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A NEW CHARACTERIZATION OF TRIEBEL-LIZORKIN

SPACES ON Rn
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Abstract: In this paper, the authors characterize the Triebel-Lizorkin space Ḟαp,q(Rn)

via a new square function

Sα,q(f)(x) =

∑
k∈Z

2kαq

∣∣∣∣∣ 1

|B(x, 2−k)|

∫
B(x,2−k)

[f(x)− f(y)] dy

∣∣∣∣∣
q


1/q

,

where f ∈ L1
loc(Rn)∩S′(Rn), x ∈ Rn, α ∈ (0, 2) and p, q ∈ (1,∞]. Similar character-

izations are also established for Triebel-Lizorkin spaces Ḟαp,q(Rn) with α ∈ (0,∞)\2N
and p, q ∈ (1, ∞], and for Besov spaces Ḃαp,q(Rn) with α ∈ (0,∞) \ 2N, p ∈ (1,∞]

and q ∈ (0,∞].
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1. Introduction

It is well known that the fractional Sobolev space Ẇα,p(Rn) with
α ∈ (0, 1) and p ∈ (1,∞) can be characterized by the square function sα,
defined by setting, for all x ∈ Rn and f ∈ L1

loc(Rn) ∩ S ′(Rn),

sα(f)(x) :=


∫ ∞
0

[
–

∫
B(x,t)

|f(x)− f(y)| dy

]2
dt

t1+2α


1/2
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where above and in what follows, for any g ∈ L1
loc(Rn) and ball B ⊂ Rn,

–

∫
B

g(y) dy :=
1

|B|

∫
B

g(y) dy

and B(x, t) denotes the ball of Rn with the center x ∈ Rn and t ∈
(0,∞); see, for example, [16], [12], [13], [17]. However, when α ≥ 1 and

p ∈ (1,∞), the above square function fails to characterize Ẇα,p(Rn);
indeed, if f ∈ L1

loc(Rn) and ‖sα(f)‖Lp(Rn) < ∞, then f must be a
constant function (see, for example, [6, Section 4]).

Recently, Alabern, Mateu and Verdera [1] characterized the fractional

Sobolev space Ẇα,p(Rn) for α ∈ (0, 2) and p ∈ (1,∞) via a new square
function defined by setting, for all f ∈ L1

loc(Rn) ∩ S ′(Rn) and x ∈ Rn,

Sα(f)(x) :=


∫ ∞
0

∣∣∣∣∣ –

∫
B(x,t)

[f(x)− f(y)] dy

∣∣∣∣∣
2

dt

t1+2α


1/2

.

In particular, S1-function characterizes the Sobolev space Ẇ 1,p(Rn).
Comparing Sα with sα, we see that the only difference is that |f(x) −
f(y)| appearing in the definition of sα(f) is replaced by f(x) − f(y) in
that of Sα(f). Such a slight difference leads to a quite different con-
clusion in the characterization of (fractional) Sobolev spaces. The main
point, as first observed by Wheeden in [15] (see also [16]), when studying
the Lipschitz-type (Besov) spaces, and later independently by Alabern,
Mateu and Verdera in [1], is that Sα-function provides smoothness up
to order 2 in the following sense: for all f ∈ C2(Rn) and t ∈ (0, 1),

–

∫
B(x,t)

[f(x)− f(y)] dy = O(t2), x ∈ Rn,

which follows from the Taylor expansion of order 2

f(y) = f(x) +∇f(x) · (x− y) +O(|x− y|2), x, y ∈ Rn.

The purpose of this paper is to show that the above observation
further leads to a new characterization of Triebel-Lizorkin spaces with
reasonable parameters. We denote by Ḟαp,q(Rn) the classical homoge-
neous Triebel-Lizorkin space while Fαp,q(Rn) the inhomogeneous Triebel-
Lizorkin space for all reasonable parameters; see Section 2 for their defi-
nitions. Moreover, we introduce the following function spaces of Triebel-
Lizorkin type via a variant of the above square function Sα.
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Definition 1.1. Let α ∈ (0, 2) and q ∈ (0,∞].

(i) If p ∈ (0,∞), the space SḞαp,q(Rn) is defined as the collection of all

functions f∈L1
loc(Rn)∩S ′(Rn) such that ‖f‖SḞαp,q(Rn):=‖Sα,q(f)‖Lp(Rn)<

∞, where, for all x ∈ Rn,

Sα,q(f)(x) :=

{∑
k∈Z

2kαq

∣∣∣∣∣ –

∫
B(x,2−k)

[f(x)− f(y)] dy

∣∣∣∣∣
q}1/q

with the usual modification made when q =∞.

(ii) The space SḞα∞,q(Rn) is defined as the collection of all functions

f ∈ L1
loc(Rn) ∩ S ′(Rn) such that

‖f‖SḞα∞,q(Rn)

:= sup
x∈Rn

sup
`∈Z

–

∫
B(x,2−`)

∑
k≥`

2kαq

∣∣∣∣∣ –

∫
B(y,2−k)

[f(y)−f(z)] dz

∣∣∣∣∣
q

dy


1/q

<∞

with the usual modification made when q =∞.

(iii) If p ∈ (1,∞], the inhomogeneous space SFαp,q(Rn) is defined by

SFαp,q(Rn) := Lp(Rn) ∩ SḞαp,q(Rn)

with its norm ‖f‖SFαp,q(Rn) := ‖f‖Lp(Rn) + ‖f‖SḞαp,q(Rn) for all f ∈
SFαp,q(Rn).

In the above definition, S(Rn) denotes the space of all Schwartz func-
tions and S ′(Rn) its topological dual, namely, the space of all Schwartz
distributions. Recall that f ∈ L1

loc(Rn)∩S ′(Rn) means that f ∈ L1
loc(Rn)

and the natural pair 〈f, ϕ〉 given by the integral
∫
Rn f(x)ϕ(x) dx exists

for all ϕ ∈ S(Rn) and induces an element of S ′(Rn).
Then the first main result of this paper reads as follows.

Theorem 1.1. Let α ∈ (0, 2) and p, q ∈ (1,∞]. Then Ḟαp,q(Rn) =

SḞαp,q(Rn), with equivalent norms, and also Fαp,q(Rn) = SFαp,q(Rn), with
equivalent norms.

Remark 1.1. Notice that to obtain Theorem 1.1, it is necessary to make
the apriori assumption f ∈ L1

loc(Rn) ∩ S ′(Rn) in Definition 1.1. Indeed,
let f(x1, x2) := ex1 sinx2 for (x1, x2) ∈ R2. Then f is a harmonic
function in the plane and hence by the mean value property,

–

∫
B(x,2−k)

[f(x)− f(y)] dy = f(x)− –

∫
B(x,2−k)

f(y) dy = 0
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for all x ∈ R2 and k ∈ Z. So f ∈ L1
loc(R2) and Sα,q(f) = 0 ∈

Lp(Rn) for all α, p, q as in Theorem 1.1. However, let ϕ(x1, x2) :=
e−x1/2e−x2/2 sinx2. Then ϕ ∈ S(R2) and

∫
R2 f(x)ϕ(x) dx = ∞, which

implies that f /∈ S ′(R2). Since Ḟαp,q(R2) is a subspace of S ′(R2) (or

S ′(R2) modulo polynomials), we then conclude that f 6∈ Ḟαp,q(R2). In

this sense, the assumption f ∈ L1
loc(Rn) ∩ S ′(Rn) in Definition 1.1 is

necessary.

In what follows, the space Ẇ 2N,1
loc (Rn) denotes the set of all functions

that are locally in the homogeneous Sobolev space Ẇ 2N,1(Rn). When
α ∈ (2N, 2N + 2) with N ∈ N := {1, 2, . . . } and q ∈ (0,∞], as motivated

by higher order Taylor expansions, for all f ∈ Ẇ 2N,1
loc (Rn) ∩ S ′(Rn) and

x ∈ Rn, we set

(1.1) Sα,q(f)(x) :=

{∑
k∈Z

2kαq

∣∣∣∣∣ –

∫
B(x,2−k)

RN (y;x, 2−k) dy

∣∣∣∣∣
q}1/q

,

where, for all x, y ∈ Rn,

(1.2) RN (y;x, 2−k) := f(y)− f(x)−
N∑
j=1

1

Lj
∆jf(x)|y − x|2j

with Lj := ∆j |x|2j for j ∈ {1, . . . , N}; see [1] (also [15]) for more details.
Similar to Definition 1.1, we introduce its following higher-order variant.

Definition 1.2. Let α ∈ (2N, 2N + 2) with N ∈ N, q ∈ (0,∞] and
Sα,q(f) be as in (1.1).

(i) If p ∈ (0,∞), the space SḞαp,q(Rn) is defined as the collection of all

functions f∈Ẇ 2N,1
loc (Rn)∩S ′(Rn) such that ‖f‖SḞαp,q(Rn):=‖Sα,q(f)‖Lp(Rn)<

∞ with the usual modification made when q=∞.

(ii) The space SḞα∞,q(Rn) is defined as the collection of all functions

f ∈ Ẇ 2N,1
loc (Rn) ∩ S ′(Rn) such that

‖f‖SḞα∞,q(Rn)

:= sup
x∈Rn

sup
`∈Z

–

∫
B(x,2−`)

∑
k≥`

2kαq

∣∣∣∣∣ –

∫
B(y,2−k)

RN (z; y, 2−k) dz

∣∣∣∣∣
q

dy


1/q

<∞

with the usual modification made when q =∞.
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(iii) If p ∈ (1,∞], the inhomogeneous space SFαp,q(Rn) is defined by

SFαp,q(Rn) := Lp(Rn) ∩ SḞαp,q(Rn)

with its norm ‖f‖SFαp,q(Rn) := ‖f‖Lp(Rn) + ‖f‖SḞαp,q(Rn) for all f ∈
SFαp,q(Rn).

Recall that, via the square function Sα,2, Alabern, Mateu and Ver-

dera [1] also characterized the higher order Sobolev space Ẇα,p for all
α ∈ (2N, 2N +2) with N ∈ N and p ∈ (1,∞). We extend this as follows.

Theorem 1.2. Let N ∈ N, α ∈ (2N, 2N + 2) and p, q ∈ (1,∞]. Then

Ḟαp,q(Rn) = SḞαp,q(Rn), with equivalent norms, and also Fαp,q(Rn) =
SFαp,q(Rn), with equivalent norms.

The paper is organized as follows. In Section 2, we recall several
notions and notation. In Section 3, we prove Theorems 1.1 and 1.2.
In Section 4, we extend the above results to Besov spaces and also give
some further remarks on the case α ∈ 2N and on the higher order Triebel-
Lizorkin spaces on metric measure spaces.

Finally, we point out that the proofs of Theorems 1.1 and 1.2 below
are totally different from the method used in [1]. The method in [1]
strongly depends on the theory of Fourier transforms and vector-valued
singular integrals, while our approach heavily depends on some Calderón
reproducing formulae, one of which is from Peetre [11] (see also Frazier
and Jawerth [3] and Frazier, Jawerth and Weiss [5], or Lemma 3.1 below)
and some others are constructed in this paper (see Lemma 3.2 below).

2. Notation and definitions

Let Z+ := {0} ∪ N. Denote by S(Rn) the space of all Schwartz
functions, whose topology is determined by a family of seminorms,
{‖ · ‖Sk,m(Rn)}k,m∈Z+ , where, for all k ∈ Z+, m ∈ (0,∞) and ϕ ∈ S(Rn),

‖ϕ‖Sk,m(Rn) := sup
α∈Zn+, |α|≤k

sup
x∈Rn

(1 + |x|)m|∂αϕ(x)|.

Here, for any α := (α1, . . . , αn) ∈ Zn+, |α| := α1 + · · · + αn and ∂α :=

( ∂
∂x1

)α1 · · · ( ∂
∂xn

)αn . It is known that S(Rn) forms a locally convex

topological vector space. Denote by S ′(Rn) the topological dual space
of S(Rn) endowed with the weak ∗-topology. In what follows, for every
ϕ ∈ S(Rn), t > 0 and x ∈ Rn, set ϕt(x) := t−nϕ(t−1x).

For p ∈ (0,∞], denote by Lp(Rn) the Lebesgue space of order p. For

N ∈ N and p ∈ (1,∞), denote by ẆN,p(Rn) the homogeneous Sobolev
space of order N , namely, the collection of all measurable functions f
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with their distributional derivatives ∂αf ∈ Lp(Rn), where α ∈ Zn+ and
|α| = N . Moreover, let

‖f‖ẆN,p(Rn) :=
∑
|α|=N

‖∂αf‖Lp(Rn).

Set WN,p(Rn) := Lp(Rn) ∩ ẆN,p(Rn) as the inhomogeneous Sobolev
space with norm

‖f‖WN,p(Rn) := ‖f‖Lp(Rn) + ‖f‖ẆN,p(Rn)

for all f ∈ WN,p(Rn). Denote by the space L1
loc(Rn) the locally inte-

grable function and similarly the space ẆN,1
loc (Rn).

Now we recall the notions of Triebel-Lizorkin and Besov spaces;
see [13], [14]. In what follows, for any ϕ ∈ L1(Rn), ϕ̂ denotes the
Fourier transform of ϕ, namely, for all ξ ∈ Rn,

ϕ̂(ξ) :=

∫
Rn
e−iξ·xϕ(x) dx.

Definition 2.1. Let α ∈ (0,∞), p, q ∈ (0,∞] and ϕ ∈ S(Rn) satisfy
that

(2.1) supp ϕ̂ ⊂ {ξ ∈ Rn : 1/2 ≤ |ξ| ≤ 2} and

|ϕ̂(ξ)| ≥ constant > 0 if 3/5 ≤ |ξ| ≤ 5/3.

(i) The homogeneous Triebel-Lizorkin space Ḟαp,q(Rn) is defined as the
collection of all f ∈ S ′(Rn) such that ‖f‖Ḟαp,q(Rn) < ∞, where, when

p ∈ (0,∞),

‖f‖Ḟαp,q(Rn) :=

∥∥∥∥∥∥
(∑
k∈Z

2ksq|ϕ2−k ∗ f |q
)1/q

∥∥∥∥∥∥
Lp(Rn)

,

with the usual modification made when q =∞, and

‖f‖Ḟα∞,q(Rn) := sup
x∈Rn

sup
`∈Z

 –

∫
B(x,2−`)

∑
k≥`

2kαq|ϕ2−k ∗ f(y)|q dy


1/q

,

with the usual modification made when q =∞.
When p ∈ (1,∞], the inhomogeneous Triebel-Lizorkin space Fαp,q(Rn)

is defined by

Fαp,q(Rn) := Lp(Rn) ∩ Ḟαp,q(Rn)

with the norm ‖f‖Fαp,q(Rn) := ‖f‖Lp(Rn)+‖f‖Ḟαp,q(Rn) for all f ∈ Fαp,q(Rn).
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(ii) The homogeneous Besov space Ḃαp,q(Rn) is defined as the collection
of all f ∈ S ′(Rn) such that ‖f‖Ḃαp,q(Rn) <∞, where

‖f‖Ḃαp,q(Rn) :=

(∑
k∈Z

2ksq‖ϕ2−k ∗ f‖
q
Lp(Rn)

)1/q

with the usual modifications made when p =∞ or q =∞.
When p ∈ (1,∞], the inhomogeneous Besov space Bαp,q(Rn) is defined

by

Bαp,q(Rn) := Lp(Rn) ∩ Ḃαp,q(Rn)

with the norm ‖f‖Bαp,q(Rn) :=‖f‖Lp(Rn)+‖f‖Ḃαp,q(Rn) for all f ∈Bαp,q(Rn).

Remark 2.1. Notice that if ‖f‖Ḟ sp,q(Rn) = 0, then it is easy to see that

f is a polynomial. Denote by P(Rn) the collection of all polynomials

on Rn. So the quotient space Ḟ sp,q(Rn)/P(Rn) is a quasi-Banach space.

By abuse of the notation, the space Ḟ sp,q(Rn)/P(Rn) is always denoted

by Ḟ sp,q(Rn), and its element [f ] = f + P(Rn) with f ∈ Ḟ sp,q(Rn) simply
by f . Similar observation is also suitable to homogeneous Besov spaces.

Moreover, for α ∈ (0,∞) and p ∈ (1,∞), the homogeneous fractional

Sobolev space Ẇα,p(Rn) coincides with the Triebel-Lizorkin space Ḟαp,2(Rn)
with equivalent norms; see [13] (or [14]) for this and the definition

of Ẇα,p(Rn). Similarly, the inhomogeneous fractional Sobolev space
Wα,p(Rn) coincides with the Triebel-Lizorkin space Fαp,2(Rn) with equiv-
alent norms.

Throughout the whole paper, we denote by C a positive constant
which is independent of the main parameters, but it may vary from line
to line. The symbol A . B means that A ≤ CB. If A . B and B . A,
we then write A ∼ B. If E is a subset of Rn, we denote by χE the
characteristic function of E. For any a ∈ R, bac denotes the maximal
integer not larger than a.

3. Proofs of the main results

Theorems 1.1 and 1.2 follow from Remark 2.1 and the following The-
orems 3.1 and 3.2.

Theorem 3.1. Let α ∈ (0,∞) \ 2N and p, q ∈ (1,∞]. If f ∈ Ḟαp,q(Rn),

then there exists a polynomial Pf such that f + Pf ∈ SḞαp,q(Rn); more-
over, ‖f + Pf‖SḞαp,q(Rn) ≤ C‖f‖Ḟαp,q(Rn), where C is a positive constant

independent of f .
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To prove Theorem 3.1, we need the following Calderón reproducing
formula established in [11, pp. 52–54] (see also [3, Remark 2.2]).

Lemma 3.1. For any ϕ ∈ S(Rn) satisfying (2.1), there exists ψ ∈
S(Rn) satisfying (2.1) such that, for all ξ ∈ Rn \ {0},∑

j∈Z
ϕ̂(2jξ)ψ̂(2jξ) = 1.

Moreover, for every f ∈ S ′(Rn), there exist polynomials {Pj}j∈Z and Pf
such that

(3.1) f + Pf = lim
i→−∞


∞∑
j=i

ϕ2−j ∗ ψ2−j ∗ f + Pi


in S ′(Rn).

Proof of Theorem 3.1: We first assume that α ∈ (0, 2) and p, q ∈ (1,∞].

Notice that Ḟαp,q(Rn) ⊂ L1
loc(Rn); see, for example, [10, Proposition 4.2]

or [19, Proposition 5.1] for a proof. Let f ∈ Ḟαp,q(Rn). Then f ∈
S ′(Rn) ∩ L1

loc(Rn). Let ϕ and ψ be as in Lemma 3.1. Then (3.1) holds

for f . Observe that f ∈ Ḟαp,q(Rn) further implies that the degrees of
the polynomials {Pi}i∈Z in (2.1) do not exceed bα − n/pc ≤ 1; see [4,
pp. 153–155] and [3]. Moreover, since Pi has at most degree 1 for each i,
we have

Pi(x)− –

∫
B(x,2−k)

Pi(z) dz = 0

for all x ∈ Rn and k ∈ Z. Moreover, as shown in [4, pp. 153–155],
f + Pf is the canonical representative of f in the sense that if for i ∈
{1, 2}, ϕ(i) and ψ(i) satisfy (2.1) and∑

k∈Z
ϕ̂(i)(2−kξ)ψ̂(i)(2−kξ) = 1

for all ξ ∈ Rn \ {0}, then P
(1)
f −P (2)

f is a polynomial of degree not more

than bα−n/pc ≤ 1, where P
(i)
f is as in (3.1) corresponding to {ϕ(i), ψ(i)}

for i ∈ {1, 2}. Also notice that for all x ∈ Rn and k ∈ Z,

P
(1)
f (x)− P (2)

f (x)− –

∫
B(x,2−k)

[P
(1)
f (z)− P (2)

f (z)] dz = 0.

Let f̃ := f + Pf . Then by (3.1), we have

(3.2) f̃ − f̃B(·,2−k) =
∑
j∈Z

(ϕ2−j − χk ∗ ϕ2−j ) ∗ ψ2−j ∗ f
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in S ′(Rn). Here χ :=
χB(0,1)

|B(0,1)| and χk := 2knχ(2k·). From the above

discussion, it follows that f̃ − f̃B(·,2−k) is independent of the choices of ϕ
and ψ satisfying (2.1). Then it suffices to prove that, when p ∈ (1,∞)
and q ∈ (1,∞],

(3.3)


∫
Rn

∑
k∈Z

2kαq

∑
j∈Z
|(ϕ2−j−χk ∗ ϕ2−j ) ∗ ψ2−j ∗f(x)|

q
p
q

dx


1
p

. ‖f‖Ḟαp,q(Rn)

and that, when p =∞ and q ∈ (1,∞], for all x ∈ Rn and ` ∈ Z,

(3.4)

 –

∫
B(x,2−`)

∑
k≥`

2kαq

∑
j∈Z
|(ϕ2−j−χk ∗ ϕ2−j ) ∗ ψ2−j ∗f(y)|

q dy


1
q

. ‖f‖Ḟα∞,q(Rn).

Indeed, if (3.3) holds, then for each k ∈ Z, we have

∫
Rn

∑
j∈Z
|(ϕ2−j − χk ∗ ϕ2−j ) ∗ ψ2−j ∗ f(x)|

p dx <∞,
which further implies that (3.2) holds in Lp(Rn) and hence almost ev-
erywhere. Therefore, for every k ∈ Z,

|f̃ − f̃B(·,2−k)| ≤
∑
j∈Z
|(ϕ2−j − χk ∗ ϕ2−j ) ∗ ψ2−j ∗ f |

almost everywhere, and hence ‖f̃‖SḞαp,q(Rn) is less than the left hand side

of (3.3), which further implies that ‖f̃‖SḞαp,q(Rn) . ‖f‖Ḟαp,q(Rn). Similarly,

if (3.4) holds, then (3.2) holds in L1
loc(Rn) and hence almost everywhere

and, moreover, an argument similar to above leads to ‖f̃‖SḞα∞,q(Rn) .

‖f‖Ḟα∞,q(Rn).
To prove (3.3), we consider

∑
j≤k and

∑
j>k separately. Notice that

for any smooth function Φ on R,

(3.5) Φ(1) = Φ(0) +

∫ 1

0

Φ′(s) ds = Φ(0) + Φ′(0) +

∫ 1

0

(1− s)Φ′′(s) ds.
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Let Φ(s) := ϕ(2jx+ sz) for s ∈ [0, 1] and x, z ∈ Rn. Then

ϕ(2jx+ z) = ϕ(2jx) + (∇ϕ)(2jx)zt +

∫ 1

0

(1− s)z(∇2ϕ)(2jx+ sz)zt ds,

where zt denotes the transpose of z. Therefore, when j ≤ k, for all
x ∈ Rn,

|χk∗ϕ2−j (x)−ϕ2−j (x)|=

∣∣∣∣∣ –

∫
B(0,1)

2jn
[
ϕ(2jx+ 2j−kz)− ϕ(2jx)

]
dz

∣∣∣∣∣
=

∣∣∣∣∣ –

∫
B(0,2j−k)

2jn
[
ϕ(2jx+ z)− ϕ(2jx)

]
dz

∣∣∣∣∣
=

∣∣∣∣∣ –

∫
B(0,2j−k)

2jn
∫ 1

0

(1−s)z(∇2ϕ)(2jx+sz)zt ds dz

∣∣∣∣∣
.22(j−k)

2jn

(1 + |2jx|)L
,

(3.6)

where L > n. Hence

|(χk∗ϕ2−j−ϕ2−j )∗ψ2−j ∗f(x)|.22(j−k)
∫
Rn

2jn

(1+|2jy|)L
|ψ2−j ∗f(x−y)| dy

.22(j−k)M(|ψ2−j ∗ f |)(x),

where M denotes the Hardy-Littlewood maximal function. Then, choos-
ing δ ∈ (0, 2− α), by Hölder’s inequality and α ∈ (0, 2), we see that

I1 :=


∫
Rn

∑
k∈Z

2kαq

∑
j≤k

|(ϕ2−j−χk ∗ ϕ2−j )∗ψ2−j ∗f(x)|

qp/q dx

1/p

.


∫
Rn

∑
k∈Z

2kαq
∑
j≤k

2(2−δ)(j−k)q [M(|ψ2−j ∗ f |)(x)]
q

p/q dx

1/p

.


∫
Rn

∑
j∈Z

2jαq [M(|ψ2−j ∗ f |)(x)]
q

p/q dx

1/p

,
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which, together with the Fefferman-Stein vector-valued maximal inequal-
ity (see [2]), further implies that

I1 .


∫
Rn

∑
j∈Z

2jαq|ψ2−j ∗ f(x)|q
p/q dx


1/p

. ‖f‖Ḟαp,q(Rn).

Notice that when j > k, for all x ∈ Rn, we always have

|(χk∗ϕ2−j−ϕ2−j)∗ψ2−j∗f(x)|≤|χk∗ϕ2−j∗ψ2−j∗f(x)|+|ϕ2−j∗ψ2−j∗f(x)|

≤χk∗[M(|ψ2−j ∗f |)](x)+M(|ψ2−j ∗f |)(x)|

.M ◦M(|ψ2−j ∗ f |)(x),

where M ◦M denotes the composition of M and M . Then by α > 0,
taking δ ∈ (0, α) and applying Hölder’s inequality, we obtain

I2 :=


∫
Rn

∑
k∈Z

2kαq

∑
j>k

|(ϕ2−j−χk ∗ ϕ2−j ) ∗ ψ2−j ∗f(x)|

qp/q dx


1/p

.


∫
Rn

∑
k∈Z

2k(α−δ)q
∑
j>k

2jδq [M ◦M(|ψ2−j ∗ f |)(x)]
q

p/q dx


1/p

.


∫
Rn

∑
j∈Z

2jαq [M ◦M(|ψ2−j ∗ f |)(x)]
q

p/q dx


1/p

,

which, together with the Fefferman-Stein vector-valued maximal inequal-
ity, further implies that I2 . ‖f‖Ḟαp,q(Rn). This proves (3.3).

To prove (3.4), we consider
∑
j<`≤k,

∑
`≤j≤k and

∑
j>k≥` separately.

If j ≤ ` ≤ k, from (3.6) and Hölder’s inequality, we deduce that for all
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y ∈ Rn,

|(χk ∗ ϕ2−j − ϕ2−j ) ∗ ψ2−j ∗ f(y)|

. 22(j−k)
∫
Rn

2jn

(1 + |2jz|)L
|ψ2−j ∗ f(y − z)| dz

. 22(j−k)
∞∑
i=0

2i(n−L) –

∫
B(y,2i−j)

|ψ2−j ∗ f(z)| dz

. 22(j−k)
∞∑
i=0

2i(n−L)

{
–

∫
B(y,2i−j)

|ψ2−j ∗ f(z)|q dz

}1/q

. 22(j−k)
∞∑
i=0

2i(n−L)2−jα‖f‖Ḟα∞,q(Rn)

. 22(j−k)2−jα‖f‖Ḟα∞,q(Rn),

where we used the following trivial estimate that{
–

∫
B(y,2i−j)

|ψ2−j ∗ f(z)|q dz

}1/q

. 2−jα‖f‖Ḟα∞,q(Rn).

Hence –

∫
B(x,2−`)

∑
k≥`

2kαq

∑
j≤`

|(ϕ2−j−χk ∗ ϕ2−j ) ∗ ψ2−j ∗f(y)|

q dy


1/q

.

 –

∫
B(x,2−`)

∑
k≥`

2kαq

∑
j≤`

22(j−k)2−jα

q

dy


1/q

‖f‖Ḟα∞,q(Rn)

. ‖f‖Ḟα∞,q(Rn).

If ` ≤ j ≤ k, then, for all y ∈ Rn,

|(χk ∗ ϕ2−j − ϕ2−j ) ∗ ψ2−j ∗ f(y)|

. 22(j−k)M(|ψ2−j ∗ f |χB(x,2−`))(y)

+
∑
i≥j−`

2i(n−L) –

∫
B(y,2i−j)

|ψ2−j ∗ f(z)| dz

. 22(j−k)M(|ψ2−j ∗ f |χB(x,2−`))(y)

+ 22(j−k)2−jα2(j−`)(n−L)‖f‖Ḟα∞,q(Rn)
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and hence, by Hölder’s inequality, –

∫
B(x,2−`)

∑
k≥`

2kαq

 ∑
`<j≤k

|(ϕ2−j−χk ∗ ϕ2−j ) ∗ ψ2−j ∗f(y)|

q dy

1/q

.

 –

∫
B(x,2−`)

∑
k≥`

2kαq

 ∑
`<j≤k

22(j−k)M(|ψ2−j ∗f |χB(x,2−`))(y)

q dy

1/q

+

 –

∫
B(x,2−`)

∑
k≥`

2kαq

 ∑
`<j≤k

22(j−k)2(n−L)(j−`)2−jα

qdy

1/q

‖f‖Ḟα∞,q(Rn)

.

 –

∫
B(x,2−`)

∑
k≥`

2kαq

 ∑
`<j≤k

22(j−k)|ψ2−j ∗f(y)|

q dy

1/q

+‖f‖Ḟα∞,q(Rn)

. ‖f‖Ḟα∞,q(Rn).

Similarly, if j > k ≥ `, then we have

|(χk ∗ ϕ2−j − ϕ2−j ) ∗ ψ2−j ∗ f(y)|

.M
(
χB(x,2−`)M(|ψ2−j ∗ f |χB(x,2−`))

)
(y)

+ 2−αj2(j−`)(n−L)‖f‖Ḟα∞,q(Rn),

which further implies that –

∫
B(x,2−`)

∑
k≥`

2kαq

∑
j>k

|(ϕ2−j−χk ∗ ϕ2−j ) ∗ ψ2−j ∗ f(y)|

q

dy


1/q

. ‖f‖Ḟα∞,q(Rn).

This proves (3.4).
Now we consider the case α ∈ (2N, 2N + 2) with N ∈ N. Since the

idea of the proof is similar to the case α ∈ (0, 2), we only sketch the

main steps. First we observe that Ḟαp,q(Rn) ⊂ Ẇ 2N,1
loc (Rn), which follows

from the lifting properties of Triebel-Lizorkin spaces (see [13]) and the

fact that Ḟα−2Np,q (Rn) ⊂ L1
loc(Rn) mentioned above. Moreover, similar

to the above, f ∈ Ḟαp,q(Rn) implies that the degrees of the polynomials
{Pi}i∈Z in (2.1) do not exceed bα − n/pc ≤ 2N + 1, and also that the
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polynomial Pf is unique modulo a polynomial with degree no more than
bα−n/pc ≤ 2N +1; see [4, pp. 153–155] and [3]. In what follows, we set

f̃ := f +Pf and let R̃N (y;x, 2−k) be defined as in (1.2) with f replaced

by f̃ .
Notice that for i ∈ N, –

∫
B(0,1)

|y|2i dy = n
n+2i . Then from (3.1), it

follows that for all x ∈ Rn,

–

∫
B(x,2−k)

R̃N (y;x, 2−k) dy= χk ∗ f̃(x)−
N∑
i=0

2−2ik
1

Li

n

n+ 2i
∆if̃(x)

=
∑
j∈Z

[
χk ∗ ϕ2−j−

N∑
i=0

2−2ik
1

Li

n

n+2i
∆iϕ2−j

]

∗ ψ2−j ∗ f(x).

We now consider
∑
j≤k and

∑
j>k separately.

By an argument similar to (3.5), we see that, for any smooth func-
tion Φ on R and N ∈ N,

(3.7) Φ(1)=Φ(0)+

2N+1∑
i=1

Φ(i)(0)

i!
+

1

(2N+1)!

∫ 1

0

(1−s)2N+1Φ(2N+2)(s) ds.

As above, choosing Φ(s) := ϕ(2jx + sz) for s ∈ [0, 1] and x, z ∈ Rn, we
have

ϕ(2jx+z)=ϕ(2jx) + (∇ϕ)(2jx)zt +
1

2!
z(∇2ϕ)(2jx)zt + · · ·

+
1

(2N+1)!

∫ 1

0

(1−s)2N+1zN+1(∇2N+2ϕ)(2jx+sz)(zt)N+1 ds.

Notice that in this expansion, except the terms 1
Li

∆iϕ(2jx)|2j−kz|2i for
0 ≤ i ≤ N and the last term, the other terms are harmonic and then
have average 0 on any ball centered at 0. When j ≤ k, applying these
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facts, we conclude that, for all x ∈ Rn,∣∣∣∣∣χk ∗ ϕ2−j (x)−
N∑
i=0

2−2ik
1

Li

n

n+ 2i
∆iϕ2−j (x)

∣∣∣∣∣
=

∣∣∣∣∣ –

∫
B(0,1)

2jn

[
ϕ(2jx+ 2j−kz)−

N∑
i=0

1

Li
∆iϕ(2jx)|2j−kz|2i

]
dz

∣∣∣∣∣
=

∣∣∣∣∣ –

∫
B(0,2j−k)

2jn
∫ 1

0

(1−s)2N+1zN+1(∇2N+2ϕ)(2jx+ sz)(zt)N+1 ds dz

∣∣∣∣∣
. 22(N+1)(j−k) 2jn

(1 + |2jx|)L
,

where L ∈ N is larger than n. Here the decay factor 22(N+1)(j−k) is
crucial. Indeed, when j ≤ k, we see that∣∣∣∣∣
(
χk ∗ ϕ2−j −

N∑
i=0

2−2ik
1

Li

n

n+ 2i
∆iϕ2−j

)
∗ ψ2−j ∗ f(x)

∣∣∣∣∣
. 2(2N+2)(j−k)M(|ψ2−j ∗ f |)(x),

while, when j > k, we also see that∣∣∣∣∣
(
χk ∗ ϕ2−j −

N∑
i=0

2−2ik
1

Li

n

n+ 2i
∆iϕ2−j

)
∗ ψ2−j ∗ f(x)

∣∣∣∣∣
. 22N(j−k)M ◦M(|ψ2−j ∗ f |)(x).

Since 2N < α < 2(N + 1), for all p ∈ (1,∞) and q ∈ (1,∞], by exactly
the same procedure as above, we conclude that

‖Sα,q(f̃)‖Lp(Rn)

.


∫
Rn

∑
k∈Z

2kαq

∑
j≤k

22(N+1)(j−k)M(|ψ2−j ∗f |)(x)

qp/qdx


1/p

+


∫
Rn

∑
k∈Z

2kαq

∑
j>k

22N(j−k)M ◦M(|ψ2−j ∗f |)(x)

qp/q dx

1/p

. ‖f‖Ḟαp,q(Rn).
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When 2N < α < 2(N + 1), for all p = ∞ and q ∈ (1,∞], from a much
more complicated argument, similar to the case 0 < α < 2, p = ∞ and

q ∈ (1,∞], we also deduce that ‖f̃‖SḞαp,q(Rn) . ‖f‖Ḟαp,q(Rn). We omit the

details. This finishes the proof of Theorem 3.1.

Theorem 3.2. Let α ∈ (0,∞) \ 2N and p, q ∈ (1,∞]. If f ∈ SḞαp,q(Rn),

then f ∈ Ḟαp,q(Rn) and there exists a positive constant C, independent
of f , such that

‖f‖Ḟαp,q(Rn) ≤ C‖f‖SḞαp,q(Rn).

The proof of Theorem 3.2 depends heavily on the following Calderón
reproducing formulae.

Lemma 3.2. Let χ :=
χB(0,1)

|B(0,1)| , L ∈ Z+ ∪ {−1} and N ∈ N.

(i) There exist φ,ψ∈S(Rn)satisfying that suppφ⊂B(0,1),
∫
Rnφ(x)xγdx=

0 for all |γ| ≤ L and supp ψ̂ ⊂ {ξ ∈ Rn : 1/64 ≤ |ξ| ≤ 1/16} such that,
for all ξ ∈ Rn \ {0},

(3.8)
∑
j∈Z

ψ̂2−j (ξ)φ̂2−j (ξ)[χ̂2−j (ξ)− χ̂21−j (ξ)] = 1.

Moreover, for every f ∈ L1
loc(Rn) ∩ S ′(Rn), there exist polynomials

{Pj}j∈Z and Pf such that

(3.9) f + Pf = lim
i→−∞


∞∑
j=i

φ2−j ∗ ψ2−j ∗ (fB(·,2−j) − fB(·,21−j)) + Pi


in S ′(Rn).

(ii) There exist φ, ψ ∈ S(Rn) satisfying the same conditions as in (i)
such that, for all ξ ∈ Rn \ {0},

(3.10)
∑
j∈Z

ψ̂2−j (ξ)φ̂2−j (ξ)

{[
χ̂2−j (ξ)−

N∑
i=1

2−2ij
1

Li

n

n+ 2i
|ξ|2i

]

−

[
χ̂21−j (ξ)−

N∑
i=1

2−2i(j−1)
1

Li

n

n+2i
|ξ|2i

]}
=1.
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Moreover, for every f ∈ Ẇ 2N,1
loc (Rn) ∩ S ′(Rn), there exist polynomials

{Pj}j∈Z and Pf such that

(3.11) f+Pf = lim
m→−∞


∞∑
j=m

φ2−j ∗ψ2−j∗

[(
fB(·,2−j)−

N∑
i=1

2−2ij
1

Li

n

n+2i
∆if

)

−

(
fB(·,21−j)−

N∑
i=1

2−2i(j−1)
1

Li

n

n+2i
∆if

)+Pm


in S ′(Rn).

Proof: (i) It suffices to show (3.8). The proof of (3.9) follows from (3.8)
and an argument similar to the arguments in [11, pp. 52–54].

First we show that there exists a positive constant C0 such that for
all 1/64 ≤ |ξ| ≤ 1/16,

(3.12) |χ̂(ξ)− χ̂2(ξ)| ≥ C0 > 0.

By [7, p. 429], we know that χ̂B(0,1)(ξ) = Jn/2(2πξ)/|ξ|n/2, where Jn/2
is the Bessel function of order n/2. Thus,

χ̂(ξ) =
1

|B(0, 1)|
Jn/2(2πξ)

|ξ|n/2
and χ̂2(ξ) =

1

|B(0, 1)|
Jn/2(4πξ)

|2ξ|n/2
.

Therefore,

χ̂(ξ)− χ̂2(ξ) =
πn/2

|B(0, 1)|Γ(n/2 + 1/2)Γ(1/2)

×
{∫ 1

−1

[
e2πi|ξ|s − e4πi|ξ|s

]
(1− s2)n/2−1/2 ds

}
.

Notice that if 1/64 ≤ |ξ| ≤ 1/16 and s∈ [−1, 1], then 4π|ξ|s ∈ [−π/4, π/4]
and hence cos(2π|ξ|s) ≥ cos(4π|ξ|s). Then we conclude that

|χ̂(ξ)− χ̂2(ξ)| ≥ πn/2

|B(0, 1)|Γ(n/2 + 1/2)Γ(1/2)

×
{∫ 1

−1
[cos(2π|ξ|s)− cos(4π|ξ|s)] (1− s2)n/2−1/2 ds

}
.
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By the fact that 1/64 ≤ |ξ| ≤ 1/16 and s ∈ [−1, 1] again, we see that
π2|ξ|2s2 ≥ 10π4|ξ|4s4. Thus, by the Taylor expansion of the cosine
function, we know that

cos(2π|ξ|s)− cos(4π|ξ|s) ≥ 5π2|ξ|2s2

and hence

|χ̂(ξ)− χ̂2(ξ)|≥ 5π2|ξ|2πn/2

|B(0, 1)|Γ(n/2 + 1/2)Γ(1/2)

{∫ 1

−1
s2(1−s2)n/2−1/2 ds

}
.

From the properties of Gamma functions (see [7, Appendix A]), it follows
that

πn/2

|B(0, 1)|Γ(n/2 + 1/2)Γ(1/2)

{∫ 1

−1
(1− s2)n/2−1/2 ds

}

=
nΓ(n/2)

2Γ(n/2 + 1/2)Γ(1/2)

{∫ 1

0

(1− t)n/2−1/2t−1/2 dt
}

=
nΓ(n/2)

2Γ(n/2 + 1/2)Γ(1/2)

Γ(n/2 + 1/2)Γ(1/2)

Γ(n/2 + 1)
= 1.

Thus,

|χ̂(ξ)− χ̂2(ξ)| ≥ 5π2|ξ|2
∫ 1

−1 s
2(1− s2)n/2−1/2 ds∫ 1

−1(1− s2)n/2−1/2 ds

= 5π2|ξ|2
∫ 1

0
t1/2(1− t)n/2−1/2 dt∫ 1

0
t−1/2(1− t)n/2−1/2 dt

= 5π2|ξ|2 Γ(3/2)Γ(n/2 + 1/2)Γ(n/2 + 1)

Γ(1/2)Γ(n/2 + 1/2)Γ(n/2 + 2)

=
5π2|ξ|2

n+ 2
.

(3.13)

Therefore, for all 1/64 ≤ |ξ| ≤ 1/16, we have

|χ̂(ξ)− χ̂2(ξ)| ≥ 2−12
5π2

n+ 2
> 0,

namely, (3.12) holds.
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For any fixed L ∈ Z+ ∪ {−1}, select a smooth function φ on Rn
such that suppφ ⊂ B(0, 1),

∫
Rn φ(x)xγ dx = 0 for all |γ| ≤ L, and

|φ̂(ξ)| ≥ C > 0 for all 1/64 ≤ |ξ| ≤ 1/16, where C is a positive constant.
Then φ ∗ (χ − χ2) ∈ C∞c (Rn), has vanishing moments till order L and
satisfies that

(3.14)
∣∣∣φ̂(ξ)[χ̂(ξ)− χ̂2(ξ)]

∣∣∣ ≥ C > 0

for all 1/64 ≤ |ξ| ≤ 1/16.
Let g ∈ S(Rn) such that ĝ is nonnegative, supp ĝ ⊂ {ξ ∈ Rn : 1/64 ≤

|ξ| ≤ 1/16} and ĝ(ξ) ≥ C > 0 if 3/128 ≤ |ξ| ≤ 7/128, where C is a
positive constant. Let

F :=
∑
j∈Z

ĝ(2−j ·).

Then F is a bounded smooth function satisfying that F (ξ) ≥ C > 0 for
all ξ 6= 0 and F (2j ·) ≡ F .

Now define h := ĝ/F . Then h ∈ S(Rn), supph ⊂ {ξ ∈ Rn :
1/64 ≤ |ξ| ≤ 1/16}, h(ξ) ≥ C > 0 for all 3/128 ≤ |ξ| ≤ 7/128, and∑
j∈Z h(2−jξ) = 1 for all ξ 6= 0. By (3.14), we define a Schwartz func-

tion ψ by setting ψ̂ := h{φ̂[χ̂− χ̂2]}−1. Then

supp ψ̂ ⊂ {ξ ∈ Rn : 1/64 ≤ |ξ| ≤ 1/16}

and, for all ξ ∈ Rn \ {0},∑
j∈Z

ψ̂2−j (ξ)φ̂2−j (ξ)[χ̂2−j (ξ)− χ̂21−j (ξ)] =
∑
j∈Z

ĥ(2−jξ) = 1,

which completes the proof of (i).

(ii) Similar to the argument in (i), it suffices to show that there exists a
positive constant C0 such that, for all 1/64 ≤ |ξ| ≤ 1/16,

(3.15)

∣∣∣∣∣
[
χ̂(ξ)−

N∑
i=1

1

Li

n

n+2i
|ξ|2i

]
−

[
χ̂2(ξ)−

N∑
i=1

22i
1

Li

n

n+2i
|ξ|2i

]∣∣∣∣∣≥C0>0.

From (3.13), we deduce that, for all 1/64 ≤ |ξ| ≤ 1/16,

|χ̂(ξ)− χ̂2(ξ)| ≥ 5π2|ξ|2

n+ 2
,
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while

∣∣∣∣∣
N∑
i=1

22i
1

Li

n

n+ 2i
|ξ|2i −

N∑
i=1

1

Li

n

n+ 2i
|ξ|2i

∣∣∣∣∣
≤ |ξ|2

N∑
i=1

(22i−1)n

n+ 2i

2−4(2i−2)∑
m1+···+mn=i(2m1)! · · · (2mn)!

≤4|ξ|2/(n+2).

Thus, (3.15) holds in this case, which completes the proof of (ii) and
hence Lemma 3.2.

Proof of Theorem 3.2: We first consider the case α ∈ (0, 2). Let f ∈
SḞαp,q(Rn). By Lemma 3.2(i) and f ∈ L1

loc(Rn) ∩ S ′(Rn), we conclude
that

f =
∑
k∈Z

φ2−k ∗ ψ2−k ∗ (χ2−k − χ2−k+1) ∗ f

=
∑
k∈Z

φ2−k ∗ ψ2−k ∗ (fB(·,2−k) − fB(·,21−k)),

which, modulo polynomials, holds in S ′(Rn). Here φ and ψ are as in
Lemma 3.2(i). Let ϕ be as in (2.1). For k ∈ Z, we have

ϕ2−k ∗ f =
∑
j∈Z

ϕ2−k ∗ φ2−j ∗ ψ2−j ∗ (fB(·,2−j) − fB(·,21−j)).

Notice that for all k, j ∈ Z, and x ∈ Rn,

|ϕ2−k ∗ φ2−j ∗ ψ2−j (x)| = |ϕ2−k ∗ (φ ∗ ψ)2−j (x)|

. 2−s|j−k|
2n(min(j,k))

(1 + |2min(j,k)x|)L
,

(3.16)

where s, L can be chosen large enough as we need; see, for example, [18,
Lemma 2.2]. Thus,

|ϕ2−k ∗ φ2−j ∗ ψ2−j ∗ g| = |ϕ2−k ∗ (φ ∗ ψ)2−j ∗ g| . 2−2|j−k|M(g).
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Therefore, when p ∈ (1,∞), from Definition 2.1, Hölder’s inequality and
the Fefferman-Stein vector-valued maximal inequality, we infer that

‖f‖Ḟαp,q(Rn).

∥∥∥∥∥∥∥
∑
k∈Z

2kαq

∣∣∣∣∣∣
∑
j≤k

2−2(k−j)M
(
fB(·,2−j)−fB(·,21−j)

)∣∣∣∣∣∣
q

1/q
∥∥∥∥∥∥∥
Lp(Rn)

+

∥∥∥∥∥∥∥
∑
k∈Z

2kαq

∣∣∣∣∣∣
∑
j>k

2−2(j−k)M
(
fB(·,2−j)−fB(·,21−j)

)∣∣∣∣∣∣
q

1/q
∥∥∥∥∥∥∥
Lp(Rn)

.

∥∥∥∥∥∥∥
∑
j∈Z

2jαq
[
M
(
fB(·,2−j) − fB(·,21−j)

)]q
1/q
∥∥∥∥∥∥∥
Lp(Rn)

.

∥∥∥∥∥∥∥
∑
j∈Z

2jαq
∣∣fB(·,2−j) − fB(·,21−j)

∣∣q
1/q
∥∥∥∥∥∥∥
Lp(Rn)

.

∥∥∥∥∥∥∥
∑
j∈Z

2jαq
∣∣fB(·,2−j) − f

∣∣q
1/q
∥∥∥∥∥∥∥
Lp(Rn)

. ‖Sα,q(f)‖Lp(Rn).

When p =∞, we need to show that

–

∫
B(x,2−`)

∑
k≥`

2kαq

∑
j∈Z
|ϕ2−k∗φ2−j∗ψ2−j∗[fB(·,2−j)−fB(·,21−j)](y)|

qdy

1/q

is controlled by ‖f‖SḞα∞,q(Rn) uniformly in x ∈ Rn and ` ∈ Z. The proof

of this is quite similar to that of (3.4). Indeed, we consider
∑
j<`≤k,∑

`≤j≤k and
∑
j>k≥` separately. With the help of (3.16) and some

necessary calculus, we arrive at ‖f‖Ḟα∞,q(Rn) . ‖f‖SḞα∞,q(Rn). We omit

the details.
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When α ∈ (2N, 2(N + 1)), by Lemma 3.2(ii), we see that

f =
∑
k∈Z

φ2−k ∗ ψ2−k ∗

[
fB(·,2−k) −

N∑
i=1

2−2ij
1

Li

n

n+ 2i
∆if

−fB(·,21−k) +

N∑
i=1

2−2i(j−1)
1

Li

n

n+ 2i
∆if

]
.

By (3.16) with s = 2(N+1) and L > n, repeating the above argument
for the case α ∈ (0, 2), we then conclude that ‖f‖Ḟαp,q(Rn) . ‖f‖SḞαp,q(Rn).
This finishes the proof of Theorem 3.2.

4. Besov spaces and some remarks

In this section, we first establish a similar characterization for Besov
spaces and then make some remarks for the case α ∈ 2N.

Let N ∈ N ∪ {0}, α ∈ (2N, 2N + 2) and p, q ∈ (0,∞]. The space

SḂαp,q(Rn) of Besov type is defined as the collection of functions f ∈
Ẇ 2N,1

loc (Rn) ∩ S ′(Rn) such that

‖f‖SḂαp,q(Rn) :=

∑
k∈Z

2kαq

∥∥∥∥∥ –

∫
B(·,2−k)

RN (y; ·, 2−k) dy

∥∥∥∥∥
q

Lp(Rn)


1/q

<∞.

Here Ẇ 0,1
loc (Rn) = L1

loc(Rn), RN with N ≥ 1 is as in (1.2) and, for all
x, y ∈ Rn,

R0(y;x, 2−k) := f(y)− f(x).

Also the space SBαp,q(Rn) is similarly defined as above.
Then Theorems 3.1 and 3.2 admit Besov space versions; indeed, by

similar arguments, Theorems 3.1 and 3.2 still hold with spaces Ḟαp,q(Rn)

and SḞαp,q(Rn) replaced by Besov spaces Ḃαp,q(Rn) and SḂαp,q(Rn) and,
moreover, with the indices α, p and q replaced, respectively, by α ∈
(0,∞) \ 2N, p ∈ (1,∞] and q ∈ (0,∞]. Namely, we have the following
characterization on Besov spaces.

Theorem 4.1. Let α ∈ (0,∞) \ 2N, p ∈ (1,∞] and q ∈ (0,∞]. Then

Ḃαp,q(Rn)=SḂαp,q(Rn), with equivalent norms, and Bαp,q(Rn)=SBαp,q(Rn),
with equivalent norms.

It should be pointed out that Bαp,q(Rn) ⊂ SBαp,q(Rn) when α ∈ (0,∞)
and p, q ∈ [1,∞] was obtained by Wheeden [15, Theorem 5] via a totally
different approach.
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Finally, we make some remarks. The first remark is on the missing
indexes α ∈ 2N in Theorems 1.1 and 1.2 while the second one is on
the higher order Besov and Triebel-Lizorkin spaces on metric measure
spaces.

Remark 4.1. We point out that when α ∈ 2N, it was proved in [1] that
a variant of Theorems 1.1 and 1.2 when p ∈ (1,∞) and q = 2 still
holds. However, it is not clear that when α ∈ 2N, whether there exists
a similar variant of Theorems 1.1 and 1.2 when q 6= 2 and Theorem 4.1
for all q ∈ (0,∞]. Indeed, as pointed out in [1], S2,2-function as in (1.1)

fails to characterize Ḟ 2
p,2(Rn) = Ẇ 2,p(Rn). To overcome this drawback,

Alabern, Mateu and Verdera [1] then introduced a variant of (1.1) to

characterize Ḟ 2
p,2(Rn). Precisely, for N ∈ Z+, k ∈ Z, and x, y ∈ Rn, let

(4.1) RN (y;x, 2−k) := f(y)− f(x)−
N−1∑
j=1

1

Lj
∆jf(x)|y − x|2j

− 1

LN

(
–

∫
B(x,2−k)

∆Nf(z) dz

)
|y − x|2N ,

where LN is as in (1.2). Let Sα,q(f) be as in (1.1) with RN replaced

by RN and, similarly, the spaces SḞαp,q(Rn) for α ∈ [2N, 2N + 2) and

p, q ∈ (1,∞] are similarly defined to the spaces SḞαp,q(Rn). Then it was

proved in [1] that SḞ 2N
p,2 (Rn) = Ḟ 2N

p,2 (Rn) = Ẇ 2N,p(Rn) for N ∈ N and
p ∈ (1,∞).

When α ∈ (2N, 2N + 2) and p, q ∈ (1,∞], by modifying the proofs in

Section 3, we can also show that SḞαp,q(Rn) = Ḟαp,q(Rn) with equivalent

norms. But our above proof can only show SḞ 2N
p,q (Rn) ⊂ Ḟ 2N

p,q (Rn) for
N ∈ Z+ and p, q ∈ (1,∞]. It is still unknown whether the relation

Ḟ 2N
p,q (Rn) ⊂ SḞ 2N

p,q (Rn) is still true for N ∈ Z+ and p, q ∈ (1,∞] but
q 6= 2 or not.

Remark 4.2. On a metric measure space X satisfying a doubling prop-
erty, when α ∈ (0, 1) and p, q ∈ (n/(n + α),∞], Triebel-Lizorkin spaces

Ḟαp,q(X ) are well defined and enjoy several important properties; see, for
example, [17], [10], [6], [8], [9], [19] and their references. But when

α ≥ 1, a reasonable definition for Triebel-Lizorkin spaces Ḟαp,q(X ) is still
not available. However, by exactly the same way as in Definition 1.1,
we can define the spaces SḞαp,q(X ) of Triebel-Lizorkin type for α ∈ (0, 2)
and p, q ∈ (1,∞]. It would be interesting to know whether the following
are true:
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a) when α ∈ (0, 1) and p, q ∈ (1,∞], SḞαp,q(X ) = Ḟαp,q(X )?

b) when α ∈ [1, 2) and p, q ∈ (1,∞], does SḞαp,q(X ) satisfy some of

the important properties of Ḟαp,q(Rn)?

Similar questions are also asked in regards to spaces SḂαp,q(X ) of Besov
type with α ∈ (0, 2), p ∈ (1,∞] and q ∈ (0,∞].

The answers of these questions may depend on the geometry of the
underlying metric measure spaces X .

Acknowledgements. The authors would like to thank Professor Joan
Verdera and Professor Hans Triebel for some helpful discussions on the
subject of this paper. They also sincerely wish to express their deeply
thanks to the referee for her/his very carefully reading and also her/his
several careful, valuable and suggestive remarks which improve the pre-
sentation of this article.

References

[1] R. Alabern, J. Mateu, and J. Verdera, A new characteriza-
tion of Sobolev spaces on Rn, Math. Ann. 354(2) (2012), 589–626.
DOI: 10.1007/s00208-011-0738-0.

[2] C. Fefferman and E. M. Stein, Some maximal inequalities,
Amer. J. Math. 93 (1971), 107–115.

[3] M. Frazier and B. Jawerth, Decomposition of Besov spaces,
Indiana Univ. Math. J. 34(4) (1985), 777–799. DOI: 10.1512/iumj.

1985.34.34041.
[4] M. Frazier and B. Jawerth, A discrete transform and decompo-

sitions of distribution spaces, J. Funct. Anal. 93(1) (1990), 34–170.
DOI: 10.1016/0022-1236(90)90137-A.

[5] M. Frazier, B. Jawerth, and G. Weiss, “Littlewood-Paley the-
ory and the study of function spaces”, CBMS Regional Conference
Series in Mathematics 79, Published for the Conference Board of the
Mathematical Sciences, Washington, DC; by the American Mathe-
matical Society, Providence, RI, 1991.

[6] A. Gogatishvili, P. Koskela, and Y. Zhou, Characterizations
of Besov and Triebel-Lizorkin spaces on metric measure spaces, Fo-
rum Math. DOI: 10.1515/form.2011.135.

[7] L. Grafakos, “Classical Fourier analysis”, Second edition, Grad-
uate Texts in Mathematics 249, Springer, New York, 2008.

http://dx.doi.org/10.1007/s00208-011-0738-0
http://dx.doi.org/10.1512/iumj.1985.34.34041
http://dx.doi.org/10.1512/iumj.1985.34.34041
http://dx.doi.org/10.1016/0022-1236(90)90137-A
http://dx.doi.org/10.1515/form.2011.135


A New Characterization of Triebel-Lizorkin Spaces on Rn 81

[8] P. Koskela, D. Yang, and Y. Zhou, A characterization of
Haj lasz-Sobolev and Triebel-Lizorkin spaces via grand Littlewood-
Paley functions, J. Funct. Anal. 258(8) (2010), 2637–2661. DOI:

10.1016/j.jfa.2009.11.004.
[9] P. Koskela, D. Yang, and Y. Zhou, Pointwise characterizations

of Besov and Triebel-Lizorkin spaces and quasiconformal mappings,
Adv. Math. 226(4) (2011), 3579–3621. DOI: 10.1016/j.aim.2010.

10.020.
[10] D. Müller and D. Yang, A difference characterization of Besov

and Triebel-Lizorkin spaces on RD-spaces, Forum Math. 21(2)
(2009), 259–298. DOI: 10.1515/FORUM.2009.013.

[11] J. Peetre, “New thoughts on Besov spaces”, Duke University
Mathematics Series 1, Mathematics Department, Duke University,
Durham, N.C., 1976.

[12] E. M. Stein, “Singular integrals and differentiability properties of
functions”, Princeton Mathematical Series 30, Princeton University
Press, Princeton, N.J. 1970.

[13] H. Triebel, “Theory of function spaces”, Monographs in Mathe-
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