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A subset of pairwise non-commuting elements in a group G is a sub-
set T of G such that ab 6= ba for all a, b ∈ T . We let α(G) be the order
of the largest subset consisting of pairwise non-commuting elements of
a finite group G. Then α(G) is the size of the maximal empty subgraph
of Γ = Γ(G), the commuting graph associated to G. Lower bounds for
α(G) have been considered by a number of authors. Bertram [4] found
that for a finite group with a CC-subgroup α(G) ≥ |G|1/3. (If G is a
group with a proper subgroup M satisfying CG(x) ≤ M for each 1 6=
x ∈ M then M is called a CC-subgroup of G.) Isaacs found α(G) for
extraspecial 2-groups (see [4, p. 40]) and Chin [5] found upper and lower
bounds for extraspecial groups of odd order. Some insoluble groups have
also been considered. Abdollahi, Akbari and Maimani [1] found α(G) for
G ∼= GL(2, q) and Azad and Praeger [3] found α(G) for G ∼= GL(3, q).

Our aim here is to consider finite soluble groups with a CC-subgroup.
Bertram [4] shows that α(G) ≥ |G|1/3 for a group with a CC-subgroup.
We will show that this bound can be improved for soluble groups by using
the classification of finite groups with a CC-subgroup given by Arad and
Herfort [2]. They prove that a soluble group with a CC-subgroup is either
a Frobenius group or a 2-Frobenius group. We will use the description of
Frobenius groups given in [8]. In a Frobenius group the CC-subgroups
are the kernel and complements. A group with a normal CC-subgroup K
must be a Frobenius group, with K the Frobenius kernel. We say that
a group G is a 2-Frobenius group if G has a normal series K < L < G
such that L and G/K are Frobenius groups having kernels K and L/K,
respectively. As an easy consequence of Frobenius group theory one can
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show that G = KAB, KA = L and AB Frobenius groups. Moreover
both A and B are cyclic.

To give an estimate of the size of the largest subset of non-commuting
elements of a finite soluble group with a CC-subgroup, we use the struc-
ture above, but treat Frobenius and 2-Frobenius groups separately. Note
that if G is a Frobenius or 2-Frobenius group with Fitting subgroup F =
F (G), then the order of G/F is bounded by the square of the order of
the smallest chief factor of G in F . Since G contains a conjugacy class of
non-commuting elements of order |F | it is not surprising that the number
of chief factors of G in F will play a role in our estimate.

Theorem 1. Let G be a finite soluble Frobenius group and let n be the
number of chief factors of G below F (G) in a chief series of G passing
through F (G). Then α(G) ≥ |G|n/(n+1).

Proof: Suppose then that G is a Frobenius group with kernel K and
complement H. If M < N ≤ K and N/M is a chief factor of G, then
G/M is a Frobenius group with kernel K/M and complement HM/M .
Hence H acts fixed point freely on N/M and so |H| < |N/M |. Since the
number of conjugates of H in G is |K|, and nontrivial elements of distinct
conjugates can not commute, we can choose a nontrivial element from
each conjugate to form a non-commuting set. Suppose now the number
of chief factors of G below K in a chief series of G through K is n. We
show that |K| > |G|n/(n+1). Consider |G|n = |K|n|H|n. Since |H| is
less than the order of any chief factor below K, |H|n < |K| and so
|G|n < |K|n+1.

For the class of Frobenius groups with abelian complement, this lower
bound is best possible. We choose a prime p and an integer n ≥ 1 and
then let K be an elementary abelian group of order pn. Let H be a
cyclic group of order p−1 acting as power automorphisms on K and put
G = KH. Note that G is the disjoint union of the non-trivial elements
of the abelian groups K and the conjugates of H and so the size of a
maximal non-commuting subset of G is exactly |K|+ 1. We now have

(|K|+1)n+1/|G|n = (pn+ 1)n+1/pn
2

(p− 1)n<(pn + 1)n+1/(p− 1)n(n+1)

=

((
1 +

1

p− 1

)n

+

(
1

p− 1

)n)n+1

and so we can make α(G) as close to |G|n/(n+1) as we want by choosing p
large enough. Note in particular when n = 1 we have |G| < (|K|+ 1)2 <
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|G|(1 + 2
p−1 )2 and so there are examples with α(G) as close to

√
|G| as

desired.
For 2-Frobenius groups the situation is more complicated. In this case

G has Fitting subgroup F = F (G) complemented by a metacyclic group
H = AB with A cyclic, normal, of odd order and a core-free CC-sub-
group, B = 〈b〉 a cyclic subgroup acting faithfully on A and A and B of
coprime order. Moreover FB is a CC-subgroup. We may not have |H|
less than the order of any chief factor of G in F and so the proof above
will not hold. We find a slightly worse bound in this case, using similar
ideas to the proof of Theorem 1.

We first analyse the action of H on a chief factor of G in F . Since A
acts fixed point freely on F , each chief factor of G below F is faithful as
H-module. We begin by assuming that F is a minimal normal subgroup
of p-power order for some prime p. We then have F is free as B-module
and so F is the direct sum of r copies of the regular module by [6,
44.14], [7, B, 5.15], [7, B, 6.21] and [7, B, 5.25]. Thus |F | = pr|B|.
Let B = 〈b〉. Suppose that fb and gb, f, g ∈ F , commute. We have
1 = [fb, gb] = [f, b]b[b, g]b if and only if 1 = [b, fg−1]. Thus fb and gb
commute if and only if f and g are equal modulo the centraliser of B
in F . Since the regular module contains a unique trivial irreducible
submodule, |CF (B)| = pr. Let S be a transversal for CF (B) in F and
set B = {fb : f ∈ S}. Then B is a non-commuting subset of G. Further
if 1 6= a ∈ A and Ba = {xa : x ∈ B}, then B ∩ Ba = ∅ and elements
of B do not commute with elements of Ba. If B1 = ∪a∈ABa then B1 is
a non-commuting set containing |A|pr(|B|−1) elements. If A = 〈a〉 then
the set {af : f ∈ F} is a non-commuting set and no element of this set
commutes with any element of B1. Thus α(G) ≥ |A|pr(|B|−1) + pr|B| =
pr(|B|−1)(|A|+ pr).

It is now easy to extend this estimate to arbitrary F . Since each
chief factor is a |B|th power, we have |F | = s|B| for some s and then
α(G) ≥ s|B|−1(|A| + s). Note that for small numbers of chief factors,
the contribution of elements of order prime to |A| can be significant,
but since s ≥ 2n if there are n chief factors in F they do not make a
significant contribution for large n. This is reflected in the proofs below.

Theorem 2. Let G be a finite soluble 2-Frobenius group and let n be the
number of chief factors of G below F (G) in a chief series of G passing
through F (G), the Fitting subgroup of G. Then

(i) if n ≤ 3 then α(G) ≥ |G|2/3;

(ii) if n ≥ 4 then α(G) ≥ |G|2n/(2n+3).
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Proof: We use the notation above.

(i) We prove that (s|B|−1(|A|+ s))3 ≥ |G|2 or equivalently (s|B|−1(|A|+
s))3 ≥ s2|B||A|2|B|2 (note that the proof is independent of n and so
this bound holds for all 2-Frobenius groups: (ii) gives better bounds for
n ≥ 4). We first dispose of some small values of |B|.

If |B| = 2, then we require (s(|A|+ s))3 ≥ 4s4|A|2 or |A|3 + 3|A|2s+
3|A|s2+s3 ≥ 4s|A|2. If s ≥ |A| then 3|A|s2+s3 ≥ 4s|A|2. If |A| ≥ s then
|A|3 + 3|A|2s ≥ 4s|A|2. In either case we have the desired inequality.

If |B| = 3, we require (s2(|A| + s))3 ≥ 9s6|A|2 or |A|3 + 3|A|2s +
3|A|s2 + s3 ≥ 9|A|2. Since |A| ≥ 7 we have |A|3 + 3|A|2 ≥ 10|A|2, giving
the required inequality.

If |B|≥4, we require s3(|B|−1)(|A|+s)3≥s2|B||A|2|B|2 or s|B|−3(|A|3+
3|A|2s+3|A|s2+s3)≥|A|2|B|2. It will be enough to show that s|B|−3(|A|3+
3|A|2s) ≥ |A|2|B|2 or equivalently s|B|−3(|A| + 3s) ≥ |B|2. Since |A| ≥
|B| it will be enough to show s|B|−3 ≥ 1

2 |B| and 3s|B|−2 ≥ 1
2 |B|

2. Both
inequalities are easily checked. This completes the proof of (i).

(ii) Suppose now that n > 3. It will be enough to prove that s|B|(2n+3) ≥
s2n|B||A|2n|B|2n or equivalently s3|B| ≥ |A|2n|B|2n. If M/N is a chief
factor of G of smallest order in F , then s|B| ≥ |M/N |n ≥ |A|n and so
it will be enough to prove that s|B| ≥ |B|2n. Since s ≥ 2n, it will be
enough to show 2n|B| ≥ |B|2n or equivalently 2|B| ≥ |B|2. This is easily
established unless |B| = 3 (and is false for |B| = 3). If |B| = 3, from
the observations above either all chief factors in F have order greater
than 23 or there is at least one with order 23. In the first case we have
s ≥ 3n and then 33n ≥ 23n. In the second case we must have |A| = 7.
Then it will be enough to show 29n ≥ 72n32n and this is immediate,
since 29 > (21)2. This completes the proof of (ii).
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