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Abstract: In this note we will show that the dilation result obtained for fractional

skew monoid rings, in the case of a cancellative left Ore monoid S acting on a unital

ring A by corner isomorphisms, holds in full generality. We apply this result to the
context of semigroup C∗-crossed products.
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Introduction

In his pioneering paper [11], Cuntz defined the algebras On and pre-
sented them as crossed products by endomorphisms. Inspired by this
construction, Paschke [31] gave a construction of a C∗-algebraic crossed
product A oα N associated to a not necessarily unital C∗-algebra en-
domorphism α on a C∗-algebra A. Later, Rørdam [35] used Paschke’s
construction, together with the Pimsner-Voiculescu exact sequence as-
sociated to an automorphism [7, Theorem 10.2.1], to realize any pair of
countable abelian groups (G0, G1) as (K0(B),K1(B)) for a certain purely
infinite, simple, nuclear separable C∗-algebra B. Paschke’s C∗-algebraic
construction has been generalized to other semigroups, see e.g. [22, 23,
24, 25, 29, 30].

A particularly interesting tool, first remarked by Cuntz, then used
by Rørdam, and lately extended by Paschke in the case of the actions
of nonnegative integers, was developed by Laca [21] in full generality.
Laca proved that, in the case of a cancellative left Ore monoid S with
enveloping group G, there is an isomorphism between the semigroup
C∗-crossed product A×αS and a full corner of the group crossed product
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AS ×α̂ G (where AS is a direct limit associated to A and α), whenever
the maps induced by the action are injective (with hereditary image);
this is the so-called dilation of A×α S, a construction which relies upon
previous work of Murphy [30]. As a consequence, many properties can be
faithfully transfered from the semigroup C∗-crossed product to a Morita
equivalent group C∗-crossed product. Thus, the study of the properties
of the new construction will benefit of the full developed theory for the
second kind of C∗-algebras.

In [4], Ara, González-Barroso, Goodearl and the author developed a
purely algebraic analog of Paschke’s construction with respect to monoid
actions on rings: for a monoid T acting on a unital ring A by endomor-
phisms and a submonoid S of T satisfying the left denominator con-
ditions, it is constructed a fractional skew monoid ring Sop ∗α A ∗α T
which satisfies a universal property analogous that of skew group rings.
In the case of S = T = Z+, the similarity of the fractional skew monoid
ring with a skew-Laurent polynomial ring lets adapt the Bass-Heller-
Swan-Farrell-Hsiang-Siebenmann Theorem to these rings for computing
their Kn groups (n ∈ Z) [2, 3]. As an application, this result allows to
compute K-Theory for Leavitt path algebras [1, 6], the algebraic coun-
terpart of graph C∗-algebras [34]. Moreover, it is shown that an analog
of Laca’s dilation construction holds for fractional skew monoid rings,
when the action restricts to corner isomorphisms (the algebraic analog
of Laca’s requirements).

The origin of the present work relies in the problem of extending the
dilation construction to actions enjoying less restrictive properties. More
concretely, we try to answer a concrete question posed to the author by
Joachim Cuntz:

Is it possible to extend the dilation construction of [4]
in the case of actions by unital endomorphisms?

In this paper we show that the question has an affirmative answer: when-
ever the semigroup is cancellative, the dilation result of [4] and [21] hold
with no restriction about hereditariness of the images.

The contents of this paper can be summarized as follows. In Sec-
tion 1, we recall the construction of a fractional skew monoid ring and
some basic properties. Also, we recall the construction of the semigroup
C∗-algebra crossed product in Laca’s sense [21], and we analyze the frac-
tional skew monoid ring construction from the point of view of covariant
pairs. In Section 2 we show that, after changing the basis ring, it is
possible to assume that the action is given by corner isomorphisms. In
Section 3, we recall the dilation results of [4, Section 3], and we prove the
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announced result and some consequences. In Section 4, we explain how
to transfer these results to the context of C∗-algebras, then recovering
and extending Laca’s results. Finally, in Section 5, we analyze the scope
of application of the results of Section 3, by extending them to the case
of not necessarily cancellative left denominator monoids.

1. Basic elements

In this section we will recall the algebraic and analytic version of skew
semigroup algebras, and we will look at the connections between both
constructions.

1.1. Fractional skew monoid rings. We recall the construction of a
fractional skew monoid ring, as well as the basic results we will need.
The definitions and properties are borrowed from [4, Section 1].

1.1. We begin by fixing the basic data needed for the construction. Let
A be a unital ring, and Endr(A) the monoid of not necessarily unital
ring endomorphisms of A.

Let T be a (multiplicative) monoid and α : T → Endr(A) a monoid ho-
momorphism, written t 7→ αt. For t ∈ T , set pt = αt(1), an idempotent
in A. Then αt can be viewed as a unital ring homomorphism from A to
the corner ptApt. For s, t ∈ T , we have pst = αst(1) = αsαt(1) = αs(pt).

Let S ⊆ T be a submonoid satisfying the left denominator conditions,
i.e., the left Ore condition and the monoid version of left reversibility:
whenever t, u ∈ T with ts = us for some s ∈ S, there exists s′ ∈ S such
that s′t = s′u. Then there exists a monoid of fractions, S−1T , with the
usual properties (e.g., see [9, Section 1.10] or [10, Section 0.8]). Notice
that, even in the case that S = T , the monoid S does not need to be
cancellative (e.g. any inverse monoid [33, Example 1.5(2)]). But if S is
cancellative, then the left Ore condition implies left reversibility.

Definition 1.2 ([4, Definition 1.2]). We denote by Sop ∗α A ∗α T a
unital ring R equipped with a unital ring homomorphism φ : A → R
and monoid homomorphisms s 7→ s− from Sop → R and t 7→ t+ from
T → R, universal with respect to the following relations:

(1) t+φ(a) = φαt(a)t+ for all a ∈ A and t ∈ T ;
(2) φ(a)s− = s−φαs(a) for all a ∈ A and s ∈ S;
(3) s−s+ = 1 for all s ∈ S;
(4) s+s− = φ(ps) for all s ∈ S.

The existence of such a ring follows from classical arguments. The
construction above also applies when A is an algebra over a field K
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or a ∗-algebra, and the ring endomorphisms αt for t ∈ T are K-linear
or ∗-homomorphisms. Because of Property (3), Property (2) can be
replaced by

(2’) s+φ(a)s− = φαs(a) for all a ∈ A and s ∈ S,

and Property (4) becomes redundant. Moreover, if s+ is an isometry for
all s ∈ S (i.e. if s− = (s+)∗) then Property (3) becomes redundant too.
We have the following fact:

Proposition 1.3 ([4, Corollary 1.5 and Proposition 1.6]).

(1) R =
∑
s∈S, t∈T s−φ(A)t+ =

∑
s∈S, t∈T s−φ(psApt)t+.

(2) The ring R has an S−1T -grading R =
⊕

x∈S−1T Rx where each
Rx =

⋃
s−1t=x s−φ(A)t+.

Now, assume that S is left saturated in T : whenever s ∈ S and t ∈ T
such that ts ∈ S, we must have t ∈ S; when S = T , this hypothesis
is clearly fulfilled. Under this additional hypothesis, we can show the
following result:

Proposition 1.4 ([4, Corollary 1.11]).

(1) Let s ∈ S, t ∈ T , and a ∈ A. Then s−φ(a)t+ = 0 if and only
if psapt ∈ ker(αs′) for some s′ ∈ S. In particular, ker(φ) =⋃
s′∈S ker(αs′).

(2) The ideal I = ker(φ) satisfies α−1s (I) = I for all s ∈ S and αt(I) ⊆
I for all t ∈ T .

(3) α induces a monoid homomorphism α′ : T → EndZ(A/I), and α′s is
injective for all s ∈ S.

(4) Sop ∗α A ∗α T = Sop ∗α′ (A/I) ∗α′ T .

As Proposition 1.4 shows, we can reduce the construction to the sit-
uation where αs is injective for all s ∈ S. In this case, φ is injective by
Proposition 1.4(1), and so we can identify A with the unital subring φ(A)
of R.

1.2. Semigroup C∗-crossed products. We recall the definition of
a semigroup C∗-crossed product. The definitions and properties are
borrowed from [21, Subsection 1.3].

1.5. Let A be a unital C∗-algebra, let α be an action of a discrete
semigroup S by not necessarily unital endomorphisms of A, and let H
be a complex Hilbert space. Then, a covariant representation of the
(semigroup) dynamical system (A,S, α) is a pair (π, V ) in which

(i) π is a unital representation of A.
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(ii) V : S → Isom(H) is an isometric representation of S, that is,
VsVt = Vst for every s, t ∈ S.

(iii) The covariance condition π(αt(a)) = Vtπ(a)V ∗t holds for every a ∈
A and every t ∈ S.

Definition 1.6. Given a dynamical system (A,S, α) as above, the semi-
group C∗-crossed product associated to it is a C∗-algebra A×αS together
with a unital homomorphism iA : A→ A×α S and a representation of S
as isometries iS : S → A×α S such that

(1) (iA, iS) is a covariant representation for (A,S, α).
(2) For any other covariant representation (π, V ) there is a representa-

tion π×V of A×αS such that π = (π×V )◦iA and V = (π×V )◦iS .
(3) A×α S is generated by iA(A) and iS(S) as a C∗-algebra.

The existence of a nontrivial universal object associated to (A,S, α)
depends on the existence of a nontrivial covariant representation. For
general endomorphisms such representation does not need to exist. But
if the endomorphisms are injective, then the nontriviallity of A×αS will
follow from its realization as a corner in a nontrivial classical C∗-crossed
product, which turns out to be nontrivial by an argument similar to
the one used in [36, Proposition 2.2] (see [21, Remark 2.5]). The best
result in this direction was proved by Laca when S is a cancellative Ore
semigroup acting by injective endomorphisms of A [21, Theorem 2.1 and
Theorem 2.4].

1.3. The algebraic construction from the analytic point of view.
We can understand fractional skew monoid rings in terms of algebraic
covariant pairs. For, we will follow the same scheme used in Subsec-
tion 1.2.

1.7. Let A be a unital K-algebra, let T be a monoid, let S ⊆ T be a
submonoid satisfying the left denominator conditions, and let α be an
action of T by not necessarily unital endomorphisms of A. Then, given
a (infinite dimensional) K-vector space H, a covariant representation of
the algebraic dynamical system (A, T, S, α) is a pair (φ, V ) in which

(1) φ : A→ EndK(H) is a unital homomorphism.
(2) V : T → EndK(H) is a monoid homomorphism that restricts to

an isometric representation V|S : S → Isom(H) ⊂ EndK(H) of S,
that is, VsVt = Vst for every s, t ∈ T , and Vs is an “adjoinable”
endomorphism such that V ∗s Vs = IdH for every s ∈ S.

(3) π(αt(a))Vt = Vtπ(a) holds for every a ∈ A and every t ∈ T .
(4) The covariance condition π(αt(a)) = Vtπ(a)V ∗t holds for every a ∈

A and every t ∈ S.
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By Definition 1.2, Sop∗αA∗αT turns out to be a universal initial object
for the category of covariant representations of the algebraic dynamical
system (A, T, S, α), in analogy with Definition 1.6. To be concrete, we
obtain the equivalent version of Definition 1.2.

Definition 1.8. Given an algebraic dynamical system (A, T, S, α) as
above, the fractional skew monoid ring associated to it is a K-algebra
Sop ∗α A ∗α T together with a unital homomorphism φA : A → Sop ∗α
A ∗α T and a representation φT : T → Sop ∗α A ∗α T of T restricting to
a representation of S as isometries φS : S → Sop ∗α A ∗α T such that:

(1) (φA, φT ) is a covariant representation for (A, T, S, α).
(2) For any other covariant representation (π, τ) there is a represen-

tation π × τ of Sop ∗α A ∗α T such that π = (π × τ) ◦ φA and
τ = (π × τ) ◦ φT .

(3) Sop ∗α A ∗α T is generated by φA(A) and φS(S) as a K-algebra.

We can separate two extreme cases:

(A) If S = {1T } ⊂ T , then, Sop ∗α A ∗α T = A ∗α T is the classical
skew semigroup ring, with unique relation t+φ(a) = φαt(a) for every
a ∈ A and every t ∈ T . This picture corresponds to Murphy’s definition
of the crossed product of C∗-algebras by endomorphisms given in [29].
But since no extra restriction on the representation V : T → EndK(H)
is required, A ∗α T cannot be completed to a C∗-algebra.

(B) If S = T , then Property (2) of 1.7 corresponds to Property (ii) in 1.5.
Also, Properties (3) and (4) of 1.7 become equivalent, and correspond to
Property (iii) of 1.5. So, the definition of covariant representation in 1.7
recovers 1.5, and thus Sop ∗α A ∗α S satisfies Definition 1.8 with respect
to 1.7.

Under this point of view, Proposition 1.4 says that given any alge-
braic dynamical system (A, T, S, α), we can construct a new algebraic
dynamical system (A/I, T, S, α′) such that:

(1) For the universal covariant pair (φA/I , φT ), the map φA/I and the
endomorphisms α′s (for every s ∈ S) are injective.

(2) Both algebraic dynamical systems have the same universal initial
object.

This means that, at the algebraic level, the injectivity of the endomor-
phisms is not a necessary requirement to have control of the nontriviality
of Sop ∗α A ∗α T .

In the sequel, we will come back to this analytic picture, in order to
understand how the results below extend Laca’s achievements.
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2. From injective morphisms to corner isomorphisms

In this section we will show that, in the construction of Sop ∗αA∗α S,
we can always assume that the action of S on A is given by corner iso-
morphisms. Recall that given a ring A and a nonzero idempotent p ∈ A,
a corner isomorphism is a ring isomorphism f : A→ pAp. For example,
in Sop ∗α A ∗α T , if s ∈ S, αs is injective and αs(A) = psAps, then αs is
a corner isomorphism. But even in the case of αs being injective, it is
not necessarily a corner isomorphism.

Let us fix the standing hypotheses, that we will assume as general as
possible.

2.1. Let A be a unital ring, let S be a left Ore monoid satisfying left
reversibility, and suppose that α : S → Endr(A) is an action of S on A
by injective homomorphisms. Notice that we are assuming that it must
exists at least one s ∈ S such that αs(A) ( psAps.

Lemma 2.2. Let s, t ∈ S. If ŝ, t̂ ∈ S and ŝt = t̂s, then:

(1) t+s− = ŝ−t̂+ps.

(2) s+t− = pst̂−ŝ+.

Proof:

(1) If ŝt = t̂s, then ŝ+t+ = t̂+s+. Thus, t+ = ŝ−ŝ+t+ = ŝ−t̂+s+, and
hence

t+s− = ŝ−t̂+s+s− = ŝ−t̂+ps.

(2) If ŝt = t̂s, then t−ŝ− = s−t̂−. Thus, t− = t−ŝ−ŝ+ = s−t̂−ŝ+, and
hence

s+t=s+s−t̂−ŝ+ = pst̂−ŝ+.

Now, we will define the key object of this section.

Definition 2.3. Under the above hypotheses, we define the set

S−AS+ := {s−as+ | s ∈ S, a ∈ A} ⊂ Sop ∗α A ∗α S.

We proceed to fix the basic properties of this set. Notice that, for
any a ∈ A and any s ∈ S, we have s−as+ = s−(psaps)s+.

Lemma 2.4. The set S−AS+ is a unital subring of Sop ∗α A ∗α S,
containing A as unital subring.

Proof: Clearly, 1 = s− · 1 · s+ ∈ S−AS+.
Now, let s, t ∈ S, a, b ∈ A. If ŝt = t̂s, then:



162 E. Pardo

(1) t−at+ ·s−bs+ = t−ptaptt+ ·s−psbpss+ = t−ptaptŝ−t̂+psbpss+ (the
last equality is due to Lemma 2.2), and by Definition 1.2 it equals
(ŝt)− (αŝ(ptapt)αt̂(psbps)) (ŝt)+.

(2) Furthermore

(t−at+) + (s−bs+) = (t−ptaptt+) + (s−psbpss+)

= (t−ŝ−ŝ+ptaptŝ−ŝ+t+) + (s−t̂−t̂+psbpst̂−t̂+s+),

and by Definition 1.2 it equals (ŝt)− (αŝ(ptapt) + αt̂(psbps)) (ŝt)+.

Hence, S−AS+ is a unital subring of Sop ∗α A ∗α S.
Finally, for any a ∈ A and any s ∈ S we have that a = s−s+as−s+ =

s−αs(a)s+ ∈ S−AS+, so we are done.

Remark 2.5. If S acts on A by corner isomorphisms, since αs(A) =
psAps, then there exists a (unique) b ∈ A such that psaps = αs(b).
Hence, s−as+ = s−(psaps)s+ = s−αs(b)s+ = s−s+bs−s+ = b. Thus,
S−AS+ = A.

We have a picture of S−AS+ which simplifies the effective computa-
tion of this ring. Concretely

Lemma 2.6. The ring S−AS+ is isomorphic to a direct limit of rings.

Proof: For each t ∈ S, the set t−At+ is as unital subring of Sop ∗αA∗αS
containing A as unital subring. Now, let a, b ∈ A and s, t ∈ S. If
ŝt = t̂s, then t−at+ = t−ŝ−ŝ+ptaptŝ−ŝ+t+ = (ŝt)−[αŝ(ptapt)](ŝt)+, and
similarly s−bs+ = (ŝt)−[αt̂(psbps)](ŝt)+. Thus, (s−As+){s∈S} is a direct

system of rings, and clearly S−AS+ coincides with the direct union of this
system. Moreover, for any t ∈ S the rule t−at+ 7→ ptapt defines a unital
ring isomorphism from t−At+ to the corner ring ptApt. Notice that,
under this identification, the above inclusion map t−At+ ↪→ (ŝt)−A(ŝt)+
becomes αŝ|ptApt

: ptApt → pŝtApŝt, so that

S−AS+
∼= lim−→

(
ptApt, αŝ|ptApt

)
as unital rings.

Next step is to show how the action α extends from A to S−AS+.

Lemma 2.7. The action α of S on A extends to an action α : S →
Endr(S−AS+) by corner isomorphisms.

Proof: For each s∈S, and for each t−at+∈S−AS+, we define αs(t−at+) :=

s+t−at+s−. Let us see that it is well-defined. For, if ŝt = t̂s, then by
Lemma 2.2 s+t− = t̂−ŝ+pt and t+s− = ptŝ−t̂+. Thus, s+t−at+s− =
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(s+t−)ptapt(t+s−) = t̂−(ŝ+ptaptŝ−)t̂+ = t̂−αŝ(ptapt)t̂+ ∈ S−AS+. No-
tice that t−at+ = 0 if and only if ptapt = 0, so that there is no ambiguity
related to the choice of ŝ and t̂. Moreover, if t−at+ 6= 0, since ptapt 6= 0
and αŝ is injective, we have

0 6= αŝ(ptapt) = ŝ+ptaptŝ− = ŝ+t+t−at+t−ŝ−

and since ŝt = t̂s, it equals

t̂+(s+t−at+s−)t̂− = t̂+(αs(t−at+))t̂−.

Thus, αs(t−at+) 6= 0, whence αs is injective.
Clearly, since t−t+ = 1 for every t ∈ S, αt is a homomorphism for

any t ∈ S. A simple computation shows that for any s, t ∈ S we have
αst = αs · αt, whence α defines an action of S on S−AS+ by injective
homomorphisms.

Finally, on one side, αt(s−as+) = t+s−as+t− = pt(t+s−as+t−)pt ∈
pt(S−AS+)pt; on the other side, pts−as+pt = t+(t−s−as+t+)t− =
t+((st)−a(st)+)t− = αt((st)−a(st)+) ∈ αt(S−AS+), as desired.

Next result fixes the relation between Sop ∗α A ∗α S and Sop ∗α
(S−AS+) ∗α S.

Lemma 2.8. Sop ∗α A ∗α S = Sop ∗α (S−AS+) ∗α S.

Proof: Fix the inclusion map ι : S−AS+ ↪→ Sop ∗α A ∗α S and the ac-
tion α. Then, in Sop ∗α A ∗α S we have for any t ∈ S and for any
s−as+ ∈ S−AS+:

(1) t+(s−as+) = αt(s−as+)t+.
(2) (s−as+)t− = t−αt(s−as+).
(3) t−t+ = 1.
(4) t+t− = αt(1) = αt(1) = pt.

Thus, by Definition 1.2 there exists a unique natural homomorphism

Sop ∗α (S−AS+) ∗α S → Sop ∗α A ∗α S
induced by ι and α. Since A ⊂ S−AS+ ⊂ Sop ∗α A ∗α S as unital rings
and α|A = α, the result is clear.

Remark 2.9. In terms of convariant representations Lemma 2.8 says that,
given any algebraic dynamical system (A,S, α) with S a left Ore, left
reversible monoid acting on A by injective homomorphisms with not nec-
essarily hereditary range, we can construct a new algebraic dynamical
system (S−AS+, S, α) in which S acts on S−AS+ by injective homomor-
phisms with hereditary range, and such that both dynamical systems
have the same universal initial object.
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Remark 2.10. If α is an action by unital homomorphisms, then Lem-
ma 2.7 shows that αs is an automorphism of S−AS+ for every s ∈ S.
Hence, α : S → Aut(S−AS+).

3. Dilations and full corners revisited

Paschke [31], generalizing previous results of Cuntz and Rørdam,
showed that a C∗-algebra crossed product by an endomorphism corre-
sponds naturally to a corner in a crossed product by an automorphism.
In other words, A oα N is isomorphic to a full corner e(B ×α′ Z)e of
a suitable group C∗-crossed product B ×α′ Z. Subsequently, Laca [21]
extended the scope of this result to semigroups C∗-crossed products on
cancellative left Ore monoids. From an algebraic point of view, the
analog result is [4, Proposition 3.8]. This result shows that, whenever
the homomorphisms αs are corner isomorphisms for all s ∈ S, then
Sop ∗αA∗αS is a full corner ring e(B ∗α′G)e, where B ∗α′G is a suitable
skew group ring over the group G = S−1S. In this section we will show
that this result holds without the assumption that S acts on A by corner
isomorphisms.

First, we will briefly recall the facts in [4, Section 3].

3.1 ([4, 3.1]). Let A be a unital ring, G a group, and α : G→ Aut(A) an
action by injective homomorphisms. Assume that S is a submonoid of G
with G = S−1S (thus, S is cancellative and satisfies the left Ore condi-
tion), and let R = A∗αG be the corresponding skew group ring. Suppose
that there exists a nontrivial idempotent e ∈ A such that αs(e) ≤ e for
all s ∈ S. Here, ≤ denotes the classical order for idempotents of a ring A:
given e, f ∈ A idempotents, e ≤ f if e = ef = fe.

Remark 3.2. It is important to notice that, in the arguments given in [4,
Section 3] for the results that follow, the fact that α acts by corner
isomorphisms does not play any role, and thus these results hold under
the hypothesis of S acting on A by injective homomorphisms.

Proposition 3.3 ([4, Lemma 3.2 and Proposition 3.3]). Under the as-
sumptions in 3.1, the following hold:

(1) The action α restricts to an action α′ : S → Endr(eAe) by injective
homomorphisms.

(2) There are natural monoid homomorphisms Sop → eRe, given by
s 7→ es−1, and S → eRe, given by t 7→ te, satisfying the condi-
tions (1)–(4) in Definition 1.2 with respect to α′ and the inclusion
map φ : eAe→ eRe.
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(3) The rings Sop ∗α′ (eAe) ∗α′ S and e(A ∗α G)e are isomorphic as
G-graded rings.

Now, we recall what happens in the reverse direction, looking for the
representation of a fractional skew monoid ring Sop ∗αA∗αS as a corner
ring of a suitable skew group ring.

3.4 ([4, 3.5]). Suppose that S is a cancellative left Ore monoid with
enveloping group G = S−1S and α : S → Endr(A) is an action of S
on A by corner isomorphisms. Then, let us construct a ring S−1A as
in [33]. First, define a relation ∼ on S×A as follows: (s1, a1) ∼ (s2, a2)
if and only if there exist t1, t2 ∈ S such that t1s1 = t2s2 and αt1(a1) =
αt2(a2). This is an equivalence relation [33, Lemma 2.1], and we write
[s, a] for the equivalence class of a pair (s, a). Let S−1A = (S×A)/∼ be
the set of these equivalence classes. The left Ore condition guarantees
“common denominators” in S−1A. By [33, Lemma 2.2 ff.], there are
well-defined associative multiplication and addition on S−1A. For, given
any [s1, a1], [s2, a2] ∈ S−1A, choose t1, t2 ∈ S such that t1s1 = t2s2, and
set: (i) [s1, a1] · [s2, a2] = [t1s1, αt1(a1)αt2(a2)]; (ii) [s1, a1] + [s2, a2] =
[t1s1, αt1(a1)+αt2(a2)]. The distributive law is also routine, and so S−1A
becomes a non-unital ring with a distinguished idempotent [1S , 1A].

Remark 3.5. This procedure can be seen as a different way for obtaining
Laca’s construction of AS [21]. For, we will proof that S−1A is isomor-
phic to the direct limit algebra defined by Laca. Indeed, we consider the
(upwards) direct system of rings (As, fs,ts){s,t∈S}, where As := A for ev-
ery s ∈ S, while fs,ts : As → Ats is defined by the rule fs,ts(a) = αt(a). If
we denote AS := lim−→(As, fs,ts), it is clear that a1 ∈ As1 and a2 ∈ As2 will
represent the same element in AS if and only if there exist t1, t2 ∈ S such
that t1s1 = t2s2 and αt1(a1) = αt2(a2). Now, for each s ∈ S we define
a map ϕs : As → S−1A by the rule ϕs(a) = [s, a]. This is a well-defined
ring morphism, and for any t ∈ S it is easy to see that ϕs = ϕts ◦ fs,ts.
Thus, there exists a unique ring morphism Φ: AS → S−1A sendind [as]
to [s, as]. Clearly, Φ is onto. On the other side, if 0 = Φ([as]), then
0 = [s, as], so that there exists t ∈ S such that αt(as) = 0. Hence,
[as] = 0, whence Φ is one-to-one, and thus an isomorphism.

Next, let extend α to an action of S on S−1A.

Lemma 3.6 ([4, Lemmas 3.6 and 3.7]).

(1) The action of α on A extends to an action α̂ : S → Aut(S−1A).
Concretely, given any s ∈ S and [t, a] ∈ S−1A, set α̂s([t, a]) =
[s′, αt′(a)] for s′, t′ ∈ S such that s′s = t′t.
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(2) The rule a 7→ [1S , a] defines an S-equivariant ring embedding φ :A→
S−1A with image [1S , 1A] · S−1A · [1S , 1A].

Remark 3.7.

(1) Under Laca’s picture of S−1A, given in Remark 3.5, the definition
of α̂s is exactly the one stated by Laca in [21].

(2) The hypothesis that αs(A) = psAps for every s ∈ S is only neces-
sary to prove that φ(A) = [1S , 1A] · S−1A · [1S , 1A].

(3) The hypothesis of S being cancellative can be weakened to S being
left reversible, and the construction of the ring S−1A still works
correctly (c.f. [33, Lemmas 2.1 and 2.2]). Moreover, the action of
α on A still extends to an action α : S → Aut(S−1A) with the
same definition, and the map φ is still a S-equivariant embedding
(c.f. [33, Theorem 2.4]).

Hence, we obtain the dilation result for fractional skew monoid rings
in the case of actions given by corner isomorphisms.

Proposition 3.8 ([4, Proposition 3.8]). Let G be a group and S a sub-
monoid of G such that G = S−1S. Let α : S → Endr(A) be an ac-
tion of S on A by corner isomorphisms. Then there exist an action
α̂ : G → Aut(S−1A), and a nonzero idempotent e in S−1A such that
α̂s(e) ≤ e for all s ∈ S and

Sop ∗α A ∗α S ∼= e((S−1A) ∗α̂ G)e

(as G-graded rings).

Certainly, Proposition 3.8 is the converse of Proposition 3.3 under
actions by corner isomorphisms. Now, applying these results and those
of Section 2, we obtain the main result of the paper.

Theorem 3.9. Let A be a unital ring, let S be a cancellative left Ore
monoid with enveloping group G = S−1S, and let α : S → Endr(A) be
an action of S on A. If I :=

⋃
s′∈S ker(αs′), then α extends to an action

α̂ : G → Aut(S−1(S−(A/I)S+)), and there exists a nonzero idempotent
e ∈ (S−1(S−(A/I)S+)) such that α̂s(e) ≤ e for all s ∈ S and

Sop ∗α A ∗α S ∼= e((S−1(S−(A/I)S+)) ∗α̂ G)e

as G-graded rings.

Proof: By Proposition 1.4(4),

Sop ∗α A ∗α S = Sop ∗α′ (A/I) ∗α′ S
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for an action α′ : S → Endr(A/I) by injective homomorphisms. Then,
by Lemma 2.8,

Sop ∗α′ (A/I) ∗α′ S = Sop ∗α S−(A/I)S+ ∗α S,
where α is an action by corner isomorphisms by Lemma 2.7. Thus, we
can apply Proposition 3.8 to Sop ∗αS−(A/I)S+ ∗αS, so we are done.

As an immediate consequence we have

Corollary 3.10. Let A be a unital ring, let S be a cancellative left Ore
monoid with enveloping group G = S−1S, and let α : S → Endr(A)
be an action of S on A by injective homomorphisms. Then, α extends
to an action α̂ : G → Aut(S−1(S−AS+)), and there exists a nonzero
idempotent e ∈ (S−1(S−AS+)) such that α̂s(e) ≤ e for all s ∈ S and

Sop ∗α A ∗α S ∼= e((S−1(S−AS+)) ∗α̂ G)e

as G-graded rings.

Because of Remark 3.2, Corollary 3.10 is the converse of Proposi-
tion 3.3 for actions by injective homomorphisms. If α acts by unital
injective homomorphisms, then Remark 2.10 and Lemma 2.7 imply that
α acts by unital automorphisms of S−AS+. Hence,

Sop ∗α (S−AS+) ∗α S = (S−AS+) ∗α G
by Definition 1.2, and thus we have

Corollary 3.11. Let A be a unital ring, let S be a cancellative left Ore
monoid with enveloping group G = S−1S, and let α : S → Endr(A) be
an action of S on A by injective unital homomorphisms. Then,

Sop ∗α A ∗α S = (S−AS+) ∗α G.

Remark 3.12. In terms of covariant representations, Corollary 3.10 says
that, because of Remark 2.9, we can replace any algebraic dynami-
cal system (A,S, α) in which α does not act by corner isomorphisms
(“with not necessarily hereditary range” in C∗-algebra terms) by a new
one (S−AS+, S, α) in which α acts by corner isomorphisms (“with hered-
itary range” in C∗-algebra terms), so that the algebraic dilation con-
struction applies. Moreover, both dynamical systems share the same
universal initial object. So, Corollary 3.11 means that the construction
in [4, Section 3] give us a dilation result even in the case of unital ho-
momorphisms.

Let us close this section by giving an example of application of Corol-
lary 3.11, which benefits from Lemma 2.6 for the computation of S−AS+.
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Example 3.13. For any natural number n ≥ 2 and any field K, consider
Ln the universal K-algebra generated by elements x1, . . . , xn, y1, . . . , yn
satisfying the relations: (i) xiyj = δi,j for every 1 ≤ i, j ≤ n; (ii) 1 =
n∑
i=1

yixi; these algebras are known as Leavitt algebras [26], and are the

algebraic counterpart of Cuntz algebras [11]. Let α ∈ End(Ln) the unital

endomorphism defined by the rule α(a) =
n∑
i=1

yiaxi, which is outer. Now,

consider the fractional skew monoid ring

Z+op ∗α Ln ∗α Z+.

According to Corollary 3.11,

Z+op ∗α Ln ∗α Z+ = (S−LnS+) ∗α̂ Z
as Z-graded algebras. By Lemma 2.6,

S−LnS+
∼= lim−→ (Ln, α

m) .

Now, in view of the fact that the set {yixj}1≤i,j≤n is a system of matrix-
units for the isomorphisms Ln ∼= Mn(Ln), it is easy to see that α : Ln →
Ln acts as the diagonal embedding from Ln to Mn(Ln). Hence,

S−LnS+
∼= lim−→ (Ln, α) ∼= Mn∞(Ln),

so that
(S−LnS+) ∗α̂ Z ∼= Mn∞(Ln) ∗α Z

for an outer action α of Z on Mn∞(Ln). Clearly, Mn∞(Ln) is a purely
infinite simple ring (a property for rings analog to purely infinite simple
C∗-algebras, see [5] for a formal definition). Hence, an easy adaptation
of the results in [4, Section 4] (see e.g. [28, Theorem 1.2]) shows that
Mn∞(Ln)∗αZ, and thus Z+op∗αLn∗αZ∗, is a purely infinite simple ring.

4. Semigroup C∗-crossed products

In this section, we consider the application of the results in the pre-
vious sections to the case of unital C∗-algebras.

First notice that, given a unital C∗-algebra A and a left Ore, left
reversible monoid S acting via α by injective ∗-endomorphisms of A,
the associated dynamical system (A,S, α) satisfies the requirements of
Laca’s construction of the semigroup crossed product A×α S.

Lemma 4.1. Let A be a unital C∗-algebra, let S be a left Ore, left re-
versible monoid, and let α be an action of S by not necessarily unital
injective ∗-endomorphisms of A. Then, Sop ∗α A ∗α S is a dense ∗-sub-
algebra of A×α S.
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Proof: Let (φA, φS) be the universal covariant pair of Sop ∗α A ∗α S,
and let (iA, iS) be the universal covariant pair of A ×α S. Notice that
both are associated to the same representation of A ×α S on a Hilbert
space H. By the universal property of Sop ∗α A ∗α S, applied to the
covariant pair (iA, iS), there exists a unique ∗-homomorphism

ϕ : Sop ∗α A ∗α S → A×α S

such that iA = ϕ ◦ φA and iS = ϕ ◦ φS . Moreover, (2) in Definition 1.6
applies, by the above remark, to the covariant pair (φA, φS). So, there
exists a representation φA × φS such that φA = (φA × φS) ◦ iA and
φS = (φA × φS) ◦ iS .

Now, by Proposition 1.4, φA is injective, and then so it is iA by the
above argument. By the same argument ϕ restricts to a ∗-isomorphism
of monoids between φS(S) and iS(S). Hence, ϕ is injective.

Finally, by (3) in Definition 1.6, im(ϕ) is a dense ∗-subalgebra of
A×α S, so we are done.

Hence, we obtain a slight improvement of Laca’s result. Concretely,
we do not require S to be cancellative in order to realize A ×α S as a
full corner of a group C∗-crossed product, and thus guarantee that it is
nontrivial. In particular, notice that this approach skips the (implicit)
requirement of Laca, which asks the endomorphisms to have hereditary
range, a technical fact used to construct the dilation.

By Lemma 4.1, A×α S is nontrivial, contains a ∗-isomorphic copy of
Sop ∗α A ∗α S, and moreover it is the norm completion of Sop ∗α A ∗α S
in a suitable norm. Under this picture, notice that A ⊂ S−AS+ ⊂
Sop ∗α A ∗α S ⊂ A ×α S as unital algebras. So, we can define S∗AS
to be the norm-completion of S−AS+ under the norm inherited by the
inclusion. Thus, we can transfer all the results obtained in Section 2 to
the context of C∗-algebras. Concretely we have

Lemma 4.2. S∗AS is a unital sub-C∗-algebra of A×α S, containing A
as unital sub-C∗-algebra.

Lemma 2.6, which allows to present S−AS+ as lim−→
(
ptApt, αŝ|ptApt

)
,

certainly also applies when we consider the direct limit construction in
the category of C∗-algebras and ∗-homomorphisms. Thus, we have

Lemma 4.3. The C∗-algebra S∗AS is isomorphic to a direct limit of
C∗-algebras.

As a consequence, in the same manner as in Section 2, we can prove
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Proposition 4.4.

(1) The action α of S on A extends to an action α : S → Endr(S∗AS)
by corner ∗-isomorphisms (so that αs has hereditary range for ev-
ery s ∈ S).

(2) A×α S = (S∗AS)×α S.

Remark 4.5. In terms of covariant representations, Proposition 4.4 says
that we can replace (A,S, α) by a new dynamical system (S∗AS, S, α)
such that the maps αs have hereditary range for every s ∈ S, while
both dynamical systems have the same universal initial object associated.
Thus, we are extending the scope of Laca’s arguments to actions in which
having hereditary range is not required.

Now, if S is cancellative, since S−1A can be seen as a direct limit of
C∗-algebras [21] (see Remark 3.5), we can assume that S−1A denotes
the corresponding C∗-algebra, whence the related results in [4, Section 3]
apply for unital C∗-algebras. Hence, we have

Theorem 4.6. Let A be a unital C∗-algebra, let S be a cancellative left
Ore monoid with enveloping group G = S−1S, and let α : S → Endr(A)
be an action of S on A by injective ∗-homomorphisms. Then, α extends
to an action α̂ : G→ Aut(S−1(S∗AS)), and there exists a full projection
e ∈ (S−1(S∗AS)) such that α̂s(e) ≤ e for all s ∈ S and

A×α S ∼= e((S−1(S∗AS))×α̂ G)e

is an S-equivariant ∗-isomorphism.

Theorem 4.6 means that, because of Proposition 4.4, we can extend
the scope of Laca’s techniques to the case of an action whose range is
not necessarily hereditary. The extreme case of this situation occurs
when all the maps αs are unital and injective, but not isomorphisms.
This is the situation of Cuntz’s original question, that we answer in the
affirmative.

Corollary 4.7. Let A be a unital C∗-algebra, let S be a cancellative left
Ore monoid with enveloping group G = S−1S, and let α : S → Endr(A)
be an action of S on A by injective unital ∗-homomorphisms. Then,

A×α S = (S∗AS)×α G
is an S-equivariant ∗-isomorphism.

Example 4.8. In analogy with Example 3.13, for any natural num-
ber n ≥ 2 consider the n-th Cuntz algebra On , i.e. the C∗-algebra
generated by pairwise orthogonal isometries s1, . . . , sn satisfying that
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1 =
n∑
i=1

sis
∗
i . Let α ∈ End(On) the unital endomorphisms defined by

the rule α(a) =
n∑
i=1

sias
∗
i , which is outer. Now, consider the (Paschke)

crossed product

On oα N.
According to Proposition 4.4(2),

On oα N = (S∗OnS)×α̂ Z.

By Lemma 4.3,

S∗OnS ∼= lim−→ (On, αm) .

Now, in view of the fact that the set {sis∗j}1≤i,j≤n is a system of matrix-
units for the isomorphisms On ∼= Mn(On), it is easy to see that α : On →
On acts as the diagonal embedding from On to Mn(On). Hence,

S∗OnS ∼= lim−→ (On, α) ∼= Mn∞(On),

so that

(S∗OnS)×α̂ Z ∼= Mn∞(On)×α Z
for an outer action α of Z on Mn∞(On). Clearly, Mn∞(On) is a purely
infinite simple C∗-algebra, and then so is Mn∞(On)×αZ (whence Onoα
N) by [19].

Thus, we can compute K-Theory of On oα N by using the Pimsner-
Voiculescu exact sequence [7]:

K0(Mn∞(On))
id−α∗ // K0(Mn∞(On)) // K0(Mn∞(On)×α Z)

��
K1(Mn∞(On)×α Z)

OO

K1(Mn∞(On))oo K1(Mn∞(On)).
id−α∗oo

It is well-known that K1(Mn∞(On)) = 0, and it is easy to see that
K0(Mn∞(On)) ∼= Z[ 1n ]. Under this picture, id−α∗ is given by multipli-
cation by 1 − n, so that it is injective. Hence, K1(On oα N) = 0, and
thus K0(On oα N) ∼= Z[ 1n ]/(1 − n)Z[ 1n ]. By Kirchberg-Phillips Theo-
rem [20, 32] we conclude that On oα N ∼= On.

Remark 4.9. Very recently Cuntz and Li have developed a theory for
C∗-algebras associated to integral domains [13]. As a consequence, a
large amount of work on semigroup C∗-algebras has been done (see
e.g. [12, 14, 27]), specially when the action is given by unital ∗-ho-
momorphisms. From this point of view Corollary 4.7, jointly with Lem-
ma 4.3, could be a useful instrument to work on this line.



172 E. Pardo

5. Noncancellative left denominator monoids

In this section we will briefly analyze what kind of result, analog to
Theorem 3.9, can we expect when we weaken the hypotheses on S from
cancellative to left reversible. The reason for considering this situation
relies on a construction, due to Exel, of crossed products of C∗-algebras
by partial actions of groups (see e.g. [16], and [15] for a purely algebraic
analog). Concretely, Exel shows that we can associate, to a C∗-algebra A
and a partial action α of a (discrete) group G on A, a C∗-partial crossed
product algebra A ×α G; the more clear example of this construction
is the Exel-Laca picture of Cuntz-Krieger algebras extended to infinite
matrices [18]. Exel [17] showed that there exist an inverse semigroup
S(G) and a (global) action S(α) of S(G) on A such that the C∗-partial
crossed product A ×α G turns out to be isomorphic to the semigroup
C∗-crossed product A ×S(α) S(G) (see also [8]). Since all these inverse
semigroups S(G) enjoys the original standing hypotheses 1.1 [33, Exam-
ple 1.5(2)], the analysis of the dilation construction in this context could
be a useful tool for studying Exel crossed products by partial actions of
groups from the “classical” context of C∗-crossed products of groups.

Let us fix then the concrete data for this section.

5.1. Let A be a unital ring, let S be a not necessarily cancellative left
Ore, left reversible monoid, and α : S → Endr(A) an action.

Under these hypotheses, if I :=
⋃
s′∈S ker(αs′), then Sop ∗α A ∗α

S = Sop ∗α′ (A/I) ∗α′ S for an action α′ : S → Endr(A/I) by injective
homomorphisms by Proposition 1.4. So, we can assume that the action
is given by injective homomorphisms.

Hence, the results in Section 2 apply, so that α extends to an action
α̂ : S → Endr(S−AS+) by corner isomorphisms and Sop ∗α A ∗α S =
Sop ∗α (S−AS+) ∗α S. Thus, we can assume that the action is given by
corner isomorphisms. So, we can recast 5.1 as

5.2. Let A be a unital ring, let S be a not necessarily cancellative left
Ore, left reversible monoid, and α : S → Endr(A) an action by corner
isomorphisms.

As noticed in Remark 3.7(2), under our hypotheses the construction
of the ring S−1A still works correctly, the action of α on A still extends
to an action α̂ : S → Aut(S−1A) with the same definition, and the map φ
is still a S-equivariant embedding.

At this point, the only remaining question is the exact relation of
the monoid S with the possible associated groups which allows us to
represent Sop ∗α A ∗α S as a sort of corner ring over an skew group
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ring A ∗β G. There are two concrete group constructions associated
to S:

(1) The monoid localization G = S−1S. This is a group satisfying
a universal property with respect to the natural map λ : S → G,
which is injective if and only if S is cancellative [10, Corollary 8.5].

(2) The monoid S̃ := α̂(S) ≤ Aut(S−1A). This is a cancellative

left Ore monoid, so that by part (1) it embeds in a group G̃ ≤
Aut(S−1A) [33, Proposition 2.6].

By the universal property of G, there exists a unique group morphism

ϕ : G→ G̃ such that α̂ = ϕλ. The map ϕ is one-to-one by the universal

property of G, while it is onto by the universal property of G̃. So, ϕ is

an isomorphism and moreover, S̃ is isomorphic to λ(S) through this
isomorphism. In particular, for any s, t ∈ S, we have λ(s) = λ(t) if
and only if α̂s = α̂t. By Proposition 3.8, there exists an idempotent

e := [1S̃ , 1A] ∈ S̃−1A such that

S̃op ∗α̂ A ∗α̂ S̃ = e(S̃−1A ∗α̂ G)e

as G-graded rings.

Notice that φ : A → S̃−1A remains an injective S̃-equivariant homo-

morphisms, and its image coincide with [1S̃ , 1A](S̃−1A)[1S̃ , 1A]. Now,

fixing the monoid homomorphisms Sop → S̃op (given by the rule t− 7→
t̃−), S → S̃ (given by the rule t+ 7→ t̃+), and the identity map id: A→ A,
we can use the universal property of Sop ∗αA∗αS to induce an onto ring
homomorphism

λ̂ : Sop ∗α A ∗α S � S̃op ∗α̂ A ∗α̂ S̃.

Then, we conclude the following result, which generalizes Theorem 3.9.

Theorem 5.3. Let A be a unital ring, let S be a not necessarily cancella-
tive left Ore, left reversible monoid with enveloping group G = S−1S, let

λ : S → G be the natural map, let S̃ = λ(S), and let α : S → Endr(A) be
an action of S on A. If I :=

⋃
s′∈S ker(αs′), then α extends to an action

α̂ : G → Aut(S̃−1(S̃−(A/I)S̃+)), and there exists a nonzero idempotent

e ∈ (S̃−1(S̃−(A/I)S̃+)) such that α̂s(e) ≤ e for all s ∈ S and

Φ: Sop ∗α A ∗α S � e((S̃−1(S̃−(A/I)S̃+)) ∗α̂ G)e

is a S-equivariant onto ring homomorphism.

Certainly, the technology involved allows to transfer the results to
the context of C∗-algebras with no additional effort, at least when the
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action is given by injective ∗-homomorphisms. So, we have the following
generalization of Theorem 4.6.

Theorem 5.4. Let A be a unital C∗-algebra, let S be a not necessarily
cancellative left Ore, left reversible monoid with enveloping group G =

S−1S, let λ : S → G be the natural map, let S̃ = λ(S), and let α : S →
Endr(A) be an action of S on A by injective ∗-homomorphisms. Then,

α extends to an action α̂ : G → Aut(S̃−1(S̃∗AS̃)), and there exists a

nonzero full projection e ∈ S̃−1(S̃∗AS̃) such that α̂s(e) ≤ e for all s ∈ S
and

Φ: Aoα S � e((S̃−1(S̃∗AS̃))×α̂ G)e

is an S-equivariant onto ∗-homomorphism.

Unfortunately, it seems quite clear that Ker(Φ) is not a α-invariant
ideal. So, up to very particular cases we cannot expect to represent
Sop ∗α A ∗α S (respectively Aoα S) exactly as a full corner of a suitable
skew group ring (respectively a group C∗-crossed product).
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