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A NEW CHARACTERIZATION OF TRIEBEL-LIZORKIN
SPACES ON R"™

DacHUN YANG, WEN YUAN, AND YUAN ZHOU*

Abstract: In this paper, the authors characterize the Triebel-Lizorkin space Fgfq (R™)
via a new square function

q) Y4

Saa(f)(w) = { S okea| 1 [F(@) — F@)]dy ,

kEZ ‘B($127k)| B(z,2—k)

where f € L1 _(R")NS'(R™), = € R™, o € (0,2) and p, q € (1, 00]. Similar character-

loc
izations are also established for Triebel-Lizorkin spaces I’ (R™) with a € (0, 00)\ 2N
and p,q € (1, o], and for Besov spaces Bz‘iq(R") with a € (0,00) \ 2N, p € (1, 0]
and ¢q € (0, c0].
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1. Introduction

It is well known that the fractional Sobolev space WP(R™) with
a € (0,1) and p € (1,00) can be characterized by the square function s,
defined by setting, for all z € R™ and f € L{ (R") N S'(R"),
1/2

wih@ =t [T -l

Dachun Yang is supported by the National Natural Science Foundation (Grant
No. 11171027) of China and Program for Changjiang Scholars and Innovative Re-
search Team in University of China. Wen Yuan is supported by the National Natural
Science Foundation (Grant No. 11101038) of China. Yuan Zhou is supported by
Program for New Century Excellent Talents in University of China, National Natu-
ral Science Foundation of China (Grant No. 11201015) and the Academy of Finland
grant 120972.

*Corresponding author.



58 D. YaNG, W. YUvAN, Y. ZHOU

where above and in what follows, for any g € L{ (R™) and ball B C R,

loc

1
][Bg@) dyi= /B o(y) dy

and B(z,t) denotes the ball of R™ with the center z € R™ and ¢ €
(0, 0); see, for example, [16], [12], [13], [17]. However, when o > 1 and
p € (1,00), the above square function fails to characterize Wo‘vp(R");
indeed, if f € L{ (R™) and |[sq(f)||Lr@n) < oo, then f must be a
constant function (see, for example, [6, Section 4]).

Recently, Alabern, Mateu and Verdera [1] characterized the fractional
Sobolev space W*P?(R™) for a € (0,2) and p € (1,00) via a new square
function defined by setting, for all f € Ll _(R")NS'(R™) and z € R",
1/2
dt

@ =3 [T ] e -sem]

In particular, Si-function characterizes the Sobolev space W'P?(R™).
Comparing S, with s,, we see that the only difference is that |f(z) —
f(y)| appearing in the definition of s,(f) is replaced by f(z) — f(y) in
that of S,(f). Such a slight difference leads to a quite different con-
clusion in the characterization of (fractional) Sobolev spaces. The main
point, as first observed by Wheeden in [15] (see also [16]), when studying
the Lipschitz-type (Besov) spaces, and later independently by Alabern,
Mateu and Verdera in [1], is that S,-function provides smoothness up
to order 2 in the following sense: for all f € C*(R") and ¢ € (0,1),

f U@ i@l =o@), ser,
B(z,t)

which follows from the Taylor expansion of order 2

fly) = f@) + Vf(@) (& —y) + Oz —yP), zyeR™

The purpose of this paper is to show that the above observation
further leads to a new characterization of Triebel-Lizorkin spaces with
reasonable parameters. We denote by FPqu(]R”) the classical homoge-
neous Triebel-Lizorkin space while F', (R™) the inhomogeneous Triebel-
Lizorkin space for all reasonable parameters; see Section 2 for their defi-
nitions. Moreover, we introduce the following function spaces of Triebel-
Lizorkin type via a variant of the above square function S,.
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Definition 1.1. Let o € (0,2) and ¢ € (0, o0].

(i) If p € (0,00), the space SFzg’fq(]R") is defined as the collection of all
functions feLl (R™)NS’'(R™) such that ||f||sF§q(Rn):: 1Sa,q ()|l Lr@n)<

loc
Q}l/q

(ii) The space SF;’g,q(IR”) is defined as the collection of all functions
fe Ll (R")NS'(R") such that

loc

0o, where, for all z € R™,

Saq(f)(@) = {Z gkad

kEZ

][ @) — F(y)]dy
B(z,27F)

with the usual modification made when ¢ = co.

1 lsie e
1/q

dy p <00

][ F)—f(2)] dz
B(y,2~F)

:= sup sup ][ E ohkaa
w€R (€7 | JB(2,24) 157

with the usual modification made when ¢ = co.
(iii) If p € (1, oc], the inhomogeneous space SF, (R™) is defined by
SES (R") := LP(R") N SE (R")

with its norm. || fllsrg, @ = [flesn + [ flsg, g for all f €
SF;fq(R”).

In the above definition, S(R™) denotes the space of all Schwartz func-
tions and S’(R™) its topological dual, namely, the space of all Schwartz
distributions. Recall that f € Ll (R")NS’'(R") means that f € L{ (R")
and the natural pair (f, ) given by the integral [p, f(z)p(z) dz exists
for all ¢ € S(R™) and induces an element of §'(R™).

Then the first main result of this paper reads as follows.
Theorem 1.1. Let a € (0,2) and p,q € (1,00]. Then Fpojq(R") =
SES(R™), with equivalent norms, and also Fy' (R") = SE (R™), with
equivalent norms.

Remark 1.1. Notice that to obtain Theorem 1.1, it is necessary to make
the apriori assumption f € L _(R") N S’(R™) in Definition 1.1. Indeed,

loc
let f(xy,72) := e*'sinxy for (z1,72) € R2 Then f is a harmonic

function in the plane and hence by the mean value property,

f o U@-rwld=s@ - f =0
B(z,27k) B(z,2-%)



60 D. YaNG, W. YUvAN, Y. ZHOU

for all z € R? and k € Z. So f € Li .(R?) and Soq(f) = 0 €
LP(R™) for all , p, ¢ as in Theorem 1.1. However, let ¢(x1,x9) :=
e 1/2e=72/2sinz5. Then ¢ € S(R?) and [y, f(z)p(z)dr = oo, which
implies that f ¢ S’(R?). Since F“ ,(R?) is a subspace of S’(RQ) (or
S’(R?) modulo polynomials), we then conclude that f ¢ F¢, (R?). In
this sense, the assumption f € Ll (R") NS’ (R") in Deﬁnltlon 1.11is
necessary.

In what follows, the space W/Iig’l(R") denotes the set of all functions
that are locally in the homogeneous Sobolev space W2V A(R™). When
a € (2N,2N +2) with N € N:={1,2,...} and ¢ € (0, 00, as motivated
by higher order Taylor expansions, for all f € W2 (R™) N0 S'(R™) and
x € R", we set

q}l/q

N
(12)  Rwlyz2") = )= 3 A f(@)ly — af¥

j=1""

(1.1)  Saq()(z) = {Z gkag

kEZ

][ Ry(y;2,27%) dy
B(z,2—k)

where, for all z,y € R™,

with L; := Af|z|% for j € {1,..., N}; see [1] (also [15]) for more details.
Similar to Definition 1.1, we introduce its following higher-order variant.

Definition 1.2. Let o € (2N,2N + 2) with N € N, ¢ € (0,00] and
Sa,q(f) be asin (1.1).

(i) If p € (0,00), the space SF;fq(R") is defined as the collection of all

functions fEVVIQN Y R™NS(R™) such that ”fHSng(R"):: 1Sa,q (f)llLr ®ny<
oo with the usual modification made when ¢=oc.

(ii) The space SF % .q(R™) is defined as the collection of all functions
fe w2 rr N S’(R”) such that

loc
1 Fllssg qor
1/q

q
][ Ry (29,27 %) dz| dy 3 <o
B(y,27%)

= sup sup ][ E okaq
z€R™ LeZ | JB(z,274) <y

with the usual modification made when ¢ = oo



A NEW CHARACTERIZATION OF TRIEBEL-LIZORKIN SPACES ON R™ 61

(iii) If p € (1, 00], the inhomogeneous space SF, (R™) is defined by
SES (R™) := LP(R") N SE (R™)

with its norm |[fllsre ey = [ fllLe@n) + Hf||SF£q(Rn) for all f €
SFo. (R™).

Recall that, via the square function S, 2, Alabern, Mateu and Ver-

dera [1] also characterized the higher order Sobolev space W for all
a € (2N,2N +2) with N € Nand p € (1,00). We extend this as follows.

Theorem 1.2. Let N € N, o € (2N,2N +2) and p,q € (1,00]. Then
F (RY) = SE (R™), with equivalent norms, and also Fg' (R") =
SFS (R™), with equivalent norms.

The paper is organized as follows. In Section 2, we recall several
notions and notation. In Section 3, we prove Theorems 1.1 and 1.2.
In Section 4, we extend the above results to Besov spaces and also give
some further remarks on the case o € 2N and on the higher order Triebel-
Lizorkin spaces on metric measure spaces.

Finally, we point out that the proofs of Theorems 1.1 and 1.2 below
are totally different from the method used in [1]. The method in [1]
strongly depends on the theory of Fourier transforms and vector-valued
singular integrals, while our approach heavily depends on some Calderén
reproducing formulae, one of which is from Peetre [11] (see also Frazier
and Jawerth [3] and Frazier, Jawerth and Weiss [5], or Lemma 3.1 below)
and some others are constructed in this paper (see Lemma 3.2 below).

2. Notation and definitions

Let Z4 := {0} UN. Denote by S(R™) the space of all Schwartz
functions, whose topology is determined by a family of seminorms,
{Il- IIs,. .. (&) Y k,mez, , where, for all k € Z, m € (0,00) and p € S(R"),

[ellsm@n == sup  sup (14 [z[)"|0%p(x)].
a€Zl, |a|<k zeR™
Here, for any o := (ai,...,a,) € Z, |a] := a; + -+ + ap, and 9% :=
(8%1)0‘1 (3%)“ It is known that S(R™) forms a locally convex

topological vector space. Denote by S’'(R™) the topological dual space
of S(R™) endowed with the weak x-topology. In what follows, for every
P €SR"), t>0and x € R", set py(x) =t "ot x).

For p € (0,00], denote by LP(R"™) the Lebesgue space of order p. For
N € N and p € (1,00), denote by WN’p(R") the homogeneous Sobolev
space of order N, namely, the collection of all measurable functions f
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with their distributional derivatives 0*f € LP(R™), where a € Z} and
|| = N. Moreover, let

1 v ny = D 10 Fllzo(an).
la|=N
Set WNP(R") := LP(R") N WNP(R") as the inhomogeneous Sobolev
space with norm
[ fllw~ ooy = [1fllLo@ny + [1f lirw o @y
for all f € WNP(R™). Denote by the space Li (R™) the locally inte-

loc

grable function and similarly the space W\ (R™).

loc
Now we recall the notions of Triebel-Lizorkin and Besov spaces;

see [13], [14]. In what follows, for any ¢ € L'(R"), @ denotes the
Fourier transform of ¢, namely, for all £ € R™,

86 = [ e pla)da.

Definition 2.1. Let o € (0,00), p,q € (0,00] and ¢ € S(R™) satisfy
that
(2.1) suppp Cc{€eR":1/2<|¢{ <2} and

|p(€)| > constant > 0 if 3/5 < €] < 5/3.

(i) The homogeneous Triebel-Lizorkin space ng(R") is defined as the
collection of all f € S'(R") such that ||f|[a gn) < o0, Where, when
P,q

p € (0,00),

1/q
||fHF;q(Rn) = (Z 28|y i f|q> )
Lp

kez (&™)
with the usual modification made when ¢ = co, and
1/q

£k oy = swpsupd £ SOy x f)ldy

TER™ LEZ B(z,27%) .=y

with the usual modification made when ¢ = co.
When p € (1, oc], the inhomogeneous Triebel-Lizorkin space Fy' (R™)
is defined by
E (R") := LP(R") N F, (R™)
with the norm || f|| e rn) := ||fHLp(Rn)%-HfHng(Rn) forall f € FJ (R™).
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(ii) The homogeneous Besov space ng(R") is defined as the collection
of all f € §'(R") such that || f||ga (gn) < 0o, where

1/q
£l 0, ny = (Z 284 [ipy- *f”qm(Rn))

keZ
with the usual modifications made when p = co or ¢ = co.
When p € (1, 0], the inhomogeneous Besov space By ,(R™) is defined
by
By (R") := LP(R") N By ,(R™)
with the norm || f|[ g @)= ||f||Lp(]Rn)+||fH33’q(Rn) for all f€ By (R").

Remark 2.1. Notice that if || f]
[ is a polynomial. Denote by P(R") the collection of all polynomials
on R™. So the quotient space F; (R™)/P(R") is a quasi-Banach space.
By abuse of the notation, the space F;  (R™)/P(R") is always denoted
by F; (R™), and its element [f] = f + P(R") with f € F; (R") simply
by f. Similar observation is also suitable to homogeneous Besov spaces.

Fs (Rn) = 0, then it is easy to see that

Moreover, for a € (0,00) and p € (1,00), the homogeneous fractional
Sobolev space W*P(R™) coincides with the Triebel-Lizorkin space };%(R”)
with equivalent norms; see [13] (or [14]) for this and the definition
of W“’p(R”). Similarly, the inhomogeneous fractional Sobolev space
WeP(R") coincides with the Triebel-Lizorkin space F* (R") with equiv-
alent norms.

Throughout the whole paper, we denote by C' a positive constant
which is independent of the main parameters, but it may vary from line
to line. The symbol A < B means that A < CB. If A < B and B < A,
we then write A ~ B. If E is a subset of R™, we denote by yg the
characteristic function of E. For any a € R, |a]| denotes the mazimal
integer not larger than a.

3. Proofs of the main results

Theorems 1.1 and 1.2 follow from Remark 2.1 and the following The-
orems 3.1 and 3.2.

Theorem 3.1. Let o € (0,00) \ 2N and p,q € (1,00]. If f € ng(R"),
then there exists a polynomial Py such that f + Py € SES (R™); more-
over, ||f + Pf”SF];{q(R") < C|\f||F§q(R”), where C' is a positive constant
independent of f.
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To prove Theorem 3.1, we need the following Calderén reproducing
formula established in [11, pp. 52-54] (see also [3, Remark 2.2]).

Lemma 3.1. For any ¢ € S(R™) satisfying (2.1), there exists ¥ €
S(R™) satisfying (2.1) such that, for all £ € R™\ {0},

> @20 b(27€) = 1.
JEZ

Moreover, for every f € S'(R™), there exist polynomials {P;}jcz and Py
such that

1 P = i T P
(3.1) faPp=Tm §> @ostnsxf+
-

in S8'(R™).
Proof of Theorem 3.1: We first assume that o € (0,2) and p,q € (1, 0].
Notice that Fg (R™) C Lj,.(R"); see, for example [10 Proposition 4.2]

or [19, Propos1t10n 5.1] for a proof. Let f € Fy* (R"). Then f €
S'(R™)N LL (R™). Let ¢ and v be as in Lemma 3 1 Then (3.1) holds

loc

for f. Observe that f € F;jq(R") further implies that the degrees of
the polynomials {P;};ecz in (2.1) do not exceed |a — n/p| < 1; see [4,
pp. 153-155] and [3]. Moreover, since P; has at most degree 1 for each 4,

we have
Pi(x) — ][ Pi(z)dz=0
B(z,27F)

for all z € R™ and k € Z. Moreover, as shown in [4, pp. 153-155],
f + Py is the canonical representative of f in the sense that if for ¢ €
{1,2}, ¢ and @ satisty (2.1) and

S e (e = 1
keZ
for all £ € R™\ {0}, then Pf(l) — Pf(2) is a polynomial of degree not more
than |a—n/p| < 1, where P;Z) is as in (3.1) corresponding to {p®, ()}
for ¢ € {1,2}. Also notice that for all z € R"™ and k € Z,
1 2 1 2
P}>(:c)—p§>(x)—][ (PO (2) — P (2)]dz = 0.
B(z,27F)
Let f:= f+ P;. Then by (3.1), we have

(3.2) f- JA{B(-,Z*’“) = Z(@zﬂ‘ — Xk * Po—i) ¥ hg—i *

JEL
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in &'(R™). Here x := ‘g%o’ll;‘ and yi = 2¥"y(2%.). From the above
discussion, it follows that }’vf ]’”VB(,727;C) is independent of the choices of ¢
and ¢ satisfying (2.1). Then it suffices to prove that, when p € (1, 00)
and ¢ € (1, 00],

S|

a1

(3.3) /R Z gkaq Z |(P2-5 =Xk * pa-i) * Yo—j* f ()] dx

" | kez JEL

5 ||f||F;q(Rn)

and that, when p = oo and ¢ € (1, 00], for all z € R™ and ¢ € Z,

Q|

. 1
(3.4) ][ D 259N " (o — Xk * 02-5) # tho-s x f(y)] | dy
B(x,27%) 1>y =
5 ||fHFgo,q(JR")'

Indeed, if (3.3) holds, then for each k € Z, we have
P
LS s = s oe) s pia)l| e <o,
R™ 1 jez

which further implies that (3.2) holds in LP(R™) and hence almost ev-
erywhere. Therefore, for every k € Z,

If - ]?B(-,Q*’“)| < Z [(p2-3 — Xk * P2-3) * Pa-i * f|
JEZ

almost everywhere, and hence H]?H Sko (mny 1S less than the left hand side
p,q

of (3.3), which further implies that || f
if (3.4) holds, then (3.2) holds in L]

loc

. < ' o
‘sF;q(Rn) ~ Hf”Fﬁq(R")' Similarly,
(R™) and hence almost everywhere
and, moreover, an argument similar to above leads to || f| 4 Fo (@

) ~Y
1l ey

To prove (3.3), we consider >, and ., separately. Notice that
for any smooth function ® on R,

(3.5) ®(1) = ®(0) —I—/O ' (s)ds = ®(0) + ®'(0) + /0 (1—5)®"(s)ds.
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Let ®(s) := p(2/x + s2) for s € [0,1] and x, z € R". Then
1
P2 +2) = p(F2) + (Vo) @) + [ (1= 5)o(V2) 2 +52)2" ds,
0

where z' denotes the transpose of z. Therefore, when j < k, for all
r e R"”,

(3.6)

Xk * P23 (T) = pa-i ()| = ][( )Qj” [<p(2jx+ 2j_kz) — @(ij)] dz
B(0,1

= ][ 2" [p(2x + 2) — p(22)] d=
B(0,29—F)

1
= ][ Qj”/ (1—35)2(V2p) (2 x+s2)2" dsdz
B(0,25-%) Jo

<926k 2"
P i

where L > n. Hence

|(X&* P25 — P23 ) ¥g—i* f ()] 522(jk)/Rn(1_~_|2jy|)L|¢2a *f(r—y)|dy

27

S22UPM(jh-s * 1) (2),

where M denotes the Hardy-Littlewood mazximal function. Then, choos-
ing 0 € (0,2 — ), by Hélder’s inequality and a € (0,2), we see that

aqp/q 1/p
I, := / ZQ’“M’ Z |(2-i =Xk * P2-3)¥Po—s * f(x)] dx
" kez <k
_ p/q p
SO |2 0B (g« )| de
" | keZ J<k
- p/q /p
SO LS et < @) | dp
" ez
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which, together with the Fefferman-Stein vector-valued maximal inequal-
ity (see [2]), further implies that

p/q 1/p

I < / > 27y x f(a)]? dx S Ifllge @ny-
Rn pP:q

JEZ
Notice that when j > k, for all x € R™, we always have

|(Xk ¥ Pa—i—pa-i) xhg—i* f(2)| <Xk *po-i*Pa—ix f ()| +|pa-s*ho—ix f ()]
< Xwx[M([tha-i = )] (@) + M (|the-i = f|) (z)]
SM o M([tha-i * f) (),

where M o M denotes the composition of M and M. Then by « > 0,
taking ¢ € (0, «) and applying Holder’s inequality, we obtain

qqp/q 1/p

I = / D25 Y ((pas =Xk * 2a) # ysx f ()] dx

R ez i>k

_ p/q 1/p
SO [ S S v o M (s @) do

" | keZ j>k

_ p/q p
SO IS v o Ml < )@ | ey

n_jez

which, together with the Fefferman-Stein vector-valued maximal inequal-
ity, further implies that I S [|f|/ o (gn)- This proves (3.3).

To prove (3.4), we consider > ;. > y<jcp and 3~ , separately.
If j < ¢ <k, from (3.6) and Holder’s inequality, we deduce that for all
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y €R™,
|(Xk * P2-3 — P2-3) * a5 * f(y)]

. 2In
< 920 k)/R sz,j « fly —2)|dz

s20 0y 20D L f(a)]de

=0 B(y,2i—7)

] 1/q
< 92(i—F) ZQi(n—L) {][ |¢2*J " f(z)|q dz}
B(y,2i77)

i=0

< 92(j—k) Z 2’i("—L)2—jaHf|
i=0

S 22070279 fl oo (g

F;g‘q (R™)

) )
where we used the following trivial estimate that

1/q
{f e *f(Z)qu} 27N iy ey
B(y,2i79)

Hence
q 1/q
[ (S s vl d
B(z,27) 1>y j<e
q 1/‘1
< ][ S okea [N 20 Romie )y b | fllpe g
B(xz,27¢) k>t ji<e o

Sl sg @y
If £ < j <k, then, for all y € R,
|(Xk * pa—i — po-i) * a5 * f(y)]

S 220" MM (jihys % fIXBa2-n) )

Ll R N E OIS

i>j—L B(y,2¢7)

S 22U M ([tho-i * fIXBaa-t)) (Y)

+ 220 K270 L) £l b gy



A NEW CHARACTERIZATION OF TRIEBEL-LIZORKIN SPACES ON R™ 69

and hence, by Holder’s inequality,

q 1/q
£ Sl S ) W) dy
B(z,27¢) k>t 'Sk
q 1/q
][ Sk N 20 M (s x fXpea )W) | dy
B(z,27%) >4 e<j<k
q 1/q
AL o) 37220000y f ey
B(:27%) 1>y t<j<k ‘
q 1/q
< ][ ZQkaq 222(j7k)|1/12—j*f(y)| dy +||f||FO% @)
B(z,27%) =, t<j<k ,

S
Similarly, if j > k > ¢, then we have
|(Xk * Pa—3 — pa-i) * a5 x f(y)]
SM (XB(@,2*()M(|¢2*j * f‘XB(z,Q*Z))) (y)
+ 2792000 D e,

which further implies that

q 1/q

][( o 22 | D llers v ) xS |y

) k>¢ i>k

Sl e @y

This proves (3.4).

Now we consider the case o € (2N,2N + 2) with N € N. Since the
idea of the proof is similar to the case a € (0,2), we only sketch the
main steps. First we observe that F;jq(]R") C Wlilcv’l(R”), which follows
from the lifting properties of Triebel-Lizorkin spaces (see [13]) and the
fact that F;;QN (R™) c L{(R™) mentioned above. Moreover, similar
to the above, f € ng(R") implies that the degrees of the polynomials
{P;}icz in (2.1) do not exceed | —n/p| < 2N + 1, and also that the
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polynomial Py is unique modulo a polynomial with degree no more than
lao—n/p] < 2N +1; see [4, pp. 153-155] and [3]. In what follows, we set
fi=f+ Py and let EN(y; x,27%) be defined as in (1.2) with f replaced
by f. 4

Notice that for i € N, fB(071)|y|21 dy =
follows that for all x € R™,

3. Then from (3.1), it

N

~ ~ o1 n o~
. 27k dy= _ 2721]677A’L
f o Baa 2 Hdy= o fla) - Y2 A i)
B(xz,27F) =0
ol 1 n
_ o —2ik _— i )
—Z Xk * P23 22 Li7n+2z’A Pa-i
JEZL i=0

*ho—j * f().

We now consider >, and ;. separately.
By an argument similar to (3.5), we see that, for any smooth func-
tion ® on R and N € N,

2N+1 (i) 1
(3.7) q>(1)=q>(o)+; 2 i!(0)+(2N1+1)! /0 (1—5) N 1N+ (4) ds.

As above, choosing ®(s) := ¢(27z + sz2) for s € [0,1] and z,2 € R", we
have

o2 z+2)=p(2x) + (Vo) (2/x)2" + %Z(V2<p)(2jx)zt +--

1 L .
+m / (1—s)2NH NV 0) (2T 4 52) (1) VT ds.
- J0

Notice that in this expansion, except the terms 7-Afp(27/2)[27~%2[* for
0 < i < N and the last term, the other terms are harmonic and then
have average 0 on any ball centered at 0. When j < k, applying these
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facts, we conclude that, for all z € R",
N

Y L i
Xk * p2-i () — ZQ ? kfmA P2-i ()
i=0 ’

N
1
][ [ (20 + 297k E —Alp(27x)|27F |2’] z
B(Ol) i—0 L;

1
= ][ 2im (1—S)2N+1ZN+1(V2N+230)(2j$-‘rSZ)(Zt)N+1 dsdz
B(0,2i—k) 0

< NGk 2"
s (L + [27a])E’

where L € N is larger than n. Here the decay factor 22(N+1DU—k) g
crucial. Indeed, when j < k, we see that

N
2 L1 i
’(Xk*@g—j =Y 2 Qkfﬂﬂ_%ﬁ <P2—.7’> * ho—j x f(x)

=0

< 2(2N+2)(J’*’“)M(|wg—j * f)(@),

while, when j > k, we also see that

N
o L1 i
|<Xk * Po-i — 22 ? kfmA 9021') * o % f(x)

i=0

S 22NGRIN o M([ipa-s * f]) ().

Since 2N < a < 2(N 4 1), for all p € (1,00) and ¢ € (1, 0], by exactly
the same procedure as above, we conclude that

1S, ()] o )

q p/q 1/p
/ $ gked | § 2N DGRN (i, f) () dx
R™ \ kez Jj<k
a\P/q 1/p
. / S kea | 92V GENg0 M (- 4 ])(2) de
R™ \ kez i>k

Sl g, @ny-
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When 2N < a < 2(N + 1), for all p = 0o and g € (1, 0], from a much
more complicated argument, similar to the case 0 < a < 2, p = 0o and
q € (1, 00], we also deduce that ||fHSFa ®) S Hf||Fa L) We omit the
details. This finishes the proof of Theorcm 3.1. O

Theorem 3.2. Let o € (0,00) \ 2N and p,q € (1,00]. If f € SFZ‘ij(R"),

then f € F, (R”) and there exists a positive constant C, independent
of f, such that

1l oy < Ol i, oy

The proof of Theorem 3.2 depends heavily on the following Calderén
reproducing formulae.

Lemma 3.2. Let x := |>§3B(E)°11))| LeZiyU{-1} and N € N.

(i) There exist p, b € S(R™) satzsfymg that suppeo C B(0,1) fRﬂ x)xVdx=

0 for all |y| < L and supptp C {€ € R™ : 1/64 < |¢] < 1/16} such that,
for all £ e R™\ {0},

(3.8) > a1 () h2-1 (€)[Ra-(€) — Ran—s ()] = 1.

JEZL

Moreover, for every f € LI _(R") N S'(R™), there exist polynomials
{P;}jcz and Py such that

(3.9) f+Pr= Z_Ligloo Zfi)z—a‘ * - * (fB(2-3) — fB(21-9)) + P
j=i

in S8'(R™).

(ii) There exist ¢, ¥ € S(R™) satisfying the same conditions as in (i)
such that, for all £ € R™\ {0},

- - 1
(3.10) Z¢2 5(€)da-s ){ [Xzi(f)—z2_2”L n+2z|§|211

JEZ i=1

N
N _oiiey 1 n i
_lX21j(£)_Z2 " 1)L n+2@|§|21}

i=1
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2N,1
Moreover, for every f € VVIOC (R

{P;}jez and Py such that

M NS’ (R™), there exist polynomials

oo N
311) f+Pr= lim ¢ > ¢yyxihy- 2=y 27— A

5 9~ 2i(j— 1) z
(fB 2t Z L; n—|—22 A

in S'(R").

Proof: (i) It suffices to show (3.8). The proof of (3.9) follows from (3.8)
and an argument similar to the arguments in [11, pp. 52-54].

First we show that there exists a positive constant Cy such that for
all 1/64 < || < 1/16,

(3.12) IX(§) = X2(8) = Co > 0.

By [7, p. 429], we know that Xp(o.1)(&) = Ju/2(2m€)/[€]"/%, where J,, /2
is the Bessel function of order n/2. Thus,

1 Jn/2(2ﬂ'£) ey 1 Jn/2(4ﬂ'§)

MO = o gz ™ RO = 5o e

Therefore,
7.1.71/2

|B(0,1)|T'(n/2 +1/2)I'(1/2)

1
% {/ [ezm\g\s _ e47ri|§|si| (1- 52)"/2’1/2 ds}.
-1

Notice that if 1/64 < |¢{] < 1/16 and s€[—1, 1], then 47 |¢|s € [—n/4, /4]
and hence cos(27|¢|s) > cos(4m|¢|s). Then we conclude that

X(€) = Xx2(8) =

7('”/2

IXE©) =0l 2 Bo T2 202

X { / 11 [cos(2[&]s) — cos(4r¢]s)] (1 — s%)"/27 1/ ds} :
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By the fact that 1/64 < || < 1/16 and s € [—1, 1] again, we see that
w2|€2s% > 107%|¢[*s*. Thus, by the Taylor expansion of the cosine
function, we know that

cos(27|€|s) — cos(4r|€|s) > 5r?|¢|*s?

and hence

SO 5m2|¢|2xm/ 182 _2yn/2-1/2 g
RO O (e 7 L )

From the properties of Gamma functions (see [7, Appendix A]), it follows
that

n/2 1
m _ g2)n/2-1/2 g
B@nwmm+umnum{[ﬁl ) d}

— nl'(n/2) 1 o .
©20(n/2+1/2)0(1/2) {/0 (1= /2= 1/24=1/2 dt}

_ nl(n/2) I'(n/2+1/2)['(1/2) -1

oM(n/2+1/2)T(1/2)  D(n/2+1)

Thus,

f_ — §2)n/2-1/2 gg

() - (ﬂ>52mzj4u—sWN4ﬂw

2|§|2 fo tl 2 _ t)n/2_1/2 dt
1/2(1 — t)n/2-1/2
(3.13) Jo 712 =t/ 2 dy

2)I'(n/2+41/2)I'(n/2+ 1)
2)T(n/2+1/2)T(n/2 +2)

I3/
— 22
_ 5m2l¢f?
42
Therefore, for all 1/64 < |¢] < 1/16, we have

2
5 OT

X(€) = X2(6)| = 27}

namely, (3.12) holds.

>0,
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For any fixed L € Z, U {-1}, belect a smooth function ¢ on R
such that suppp C B(0,1), [p. ¢(x)x7dx = 0 for all |y| < L, and

|cz5( )| > C >0 for all 1/64 S |€] < 1/16, where C is a positive constant.
Then ¢ * (x — x2) € C*(R™), has vanishing moments till order L and
satisfies that

(3.14) BORE©) — %)) =€ >0

for all 1/64 < |¢] < 1/16.

Let g € S(R™) such that g is nonnegative, suppg C {£ € R™ : 1/64 <
€] < 1/16} and (&) > C > 0 if 3/128 < |¢| < 7/128, where C is a
positive constant. Let

Fi=>Y g2

JEL

Then F is a bounded smooth function satisfying that F'(§) > C > 0 for
all £ #£0 and F(27-) = F.

Now define h := g/F. Then h € S(R"), supph C {£ € R" :
1/64 < [¢] < 1/16}, h(¢) > C > 0 for all 3/128 < |¢| < 7/128, and
> jez h(279¢) =1 for all £ # 0. By (3.14), we define a Schwartz func-

tion 1 by setting 1 := h{qAS[Q —X2]} 1. Then
suppth C {€ €R™ :1/64 < |¢] < 1/16}

and, for all £ € R™\ {0},

21/12 5 (€) P21 (&) [Ra-1 (&) — R4 ( Zh e =1,

JEL JEZ
which completes the proof of (i).

(ii) Similar to the argument in (i), it suffices to show that there exists a
positive constant Cy such that, for all 1/64 < [¢] < 1/16,

> 1 n 2i -~ N22i1 n 2
x(ﬁ)—;EHHiIH —Xz(f)—; EmW

From (3.13), we deduce that, for all 1/64 < |£] < 1/16,

(3.15)

>Cy>0.

5m¢]*

GEPAGIEECT S
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while
N

N
Z2Qii n €)% — Ll m €[
~ Lint+2 ~ Lin+2

N (221_1)71 2—4(2i—2)
i=1 n+2i Z7n1+~~+mn:i(2m1)! e (2mn)

< J¢? <AIEP/ (n+2),

Thus, (3.15) holds in this case, which completes the proof of (ii) and
hence Lemma 3.2. O

Proof of Theorem 3.2: We first consider the case a € (0,2). Let f €
Sthqu(R"). By Lemma 3.2(i) and f € L] (R™) NS’ (R"), we conclude
that

f= Z Ga—r * Yok * (Xo—r — Xg—k+1) * f

k€EZ

= o kUi * (f2-) — [BE20-%);

kEZ

which, modulo polynomials, holds in S’(R™). Here ¢ and ¢ are as in
Lemma 3.2(i). Let ¢ be as in (2.1). For k € Z, we have

ok * [ = Zsﬁsz * Qg—i * Yoy * (fB(~,2*J') - fB(~,21*j))'
JEZ
Notice that for all k,j € Z, and z € R",
lpa—r * Po-i * i (T)| = [Pk * (¢ ¥ )2 (2)]

3.16 n(min(j,k
(3.16) T
~ (1 + |2m1n(],k)1.|)L’

where s, L can be chosen large enough as we need; see, for example, [18,
Lemma 2.2]. Thus,

|1 Pams s x g = [ipo-rn * (¢ ¥)o—s % g| S 272V M (g).
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Therefore, when p € (1, 00), from Definition 2.1, Holder’s inequality and
the Fefferman-Stein vector-valued maximal inequality, we infer that

ay1/q
Hf”ng(lR")fs Z2kaq 22 2(k=3) 01 fB P _fB( oi— J))
) kEZ i<k Lo (R
ay1/q
> 20> 2720 M iy 25y~ fa 21-5))
kez i>k o)
1/q
S22 M (Fae2- = foe2-n)]"
JEL Lo
1/q
SIS o2 [ fae2) = fe2n)[
JEZ
LP(R™)
1/q
SIS 20 fp oy — £ S 1Saq (F)ll Lo rny.-
JEL
Lr(R™)
When p = oo, we need to show that
q 1/q
][ ZQkaq Z|S02 sk o=k tho—i% [ fp(.2-1) = fB(,20-0)](W)]| dy
B(@,27) > =/

is controlled by || f|gpa (gny uniformly in z € R™ and ¢ € Z. The proof
©0,q

of this is quite similar to that of (3.4). Indeed, we consider °, ,;,

do<j<r and Yoo, separately. With the help of (3.16) and some

necessary calculus, we arrive at |||l o ey < [[fllspa (gny- We omit

the details. 1 '
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When « € (2N,2(N + 1)), by Lemma 3.2(ii), we see that

N

F= 3 G thas x| Fiany = S22 LAl

keZ i=1 Lin+2i

N
_ 3 2—21(]—1)77A1 )
FB(21-0) +; Tt
By (3.16) with s = 2(N+1) and L > n, repeating the above argument
for the case a € (0,2), we then conclude that ”fHFﬁq(R") < ||f||sF§q(Rn)'

This finishes the proof of Theorem 3.2. O

4. Besov spaces and some remarks

In this section, we first establish a similar characterization for Besov
spaces and then make some remarks for the case o € 2N.

Let N € NU {0}, @ € (2N,2N + 2) and p,q € (0,00]. The space
SBI‘iq(]R") of Besov type is defined as the collection of functions f €
W2N-1(R") N S'(R™) such that

loc
q 1/q
< 00.

”fHSBg’q(R") = ZZkaq

keZ

][ Ry(y;-,27%) dy
B(_’ka)

(R™), Ry with N > 1 is as in (1.2) and, for all

Lr(R™)
Here Wi. (R") = L,
z,y € R,

Ro(y;,27"%) = f(y) — f(x).
Also the space SBy ,(R"™) is similarly defined as above.

Then Theorems 3.1 and 3.2 admit Besov space versions; indeed, by
similar arguments, Theorems 3.1 and 3.2 still hold with spaces Fz‘f’q (R™)
and SFﬁq(R”) replaced by Besov spaces ng(R”) and SB}‘,"Vq (R™) and,
moreover, with the indices o, p and ¢ replaced, respectively, by a €
(0,00) \ 2N, p € (1,00] and g € (0,00]. Namely, we have the following
characterization on Besov spaces.

Theorem 4.1. Let a € (0,00) \ 2N, p € (1,00] and q € (0,00]. Then
By (R") =SB (R™), with equivalent norms, and By ,(R") =SBy (R"),
with equivalent norms.

It should be pointed out that By (R™) C SB; (R™) when a € (0, 00)
and p, g € [1, o] was obtained by Wheeden [15, Theorem 5] via a totally
different approach.
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Finally, we make some remarks. The first remark is on the missing
indexes a € 2N in Theorems 1.1 and 1.2 while the second one is on
the higher order Besov and Triebel-Lizorkin spaces on metric measure
spaces.

Remark 4.1. We point out that when « € 2N, it was proved in [1] that
a variant of Theorems 1.1 and 1.2 when p € (1,00) and ¢ = 2 still
holds. However, it is not clear that when o € 2N, whether there exists
a similar variant of Theorems 1.1 and 1.2 when ¢ # 2 and Theorem 4.1
for all ¢ € (0, 00]. Indeed, as pointed out in [1], Sa o-function as in (1.1)
fails to characterize Fg)Q(R”) = W2P(R"). To overcome this drawback,
Alabern, Mateu and Verdera [1] then introduced a variant of (1.1) to
characterize FiQ (R™). Precisely, for N € Zy, k € Z, and z,y € R™, let

N—-1
(41) Bulyr,27) = fly) — fla) = 3 A (@)l — ol
j=1 7

1
—L<f ANﬂaw>w—ﬂ”,
N B(xz,27F)

where Ly is as in (1.2). Let S, 4(f) be as in (1.1) with Ry replaced
by Ry and, similarly, the spaces gng(R”) for @ € [2N,2N + 2) and
p,q € (1,00] are similarly defined to the spaces SF";fq(]R”). Then it was
proved in [1] that SE2Y (R") = 2 (R") = W2N»(R") for N € N and
p € (1,00).

When « € (2N, 2N 4 2) and p, q € (1, 0], by modifying the proofs in
Section 3, we can also show that ?F;jq(R") = F;jq (R™) with equivalent
norms. But our above proof can only show ?szg (R™) C F;qu (R™) for
N € Zy and p,q € (1,00]. It is still unknown whether the relation
Fgﬁ(R”) C ?FZ?}I;/(R”) is still true for N € Z, and p,q € (1,00] but
q # 2 or not.

Remark 4.2. On a metric measure space X satisfying a doubling prop-
erty, when a € (0,1) and p,q € (n/(n + «), 00, Triebel-Lizorkin spaces
F;fq(X ) are well defined and enjoy several important properties; see, for
example, [17], [10], [6], [8], [9], [19] and their references. But when
a > 1, a reasonable definition for Triebel-Lizorkin spaces ngq (X) is still
not available. However, by exactly the same way as in Definition 1.1,
we can define the spaces SF;fq(X) of Triebel-Lizorkin type for a € (0, 2)
and p, ¢ € (1,00]. It would be interesting to know whether the following
are true:
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a) when a € (0,1) and p,q € (1, 0], SFpofq(X) = ng()()?
b) when «a € [1,2) and p,q € (1,0¢0], does SF;fq(X) satisfy some of
the important properties of Fﬁq(R")?

Similar questions are also asked in regards to spaces SBK q(X ) of Besov
type with a € (0,2), p € (1,00] and ¢ € (0, c0].

The answers of these questions may depend on the geometry of the
underlying metric measure spaces X.
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