboux integrability, we usu-
ally consider the corresponding reciprocals: inverse integrating factors,
and inverse Jacobi multipliers [5]. A function M is an inverse Jacobi
multiplier for the vector field X if it satisfies the equation

X(M) = M div(X) ⇐⇒ div(X/M) = 0.

A Darboux inverse Jacobi multiplier, D, must satisfy λiCFi
+ λ0CE =

div(X).
In three dimensions, the existence of two independent first integrals

implies the existence of an inverse Jacobi multiplier. Conversely, given
just one first integral, φ, and an inverse Jacobi multiplier, M , one can
construct another first integral by integrating along the level surfaces of
the first integral, noting that M gives rise to an integrating factor on
each level surface.

Unfortunately, this prescription breaks down near a critical point,
where the leaves become singular. However, the following theorem allows
us to construct a second first integral at a critical point in many cases.
We use the usual multi-index notation XI = xiyjzk to simplify the
notation.

Theorem 1. Suppose the analytic vector field

(5) x

(
λ+
∑
|I|>0

AxIX
I

)
∂

∂x
+y

(
µ+
∑
|I|>0

AyIX
I

)
∂

∂y
+z

(
ν+
∑
|I|>0

AzIX
I

)
∂

∂z

has a first integral φ = xαyβzγ(1 + O(x, y, z)) with at least one of
α, β, γ 6= 0 and a Jacobi multiplier M = xryszt(1 +O(x, y, z)) and sup-
pose that the cross product of (r− i− 1, s− j− 1, t− k− 1) and (α, β, γ)
is bounded away from zero for any integers i, j, k ≥ 0. Then the system
has a second analytic first integral of the form ψ = x1−ry1−sz1−t(1 +
O(x, y, z)), and hence system (5) is integrable.

Proof: See [2].
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We note finally that it is sometimes possible to reduce the critical
point to one in the Poincaré domain. That is, the origin does not lie in
the convex hull of the eigenvalues of the critical point. In this case, it is
only necessary to check that a finite number of resonant terms vanish in
the normal form to conclude that the system is linearizable.

We make use of this fact in two ways: either by decoupling two of the
three equations of (1) to get one in the Poincaré domain; or performing
a blow-down to a critical point in the Poincaré domain. In the former
case, ad-hoc arguments are used to show that the third equations can
also be linearized. In the latter, we can pull back the two first integrals
of the linear system to first integrals of the original system.

3. Systems with (i : −i : λ)-resonance

In this section we study the local integrability of the origin for the
three dimensional Lotka–Volterra equations,

(6)

ẋ = P = x(i+ ax+ by + cz),

ẏ = Q = y(−i+ dx+ ey + fz),

ż = R = z(λ+ gx+ hy + kz),

with λ /∈ iR.
Necessary conditions for the existence of one first integral were found

by searching for a first integral of the form xy(1 + O(x, y, z)) and, for
integrability, a second first integral of the form yλzi(1 +O(x, y, z)). The
computations were carried as far as the resonant terms in (xy)2 to obtain
the conditions below. Sufficiency of these conditions was then proved
case by case. The computations were carried out in Maple.

Some care needs to be taken over the integrability conditions in this
case since polynomials in λ appear in the coefficients of the first integrals.
Any value of λ which appears as a root in these denominators will have
to be checked separately. However, in the case above, these roots are
purely integer multiples of i and so have already been excluded.

Lemma 2. Let X be the vector field associated to (6), and X0 the re-
striction of X onto the plane z = 0. If X0 is integrable (that is, it
has an analytic first integral of the form xy + · · · ), and X0(φ0(x, y)) =
f(x, y) for some analytic functions φ0 and f then, for any analytic func-
tion g(x, y, z), there exists an analytic function φ(x, y, z) = φ0(x, y) +

zφ̃(x, y, z) such that X(φ) = f(x, y) + zg(x, y, z).

Proof: We write

X = X0 + z(λ+ gx+ hy)
∂

∂z
+ z X1 + kz2

∂

∂z
,



42 W. Aziz, C. Christopher

where X1 = cx ∂
∂x + fy ∂

∂y . Writing

φ(x, y, z) = φ0(x, y) +
∑
i>0

φi(x, y)zi, g =
∑
i≥0

gi(x, y)zi,

then it is clear that we need to solve

(7) (X0 + (m+ 1)(λ+ gx+ hy))φm+1 = −(X1 + km)φm + gm,

for each m ≥ 0. It is easy to see that there are no obstructions to
obtaining a unique formal series solution for φm in this way and its
convergence follows from the following argument.

Since the system X0 is integrable, there is a change of coordinates
(x, y) = (X + o(X,Y ), Y + o(X,Y )), which brings X0 to the form

X0 = r(X,Y )

(
iX

∂

∂X
− iY ∂

∂Y

)
,

for some analytic function r(X,Y ) = 1 + O(X,Y ). Thus (7) is now of
the form

(iX∂X − iY ∂Y + (m+ 1)(λ+ `))φ̃m+1 = −r−1(X̃1 + km)φ̃m + g̃m,

where φ̃m(X,Y ) = φm(x, y) and similarly ` and g̃m are just the functions
(λ(1−r)+gx+hy)/r and g/r in X and Y coordinates (where r is already

defined in X and Y coordinates). Furthermore, X̃1 = P̃ ∂
∂X + Q̃ ∂

∂Y is
just the transformation of X1 to the coordinates X and Y .

Let u = X + Y + Z and v = X + Y . Choose N such that
∑
g̃mz

m is
majorized by N(1−Nu)−1, then g̃m is majorized by Nm+1(1−Nv)−m−1.

We write φ̃m as a sum of homogeneous terms, φ̃m =
∑
ϕm,i, and choose

M > N such that r−1P̃ , r−1Q̃, ` and r−1 are all majorized by 1/(1−Mv)
and all the coefficients a to k are less than M in absolute value. We also
let κ denote |<(λ)|, so that if A majorizes (iX∂X − iY ∂Y + (m+ 1)λ)B
then B is majorized by (m+ 1)−1κ−1A.

A fortiori, g̃m is majorized by κ−m−122m+2M2m+2(1 + κ−1)m+1(1−
Mv)−1(1 −M(1 + κ−1)v)−2m−3. Suppose that ϕm′,i′ is majorized by

Km′,i′v
i′ for all i′ when m′ < m and for all i′ < i when m′ = m and that

Km(v) =
∑
Km,iv

i, then (7) implies that ϕm,i is majorized by Km,iv
i,

where Km,i is the coefficient of vi in

Mκ−1v

1−Mv
Km(v)+

Mκ−1

m(1−Mv)
K ′m−1(v)+

22mM2m(1 + κ−1)mκ−m

(1−Mv)(1−M(1+κ−1)v)2m+1
.

Thus we can choose

Km(v) =
Mκ−1

m(1−M(1 + κ−1)v)
K ′m−1(v) +

22mM2m(1 + κ−1)mκ−m

(1−M(1 + κ−1)v)2m+2
.
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Hence, if we take M large enough so that φ̃0 is majorized by K0(u) =
(1 − M(1 + κ−1)v)−2, then Km(u) = 22m+1M2m(1 + κ−1)mκ−m(1 −
M(1 + κ−1)v)−2m−2, hence φ̃ is majorized by

∑
Km(u)Zm which is

clearly convergent.

Theorem 3. Consider three dimensional Lotka–Volterra system (6).

1) The origin has one analytic first integral of the form φ = xy(1 +
O(x, y, z)) if and only if ab = ed.

2) The origin is integrable if and only if

ab− de = 0, dh− b(iλ(a− d) + g) = 0.

Proof: Necessary conditions are obtained as explained above. To prove
sufficiency we make use of Lemma 2 above.

1) If ab− ed = 0 then, restricting to z = 0 we obtain a vector field

X0 = x(i+ ax+ by)
∂

∂x
+ y(−i+ dx+ ey)

∂

∂y
.

When either a or e are non-zero then this vector field has an invariant
algebraic surface F = 1 − iax + iey with cofactor ax + ey, and also
the surfaces x = 0 and y = 0 with cofactors i + ax + by + cz and
−i + dx + ey + fz respectively. Thus the system has a first integral
φ0 = xyF k, where k = −1− d/a (a 6= 0) or k = −1− b/e (e 6= 0).

If a = e = 0 there is an exponential factor E = ei(dx−by) with cofactor
−dx− by and hence a first integral φ0 = xyE.

From Lemma 2, we can therefore construct a first integral φ of the
original system (6).

2) We seek a first integral of the form yλzie−ψ for some analytic ψ. Such
an integral exists if and only if we can solve the equation

ψ̇ = (λd+ ig)x+ (λe+ ih)y + (λf + ik)z.

From Lemma 2, we can solve this problem if and only if there exists a
function ψ0(x, y) such that

X0(ψ0) = (λd+ ig)x+ (λe+ ih)y.

If either b or d are non-zero, then we let r = a/d (d 6= 0) or r = e/b
(b 6= 0). We let ξ = ln(1+ ir(−dx+ by))/r for r 6= 0 and ξ = i(−dx+ by)
for r = 0. Then X0(ξ) = (dx+ by) and so we can choose ψ0 = sξ, where
we take s = λ + ig/d if d 6= 0 or s = λe/b + h/b if d = 0 and b 6= 0
(whence g = a = 0).
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If b = d = 0 then we can choose

ψ0 = (λd+ ig)(1/a) log(1− iax) + (λe+ ih)(1/e) log(1 + iey),

where we can replace (1/a) log(1 − iax) by −ix if a = 0 and similarly
(1/e) log(1 + iey) by iy when e = 0 in the expression above.

4. Systems with (i− 1 : −i− 1 : 2)-resonance

In this section we shall study the local integrability of the origin for
the three dimensional Lotka–Volterra equation,

(8)

ẋ = P = x(i− 1 + by + cz),

ẏ = Q = y(−i− 1 + dx+ ey + fz),

ż = R = z(2 + gx+ hy).

The assumption that a = k = 0 from (1) is a somewhat arbitrary choice,
but was chosen to bring the computations to a manageable form. It
would be interesting to compute the integrability conditions for the gen-
eral case of arbitrary a and k, but this appears to require much more
computational power.

As in the previous case, we will give necessary conditions for the origin
of (8) to have one analytic first integral of the form xyz(1+O(x, y, z)) and
also for the existence of a second first integral of the form x2z1−i(1 +
O(x, y, z)). The computations were carried out in Maple up to terms
in (xyz)5.

The proof of sufficiency is again handled case by case. However, in
the case of one first integral, we have three cases which are are unable to
give a complete explanation of why these first integrals exist. This is sur-
prising since the conditions themselves seem very simple. In particular,
all three have explicit expressions for an inverse Jacobi multiplier.

Theorem 4. Consider three dimensional Lotka–Volterra system (8).
The origin is integrable if an only if one of the following conditions hold:

1) b = h = 2gf + (1 + i)d(f + ic) = 0,
2) f = c = 0,
3) g = d = 0,
4) b+ (i+ 1)h = d = e+ hi = f = 0,
5) h = b = e = 0,
6) e = 2bf − (1 + i)ch + (1 − i)fh = 2cd + (1 + i)cg − (1 − i)fg =

2bd+ (1 + i)bg + (1− i)dh = 0.

Furthermore, a necessary condition that the origin has an analytic first
integral of the form φ = xyz(1 + O(x, y, z)) is that either 1), 2) or 3)
hold above, or one of the following conditions hold:
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4’) f = d = 0,
5’) e = 0,
6’) f + c = g + d = 0.

The sufficiency of conditions 1)–3) follows immediately from their inte-
grability.

Conjecture 5. We conjecture that the conditions 4’), 5’) and 6’) are
also sufficient conditions for one analytic first integral, but are unable to
prove this at the moment.

Proof: The necessity of the conditions is proved as indicated above. We
shall treat the proofs of sufficiency case by case.

Case 1: The equations for ẋ and ż are decoupled from the ẏ equation
and have eigenvalues in the Poincaré domain with no resonances pos-
sible. Hence we can find linearizing transformations (X,Z) = (x(1 +
O(x, z)), z(1 +O(x, z))) which bring the system to the form

Ẋ = (i− 1)X, ẏ = y(−1− i+ dx(X,Z) + ey + fz(X,Z)), Ż = 2Z.

We now seek an invariant analytic surface of the form α(X,Z) +
yβ(X,Z) = 0 such that

d

dt
(α(X,Z)+β(X,Z)y)=(α(X,Z)+β(X,Z)y)(dx(X,Z)+eY+fz(X,Z)).

The third equation can then be linearized with the substitution Y =
y/(α(X,Z) + β(X,Z)y).

These conditions reduce to

α̇ = α(dx(X,Z) + ey + fz(X,Z)), β̇ − (i+ 1)β = α e.

Since
d

dt

∑
r,s≥0

ar,sX
rZs =

∑
r,s≥0

(r(i− 1) + 2s)ar,sX
rZs.

The first equation can be solved uniquely term by term and is clearly
convergent. The second equation can be solved likewise if and only if
the coefficient of XZ in α is zero. However, a small computation shows
that this condition is just 2gf + (1 + i)d(f + ic) = 0.

Case 2: In this case the critical point at the origin for the first and second
equation are in the Poincaré domain and hence is linearizable using a
change of coordinates (X,Y ) = (x(1+O(x, y)), y(1+O(x, y))) that gives

Ẋ = (i+ 1)X, Ẏ = −(i+ 1)Y, ż = z(2 + gx(X,Y ) + hy).
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Suppose there exists a function γ such that γ̇ = gx(X,Y ) + hy(X,Y ).
The transformation Z = ze−γ will linearize third equation. Writing
gx(X,Y ) + hy(X,Y ) =

∑
n+m>0 an,mX

nY m, we see that

γ =
∑

n+m>0

an,m
(i− 1)n− (i+ 1)m

XnY m,

which is clearly convergent.

Case 3: This case is effectively the same as the previous case, except
that now the second and third equations are in the Poincaré domain and
therefore there exists a change of variables (Y,Z) = (y(1+O(y, z)), z(1+
O(y, z))) such that

ẋ = x(i− 1 + by(Y,Z) + cz(Y,Z)), Ẏ = −(i+ 1)Y, Ż = 2Z.

We seek a function γ such that γ̇ = by(Y,Z) + cz(Y,Z). Then the

transformation X = xe−γ gives Ẋ = (i− 1)X. To find such a function,
we write by(Y,Z) + cz(Y, Z) =

∑
n+m>0 an,mY

nZm, then we have

γ =
∑

n+m>0

an,m
2m− (i+ 1)n

Y nZm,

which gives a convergent expression for γ.

Case 4: When e 6= 0

ẋ = x(i−1− (i+1)hy+ cz), ẏ = y(−i−1− ihy), ż = z(2+gx+hy).

In this case the system has an invariant algebraic plane ` = 1+ i+1
2 hy = 0

and an exponential factor E = exp( gx−cy
1+

(i+1)
2 hy

) with cofactors L` = −ihy
and LE = (i − 1)gx − 2cz producing a first integral φ = x2z1−i`i−3E
and inverse Jacobi multiplier M = xyz`. Theorem 1 then guarantees the
existence of a second first integral of the form φ′ = 1 +O(x, y, z), which
must be analytic. Consideration of the first non-constant terms in this
expansion imply that φ′ − 1 = (xyz)k(c+O(x, y, z)) for some c 6= 0 and
therefore the system is integrable.

Case 5: The equations for ẋ and ż are decoupled from the ẏ equation so
we can find linearizing transformations (X,Z) = (x(1 + O(x, z)), z(1 +
O(x, z))) which bring the system to the form

Ẋ = (i− 1)X, ẏ = y(−1− i+ dx(X,Z) + fz(X,Z)), Ż = 2Z.

We seek a function γ such that γ̇ = dx(X,Z) + fz(X,Z). Then the

transformation Y = ye−γ gives Ẏ = −(i+ 1)Y .
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If dx(X,Z) + fz(X,Z) =
∑
n+m>0 an,mX

nZm, then we have

γ =
∑

n+m>0

an,m
(i− 1)n+ 2m

XnZm,

which gives a convergent expression for γ.

Case 6: The equations guarantee that the cofactors of x, y and z are
linearly dependent, so there exists a first integral of the form xαyβzγ .
We also have an inverse Jacobi multiplier xyz. Theorem 1 therefore
guarantees the existence of a first integral of the form φ′ = 1+O(x, y, z),
which must be analytic. Consideration of the first non-constant terms in
this expansion imply that φ′ − 1 = (xyz)k(c+O(x, y, z)) for some c 6= 0
and therefore the system is integrable.
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[8] L. Cairó and J. Llibre, Darboux integrability for 3D Lotka–
Volterra systems, J. Phys. A 33(12) (2000), 2395–2406. DOI:

10.1088/0305-4470/33/12/307.
[9] Y. T. Christodoulides and P. A. Damianou, Darboux

polynomials for Lotka–Volterra systems in three dimensions,
J. Nonlinear Math. Phys. 16(3) (2009), 339–354. DOI: 10.1142/

S1402925109000261.
[10] C. Christopher and C. Rousseau, Normalizable, integrable and

linearizable saddle points in the Lotka–Volterra system, Qual. The-
ory Dyn. Syst. 5(1) (2004), 11–61. DOI: 10.1007/BF02968129.

[11] F. Gonzalez-Gascon and D. Peralta Salas, On the first in-
tegrals of Lotka–Volterra systems, Phys. Lett. A 266(4–6) (2000),
336–340. DOI: 10.1016/S0375-9601(00)00011-6.

[12] S. Gravel and P. Thibault, Integrability and linearizability of
the Lotka–Volterra system with a saddle point with rational hyper-
bolicity ratio, J. Differential Equations 184(1) (2002), 20–47. DOI:
10.1006/jdeq.2001.4128.

[13] C. Liu, G. Chen, and C. Li, Integrability and linearizability of the
Lotka–Volterra systems, J. Differential Equations 198(2) (2004),
301–320. DOI: 10.1016/S0022-0396(03)00196-7.

[14] J. Moulin Ollagnier, Liouvillian integration of the Lotka–
Volterra system, Qual. Theory Dyn. Syst. 2(2) (2001), 307–358.
DOI: 10.1007/BF02969345.

Waleed Aziz:

Department of Mathematics
College of Science
University of Salahaddin

Kurdistan Region
Iraq
E-mail address: waleed.aziz@plymouth.ac.uk

Colin Christopher:
School of Computing and Mathematics

Plymouth University

Plymouth, Devon, PL4 8AA
UK

E-mail address: C.Christopher@plymouth.ac.uk

http://dx.doi.org/10.1088/0305-4470/33/12/307
http://dx.doi.org/10.1088/0305-4470/33/12/307
http://dx.doi.org/10.1142/S1402925109000261
http://dx.doi.org/10.1142/S1402925109000261
http://dx.doi.org/10.1007/BF02968129
http://dx.doi.org/10.1016/S0375-9601(00)00011-6
http://dx.doi.org/10.1006/jdeq.2001.4128
http://dx.doi.org/10.1006/jdeq.2001.4128
http://dx.doi.org/10.1016/S0022-0396(03)00196-7
http://dx.doi.org/10.1007/BF02969345

	1. Introduction
	2. Definitions
	3. Systems with (i:-i:)-resonance
	4. Systems with (i-1:-i-1:2)-resonance
	Acknowledgements
	References

