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ISOLATED SINGULARITIES OF BINARY

DIFFERENTIAL EQUATIONS OF DEGREE n

T. Fukui and J. J. Nuño-Ballesteros

Abstract: We study isolated singularities of binary differential equations of degree n

which are totally real. This means that at any regular point, the associated algebraic
equation of degree n has exactly n different real roots (this generalizes the so called
positive quadratic differential forms when n = 2). We introduce the concept of
index for isolated singularities and generalize Poincaré-Hopf theorem and Bendixson
formula. Moreover, we give a classification of phase portraits of the n-web around a
generic singular point. We show that there are only three types, which generalize the
Darbouxian umbilics D1, D2 and D3.

2010 Mathematics Subject Classification: Primary: 37C15; Secondary: 34C20,
34A34, 53A07, 53A60.

Key words: totally real differential form, principal lines, Darbouxian umbilics, in-
dex.

1. Introduction

The study of the principal foliations near an isolated umbilic point of
a surface M immersed in R3 leads us to the consideration of quadratic
binary differential equations (BDE) of the form

a(x, y) dx2 + 2b(x, y) dx dy + c(x, y) dy2 = 0,

where a(x, y), b(x, y), c(x, y) are smooth functions in some open sub-
set U ⊂ R2 which are defined, after taking a parametrization of M ,
by means of the coefficients of the first and second fundamental form
of M . Since the principal lines are orthogonal in the induced met-
ric of M , the discriminant is ∆ = b(x, y)2 − a(x, y)c(x, y) ≥ 0, with
equality if and only if (x, y) corresponds to an umbilic of M , so that
a(x, y) = b(x, y) = c(x, y) = 0 and hence, (x, y) is a singularity of the
BDE. It was Darboux [5] who considered the generic singularities and
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discovered there are only three topological types, known as the Darboux-
ian umbilics D1, D2 and D3 (see [1] and [19] for a modern and precise
study of this classification).

In fact, we can consider quadratic BDE of this type for general func-
tions a(x, y), b(x, y) and c(x, y), with the discriminant having the prop-
erty: ∆ ≥ 0 with equality if and only if a(x, y) = b(x, y) = c(x, y) = 0.
The quadratic forms with this property are called positive and have been
studied by many authors [2], [6], [11], [13], [14]. A positive quadratic
differential form defines a pair of transverse foliations in the region of
regular points. Moreover, Gúıñez showed that in this more general situa-
tion, the only generic singularities are again the Darbouxian umbilicsD1,
D2 and D3.

The aim of this paper is to generalize this to degree n BDE of the
form

a0(x, y) dx
n + a1(x, y) dx

n−1 dy + · · ·+ an(x, y) dy
n = 0,

where ai(x, y) are smooth functions defined on U ⊂ R2 such that for
any (x, y) ∈ U , either it is a singular point (that is, ai(x, y) = 0 for
any i = 1, . . . , n) or the associated algebraic equation has exactly n dif-
ferent real roots. If the functions ai(x, y) have this property, then we say
that the associated binary differential n-form ω=

∑n
i=1 ai(x, y) dx

n−i dyi

is totally real.
When n = 1, a differential form is always totally real and it induces

an oriented foliation in the plane with singularities. For n = 2, totally
real is equivalent to positive in the Gúıñez sense and hence, the BDE
defines a pair of transverse (non oriented) foliations. However, for n ≥ 3,
the corresponding BDE induces locally an n-web in the regular region
(that is, a set of n foliations {F1, . . . ,Fn} which are pairwise transverse).
It seems that isolated singularities of n-webs in the plane have not been
considered previously in the literature. Moreover, we feel that the use
of degree n BDE is a good approach to treat this subject.

The topological configuration of an n-web (n ≥ 3) can be extremely
complicated, even in the regular case. When n = 3, the curvature of the
web is a 2-form which is a topological invariant. Hence, even for regular
webs we find that the topological classification has functional moduli.
It is known that a regular 3-web is parallelizable or hexagonal (that is,
equivalent to three families of parallel straight lines) if and only if the
curvature is zero. We should also mention that because of the rigidity
of webs (any homeomorphism between two regular webs is in fact a
diffeomorphism [7]) the topological and differentiable classifications are
the same.
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We show here that for n ≥ 3, the classification of generic singularities
of totally real differential n-forms gives again only three types, which we
call the generalized Darbouxian D1, D2 and D3. Here, generic means a
generic choice of coefficients in the linear part of the functions ai(x, y).
Moreover, the classification has to be understood not as a topological
classification, but just as a description of the phase portrait of the foli-
ations around the singular point.

One of the main ingredients of the classification is the index of an iso-
lated singular point. It is defined as a rational number of the form k/n,
where k ∈ Z and it can be interpreted as the rotation number of a contin-
uously chosen vector tangent to the leaves, when we make a trip around
the singular point. We also show the generalization of the Poincaré-Hopf
theorem: if M is a compact surface and ω is a totally real n-form with
a finite number of singular points, then the sum of the indices is equal
to the Euler characteristic χ(M).

Another important point in the paper is the use of complex coordi-
nates. By setting z = x+ iy and z = x− iy, we can express any n-form
as ω = A0 dz

n + A1 dz
n−1 dz + · · ·+ An dzn, where Aj = An−j are dif-

ferentiable functions. Then the index of an isolated singular point is
equal to − deg(A0)/n, where deg(A0) is the mapping degree of A0. This
implies that generically, the index is ±1/n.

The final ingredient for the classification is the use of the polar blow-
up method to study singularities with a non degenerate principal part
(see [3] and [13] for related results for vector fields or quadratic forms).
We obtain a generalization of the Bendixson formula, which says that
the index is equal to 1+ (e−h)/2n where e, h are the number of elliptic
and hyperbolic sectors respectively. For a non degenerate singularity, the
blow-up produces an n-form which has only singularities of saddle/node
type. The configuration of these singularities gives a description of the
phase portrait of the foliations around the singular point.

The original motivation of the authors to study singularities of dif-
ferential n-forms comes from the study of higher order principal lines
and umbilics of surfaces M immersed in some Euclidean space RN . The
obtained results will appear in a forthcoming paper [10]. Other geomet-
rical motivations of the same kind can be found also in the literature.
For instance, in [16] Little studies several BDEs associated to surfaces
immersed in R4. Also in [12] the authors consider curvature lines of
surfaces in R4 (in some sense) which are defined by a BDE of degree 4.

Other nice results restricted to equiangular BDEs can be found in [9].
We say that a totally real BDE is equiangular if at any regular point, the
n tangent directions to the foliations form a constant angle equal to π/n.
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If n = 2, this means that the foliations are orthogonal. In general, the
study of equiangular BDEs is equivalent to the study of cross fields in
the terminology of Little [16].

2. Totally real binary differential forms

Definition 2.1. Let M be a C∞ surface, i.e., a 2-dimensional manifold
without boundary. A binary differential n-form on M is a differentiable
section of the symmetric tensor fiber bundle Sn(T ∗M). If we take coor-
dinates x, y on some open subset U ⊂ M , any binary differential n-form
can be written in a unique way as

ω =

n
∑

i=0

fi dx
i dyn−i,

where fi : U → R are smooth functions.
Given p ∈ M , ω(p) : TpM → R is a binary form of degree n. We say

that ω is totally real at p if either ω(p) = 0 or there are n linear forms
λ1, . . . , λn ∈ TpM

∗ which are pairwise linearly independent and such
that ω(p) = λ1 . . . λn. We say that ω is totally real if it is totally real at
any point of M .

Assume ω is totally real. A point p ∈ M is called singular if ω(p) = 0
and regular otherwise. We will denote by Sing(ω) the set of singular
points of ω. (In general, if the form is not totally real a singular point
is usually considered when the linear forms are not pairwise linearly
independent.)

A linear differential form (n = 1) is always totally real. In the case n =
2, a quadratic differential form is totally real if it is positive in the sense
of [11]. Take local coordinates x, y defined on some open subset U ⊂ M
and assume that ω is given by

ω = Adx2 + 2B dxdy + C dy2,

for some smooth functions A,B,C : U → R. Then ω is totally real
in U if and only if for any p ∈ U , either A(p) = B(p) = C(p) = 0 or
B2(p)−A(p)C(p) > 0.

Definition 2.2. A (1-dimensional) n-web on a surface M is a smooth
choice of n pairwise transverse tangent lines in TpM for each point p ∈
M . In particular, in a neighbourhood U of p, there are n (1-dimensional)
foliations {F1, . . . ,Fn} on U such that they are pairwise transverse at
any point and which correspond to the integral curves of the tangent
lines.
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Observe that, in general, it is not possible to extend the n folia-
tions {F1, . . . ,Fn} to global foliations on M (unless it is simply con-
nected) since we may have monodromy between the foliations.

If ω is a totally real differential n-form on M , then we can associate
an n-web on M \Sing(ω) in the following way. For each p ∈ M \Sing(ω),
there are pairwise linearly independent linear forms λ1, . . . , λn ∈ TpM

∗

such that ω(p) = λ1 . . . λn. Moreover, it is possible to choose these linear
forms so that they depend smoothly on p (and hence define differential
linear forms) on some open neighbourhood U ⊂ M . Then, the n-web is
just defined by taking Fi as the foliation determined by λi on U (that
is, the tangent vectors to Fi are the null vectors of λi).

Two totally real differential n-forms ω1 and ω2 define the same n-web
on U if and only if there is a non-zero smooth function f : U → R such
that ω1 = fω2 on U .

Recall that if ω is a differential n-form on N and f : M → N is a
differentiable map between surfaces, then f∗ω is the n-form on M given
by f∗ω(p)(X) = ω(f(p))(f∗X) for any p ∈ M and X ∈ TpM , where
f∗ : TpM → Tf(p)N the differential of f at the point p.

Definition 2.3. Let ω1, ω2 be two totally real differential n-forms de-
fined on surfaces M , N respectively. We say that they are C∞-equiv-
alent (resp. topologically equivalent) if there is a C∞ diffeomorphism
(resp. homeomorphism) φ : M → N such that

(1) φ(Sing(ω1)) = Sing(ω2),

(2) φ : M\Sing(ω1) → N\Sing(ω2) preserves the leaves of the foliations
of the n-webs defined by ω1, ω2.

If φ is a C∞ diffeomorphism, then condition (2) is equivalent to the
existence of a nonzero smooth function f : M \ Sing(ω1) → R such that
φ∗(ω2) = fω1 on M \ Sing(ω1).

3. The index of an isolated singular point

We will define an index for isolated singular points of totally real
differential forms, which generalize the index in the case of linear or
quadratic forms.

Let ω be a totally real differential n-form on a surface M and p ∈ M
an isolated singular point. Assume that M is orientable and choose an
orientation. Moreover, we choose a Riemannian metric g on M and or-
thogonal coordinates x, y on some open neighbourhood U of p in M ,
compatible with the orientation. Now, let α : [0, ℓ] → M be a simple,



70 T. Fukui, J. J. Nuño-Ballesteros

closed and piecewise regular curve, such that α([0, ℓ]) ⊂ U is the bound-
ary of a simple region R, which contains p as the only singular point in
the interior. Moreover, we assume that α goes through the boundary
of R in positive sense. Since α is a closed curve, we can extend it to
α : R → M , by setting α(t+ ℓ) = α(t).

For each t ∈ R we choose a unit tangent vectorX(t) which is a solution
of the equation ω(α(t))(X) = 0 at the point α(t). Since it is an algebraic
equation of degree n, we can choose X(t) so that it defines a piecewise
differentiable unit vector field along α.

If we start with t = 0, after a complete turn, X(ℓ) must coincide with
one of the 2n unit vectors which are solution of ω(α(0))(X) = 0. Because
of transversality, after 2n turns in positive sense, we must return to the
initial vector, that is, X(2nℓ) = X(0). Now, let θ(t) be a differentiable
determination of the angle between ∂

∂x

∣

∣

α(t)
and X(t). Then, θ(2nℓ) and

θ(0) differ by an integer multiple of 2π.

Definition 3.1. With the above notation, we define the index of ω in p
by

ind(ω, p) =
θ(2nℓ)− θ(0)

4πn
.

It follows from the definition that the index is always a rational number
of the form s/2n, with s ∈ Z.

The proof of the following lemma is standard and will be omitted.

Lemma 3.2. The index ind(ω, p) does not depend on the choice of:

(1) the determination of the angle θ,

(2) the vector field X,

(3) the coordinates x, y,

(4) the curve α,

(5) the Riemannian metric g,

(6) the orientation of M .

As a consequence of Lemma 3.2, we deduce that the index is well
defined and it only depends on the differential form ω. Moreover, the
definition can be extended to the case that M is not orientable by taking
a local orientation in a neighbourhood of the singular point.

The definition of index can also be extended to the case where p is a
regular point, although in such case the index is always zero. In fact, we
can take coordinates in such a way that ∂/∂x coincides with X along α
and hence, θ(t) ≡ 0.
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Finally, another immediate consequence of Lemma 3.2 is that the
index is invariant under C∞-equivalence. Let ω1, ω2 be two totally
real differential n-forms defined on surfaces M , N respectively, which
are equivalent through the diffeomorphism φ : M → N . Then, for each
p ∈ Sing(ω1),

ind(ω1, p) = ind(ω2, φ(p)).

Remark 3.3. We give here a formula which can be very useful to compute
the index. Let us denote by X1(t), . . . , X2n(t) the unit vector fields
along α which are solution of ω(α(t))(X) = 0. We assume that they are
ordered so that

θ1(t) < θ2(t) < · · · < θ2n(t) < θ1(t) + 2π,

where θj(t) denotes the determination of the angle of each vector
field Xj(t). Since X1(ℓ) = Xi(0) for some i ∈ {1, . . . , 2n}, there ex-
ists mi ∈ Z such that

θ1(ℓ) = θi(0) + 2πmi.

We introduce the notation θ2n+1(t) = θ1(t)+2π, θ2n+2(t) = θ2(t)+2π,
and in general, θ2qn+j(t) = θj(t)+2qπ, for any q ∈ Z and j ∈ {1, . . . , 2n}.
Then,

θ1(ℓ) = θi(0) + 2πmi,

θ1(2ℓ) = θi(ℓ) + 2πmi = θ2i−1(0) + 4πmi,

. . .

θ1(2nℓ) = θ2n(i−1)+1(0) + 4πnmi = θ1(0) + 2π(2nmi + i− 1).

From this, we arrive to

ind(ω, p) =
θ1(2nℓ)− θ1(0)

4πn
= mi +

i− 1

2n
.

We finish this section by proving a generalization of the well known
Poincaré-Hopf Theorem for vector fields or quadratic differential forms
[15], [4].

Theorem 3.4. Let M a compact surface and let ω be a totally real
differential n-form with a finite number of singular points p1, . . . , pm.
Then,

χ(M) =

m
∑

i=1

ind(ω, pi),

where χ(M) denotes the Euler-Poincaré characteristic of M .



72 T. Fukui, J. J. Nuño-Ballesteros

Proof: The proof given here is just an adaptation of the proof given in [4,
p. 279] for the case of vector fields. We prove first the theorem in the
case where M is orientable.

We choose some orientation and a Riemannian metric on M . We take
a triangulation T such that each triangle T ∈ T contains at most one sin-
gular point pT on the interior. Moreover, for each T ∈ T , XT is a vector
field along the boundary of T which is a solution of equation ω(X) = 0.
Then,

∫

T

K dσ − 2π ind(ω, pT ) =
∆T

2n
,

where ∆T denotes the variation of the angle from XT to some parallel
vector field after going through the boundary of T 2n times in positive
sense.

Now, summing up over T ∈ T and taking into account that each edge
is common to two triangles with opposite orientations, we arrive to

∫

M

K dσ − 2π
∑

T∈T

ind(ω, pT ) =
∑

T∈T

∆T

2n
= 0.

Finally, the result is a consequence of the Gauss-Bonnet Theorem:
∫

M

K dσ = 2πχ(M).

When the surface M is not orientable, we consider π : M̃ → M a
double covering, where M̃ is an orientable and compact surface.

4. Differential forms in complex coordinates

We identify R2 with C and use the following notation

z = x+ iy, z = x− iy,

dz = dx+ i dy, dz = dx− i dy,

∂

∂z
=

1

2

(

∂

∂x
− i

∂

∂y

)

,
∂

∂z
=

1

2

(

∂

∂x
+ i

∂

∂y

)

.

With this notation, any differential n-form on an open subset U ⊂ C

can be written in a unique way in this coordinates as

ω = A0 dz
n +A1 dz

n−1 dz + · · ·+An dz
n,

for some differentiable functions Aj : U → C such that Aj = An−j for
all j = 0, . . . , n.

The following theorem is a generalization of the result in [15, VII.2.3]
in the case n = 2.
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Theorem 4.1. Let ω be a totally real differential n-form on an open
subset U ⊂ C and let p ∈ U be an isolated singular point. Then, p is an
isolated zero of A0 and

ind(ω, p) = −
deg(A0, p)

n
,

where deg(A0, p) denotes the local degree of A0 at p.

Proof: Let δ > 0 small enough and let α(t) = p+ δeit, for t ∈ R. We de-
note byX1(t), . . . , Xn(t) unit vector fields along α which are pairwise lin-
early independent and are solution of the equation ω(α(t))(X) = 0. We
also denote by θj(t) a differentiable determination of the angle of Xj(t),
so that

Xj(t) = eiθj(t)
∂

∂z
+ e−iθj(t)

∂

∂z
.

Then Xj(t) annihilates the linear form λj(t) along α given by

λj(t) = eiφj(t) dz + e−iφj(t) dz,

where φj(t) = π/2 − θj(t). Thus, by using elementary properties of the
algebraic equations of degree n, we deduce that along α it is possible to
factor ω as

ω(α(t)) = f(t)λ1(t) . . . λn(t),

for some non vanishing function f : R → R.
By comparing the coefficient of dzn in the above expression, we have

A0(α(t)) = f(t)ei(φ1(t)+···+φn(t)).

Therefore A0(α(t)) 6= 0, for all t ∈ R, which proves the first statement.
Moreover, a differentiable determination of the angle of A0(α(t)) is given
by

β(t) = φ1(t) + · · ·+ φn(t) + πq,

for some q ∈ Z.
Finally,

deg(A0, p) =
β(4πn)− β(0)

4πn
=

n
∑

j=1

φj(4πn)− φj(0)

4πn

= −

n
∑

j=1

θj(4πn)− θj(0)

4πn
= −n ind(ω, p).
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Corollary 4.2. The index of any isolated singular point of a totally
real differential n-form on a surface M has the form s/n, with s ∈ Z.
Moreover, for each s ∈ Z there is a totally real differential n-form with
an isolated singular point of index s/n.

Proof: The first part is an immediate consequence of Theorem 4.1. To
see the second part, we take M = C, p = 0 and

ω =

{

zs dzn + zs dzn, if s ≥ 0,

z|s| dzn + z|s| dzn, if s < 0.

The above corollary says that the index of an isolated singular point
of a totally real differential n-form is, in fact, of the form s/n, with s ∈ Z,
instead of s/2n. This can be interpreted as some kind of orientability
condition for the n-web defined by the differential n-form.

For instance, when n = 1, a linear differential form in M induces an
orientable foliation in a neighbourhood of each point of M . In this case,
the index of an isolated singular point is an integer. However, the index
of a (non necessarily orientable) foliation at an isolated singular point is
in general a half-integer (see [15, VII.2.2]).

Corollary 4.3. Let ω be a totally real differential n-form on a surface M
and p ∈ M an isolated singular point. Let α : [0, ℓ] → M be a curve
satisfying the conditions in the definition of the index and let X(t) be
a unit vector field along α, solution of ω(α(t))(X) = 0. Then X(nℓ) =
X(0) and

ind(ω, p) =
θ(nℓ)− θ(0)

2πn
,

where θ(t) denotes a determination of the angle of X(t).

Proof: This is consequence of Corollary 4.2 and Remark 3.3. Let
X1(t), . . . , X2n(t) be the unit vector fields along α which are solution
of ω(α(t))(X) = 0, with X(t) = X1(t). We suppose that they are or-
dered so that

θ1(t) < θ2(t) < · · · < θ2n(t) < θ1(t) + 2π,

where θj(t) is the determination of the angle of each vector field Xj(t).
Then,

ind(ω, p) = mi +
i− 1

2n
,

where θ1(ℓ) = θi(0)+2πmi, with mi ∈ Z and i ∈ {1, . . . , 2n}. Moreover,
we introduce the notation θ2qn+j(t) = θj(t) + 2qπ, for any q ∈ Z and
j ∈ {1, . . . , 2n}.
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From Corollary 4.2 we see that i− 1 must be even and hence, we can
write i− 1 = 2q, with q ∈ Z. Thus,

θ1(nℓ) = θn(i−1)+1(0) + 2πmin = θ1(0) + 2π(min+ q),

giving X1(nℓ) = X1(0).

Definition 4.4. We say that a singular point p of a totally real differ-
ential n-form ω is simple if the linear part of ω at p is itself a totally real
differential n-form having p as an isolated singular point. Suppose that
in complex coordinates

ω = A0 dz
n +A1 dz

n−1 dz + · · ·+An dz
n,

for some differentiable functions Ai : U → C. We also assume, for sim-
plicity, that p = 0. Then, each one of these functions Ai has a Taylor
expansion at the origin in the form

Ai = aiz + biz + · · ·

with ai, bi ∈ C. The linear part of ω at p is the differential n-form

ω1 = (a0z + b0z) dz
n + (a1z + b1z) dz

n−1 dz + · · ·+ (anz + bnz) dz
n.

Corollary 4.5. Any simple singular point of a totally real differential
n-form on a surface M has index ±1/n.

Proof: We take complex coordinates, suppose that p = 0 and write the
linear part of ω at p in the form

ω1 = (a0z + b0z) dz
n + (a1z + b1z) dz

n−1 dz + · · ·+ (anz + bnz) dz
n.

If ω1 is totally real and p is an isolated singular point, by Theorem 4.1,
p is an isolated zero of the linear function a0z+b0z and hence, such linear
function is regular. Since it is the linear part of the function A0, p is a
regular point of A0. Thus, deg(A0, p) = ±1 and ind(ω, p) = ±1/n.

5. Non degenerate differential forms

Let ω be a totally real differential n-form on some open subset U ⊂
C and let p ∈ U be an isolated singular point. We can extend the
notation introduced in Section 4 and denote by ωk the homogeneous
part of degree k of ω. That is, each one of the coefficients Aj admits
a Taylor expansion at p and ωk is the n-form whose coefficients are the
homogeneous parts of degree k in the expansion of the Aj .
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Definition 5.1. We say that ω is semi-homogeneous at p if there is k ≥ 1
such that ωi = 0 for i = 1, . . . , k − 1 and ωk is a totally real differential
n-form having p as an isolated singular point. Note that when k = 1,
this is equal to the definition of simple singular point.

Assume for simplicity that p = 0 and let

ωk = Ak
0 dz

n +Ak
1 dz

n−1 dz + · · ·+Ak
n dzn,

where Ak
i are homogeneous polynomials of degree k. We define the

characteristic polynomial of ω as the (real) homogeneous polynomial of
degree k + n

Pω = Ak
0z

n +Ak
1z

n−1z + · · ·+Ak
nz

n.

Let us denote by π : R2 → C the polar blow-up, that is, π(r, t) = reit.
We fix δ > 0 small enough such that π((−δ, δ) × R) ⊂ U and p = 0 is
the only singular point of ω in such set.

Lemma 5.2. If ω is semi-homogeneous with principal part ωk, then

ω̃(r, t) =







1

rk
ω(reit), if r 6= 0,

ωk(e
it), if r = 0,

defines a totally real differential n-form along π on (−δ, δ)× R.

Proof: Suppose that ω is given by

ω = A0 dz
n +A1 dz

n−1 dz + · · ·+An dzn

and let us denote by Ak
j the homogeneous part of degree k of Aj . By

the Hadamard Lemma it follows that

Aj(re
it) = rkBj(r, t),

for some differentiable functions Bj : (−δ, δ)×R → R such thatBj(0, t) =
Ak

j (e
it). In particular

ω̃(r, t) = B0(r, t) dz
n +B1(r, t) dz

n−1 dz + · · ·+Bn(r, t) dz
n.

As a consequence of the Lemma 5.2, if ω is semi-homogeneous, we can
choose n unit vector fields X1(r, t), . . . , Xn(r, t) along π on (−δ, δ) × R

which are pairwise linearly independent and solution of ω̃(r, t)(X) = 0.
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Moreover, we denote by θj(r, t) a differentiable determination of the
angle of each vector field Xj(r, t). Then we showed in the proof of
Theorem 4.1, that it is possible to factor ω̃ as

ω̃ = fλ1 . . . λn,

where λj are the linear forms given by

λj = eiφj dz + e−iφj dz,

with φj = π/2− θj and f : (−δ, δ)× R → R a non vanishing function.

Definition 5.3. The pull-back through π of the n-form ω̃ defines an
n-form π∗ω̃ on (−δ, δ)×R, which is called the polar n-form of ω. Anal-
ogously, we call linear polar forms of ω the linear forms π∗λ1, . . . , π

∗λn,
in such a way that

π∗ω̃ = fπ∗λ1 . . . π
∗λn.

An easy computation gives

π∗λj = 2(cosϕj dr − r sinϕj dt),

for each j = 1, . . . , n, where ϕj = φj + t. Thus, each one of these polar
linear forms has singular points (0, t) with ϕj(0, t) = π/2 + qπ, q ∈ Z.

Note that a point (0, t) can be a singular point of only one of the polar
linear forms. In fact, suppose that

ϕj1(0, t) = π/2 + q1π, ϕj2 (0, t) = π/2 + q2π,

for some q1, q2 ∈ Z. Then

θj1(0, t)− θj2(0, t) = (q2 − q1)π,

which implies that the corresponding vector fields are linearly dependent
and hence, j1 = j2.

Moreover, under some conditions it is possible to determine the topo-
logical type of these singular points. Let Λj be the vector field given
by

Λj = r sinϕj

∂

∂r
+ cosϕj

∂

∂t
.

Then, the jacobian matrix at a singular point is

DΛj(0, t) = ±

(

1 −
∂ϕj

∂r

0 −
∂ϕj

∂t

)

,

with eigenvalues 1, −
∂ϕj

∂t
. As a consequence, (0, t) is a hyperbolic sin-

gular point of π∗λj if and only if
∂ϕj

∂t
6= 0. Moreover, (0, t) is of saddle

type when
∂ϕj

∂t
> 0 and of node type when

∂ϕj

∂t
< 0.
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Lemma 5.4. Let ω be a semi-homogeneous totally real differential
n-form and p = 0 an isolated singular point. Then z = eit is a root of
the characteristic polynomial Pω if and only if (0, t) is a singular point
of one of its polar linear forms. Moreover, it is a simple root if and only
if (0, t) is a hyperbolic singular point of such polar linear form.

Proof: In general, we have π∗dz = eit(dr + ir dt) and π∗dz = e−it(dr −
ir dt). In particular, when restricted to r = 0, we get

π∗ω̃(0, t) =





n
∑

j=0

Ak
j (e

it)(eit)j(e−it)n−j



 drn = Pω(e
it) drn.

By using the factor of π∗ω̃ in the polar linear forms, we see that

π∗ω̃(0, t) = f(0, t) cosϕ1(0, t) . . . cosϕn(0, t) dr
n,

which implies that

Pω(e
it) = 2nf(0, t) cosϕ1(0, t) . . . cosϕn(0, t).

Thus, z = eit is a root of Pω if and only if (0, t) is a singular point of
one of the polar linear forms.

Moreover, since Pω is a homogeneous polynomial it is easy to check
that z is a simple root if and only if d

dt

(

Pω(e
it)
)

6= 0. But if we differ-
entiate in the above expression, we arrive to

d

dt

(

Pω(e
it)
)

= ±2nf(0, t)
∂ϕj

∂t
(0, t).

Therefore, it is a simple root if and only if (0, t) is a hyperbolic singular
point, by the remark after Definition 5.3.

Remark 5.5. Suppose that z = eit is a root of the characteristic polyno-
mial Pω. By the Lemma 5.4, (0, t) is a singular point of one the polar
linear forms, that is, ϕj(0, t) = π/2 + qπ, for some j ∈ {1, . . . , n}, and

q ∈ Z. For each p ∈ Z, ei(t+pπ) = ±z is also a root of Pω and hence, there
are jp ∈ {1, . . . , n}, and qp ∈ Z such that ϕjp(0, t + pπ) = π/2 + qpπ.
This implies that

ϕj(0, t)− ϕjp(0, t+ pπ) = (p− qp)π,
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for any p ∈ Z. But looking at the way the functions ϕj are constructed,
if this is true for some point t ∈ R, then it must be true for any t ∈ R.
Then, by taking derivatives with respect to t,

∂ϕj

∂t
(0, t) =

∂ϕjp

∂t
(0, t+ pπ).

Thus, (0, t) is a singular point of π∗λj of saddle or node type if and
only if (0, t + pπ) is a singular point of π∗λjp of saddle or node type
respectively. In conclusion, the singularity type only depends on the
direction determined by z = eit.

Definition 5.6. Let ω be a totally real differential n-form with an iso-
lated singular point p. We say that ω is non degenerate at p if it is
semi-homogeneous and the characteristic polynomial has only simple
roots.

Theorem 5.7. Let ω be a totally real differential n-form with a non
degenerate singular point p. Then,

ind(ω, p) = 1−
S+ − S−

n
,

where S+ and S− denote the numbers of characteristic directions of sad-
dle and node type respectively.

Proof: Denote by S+
j and S−

j the numbers of singular points of saddle
and node type respectively of the polar linear form π∗λj in the inter-
val [0, 2πn). Then,

n
∑

j=1

S+
j = 2nS+,

n
∑

j=1

S−
j = 2nS−.

Recall that such points are given by the points (0, t) such that ϕj(0, t) =
π/2+qπ, with q ∈ Z. Moreover, it is of saddle type when ϕj is increasing
at such point and of node type when it is decreasing. This implies that

ϕj(0, 2πn)− ϕj(0, 0) = π(S+
j − S−

j ),

for all j = 1, . . . , n.
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Now, by Corollary 4.3,

ind(ω, p) =
1

n

n
∑

j=1

θj(0, 2πn)− θj(0, 0)

2πn

= −
1

n

n
∑

j=1

φj(0, 2πn)− φj(0, 0)

2πn

= −
1

n

n
∑

j=1

ϕj(0, 2πn)− 2πn− ϕj(0, 0)

2πn

= 1−
1

n

n
∑

j=1

ϕj(0, 2πn)− ϕj(0, 0)

2πn

= 1−
1

n

n
∑

j=1

S+
j − S−

j

2n
= 1−

S+ − S−

n
,

since φj(0, t) =
π
2 − θj(0, t) and ϕj(0, t) = φj(0, t) + t.

Definition 5.8. Let ω be a totally real differential n-form with a non de-
generate singular point p. Given a characteristic direction of saddle type,
we define a characteristic curve as the blow-down of a stable/unstable
manifold. If the characteristic direction is of node type, then we choose a
characteristic curve as one of the integral curves whose limiting tangent
direction is the characteristic direction. By a sector we mean each one of
the regions bounded by two consecutive characteristic curves S1 and S2.
We say a sector is

(1) hyperbolic: if both S1 and S2 are of saddle type;

(2) parabolic: if S1 is of saddle type and S2 is of node type, or vice
versa;

(3) elliptic: if both S1 and S2 are of node type.

Let S+ and S− denote the number of characteristic directions of sad-
dle and node type respectively and let h and e denote the numbers of
hyperbolic and elliptic sectors respectively, then e − h = 2(S− − S+).
Thus, we get the following immediate consequence of Theorem 5.7, which
generalizes the well known Bendixson formula for the index when n = 1.
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Corollary 5.9. Let ω be a totally real differential n-form with a non
degenerate singular point p. Then,

ind(ω, p) = 1 +
e− h

2n
,

where e and h are the numbers of elliptic and hyperbolic sectors respec-
tively.

Remark 5.10. When ω has a non degenerate principal part, it is pos-
sible to improve the formula for the index given in Remark 3.3. Let
X1(r, t), . . . , Xn(r, t) be unit vector fields along π on (−δ, δ) × R which
are pairwise linearly independent and solution of ω̃(r, t)(X) = 0. More-
over, we suppose that they are chosen so that

θ1(0, t) < θ2(0, t) < · · · < θn(0, t) < θ1(0, t) + π,

where θj(r, t) denotes the determination of the angle of each vector
field Xj(r, t). Note that for r = 0, these vector fields are solution of
an equation with homogeneous coefficients, which implies that

θ1(0, π) = θi(0, 0) + πmi,

for some mi ∈ Z and i ∈ {1, . . . , n}. Then, it follows that

ind(ω, p) = mi +
i− 1

n
.

6. Phase portrait of non degenerate singular points

In general, the foliations of an n-form can present very complicated
configurations around a singular point. When ω has a non degenerate
singular point, the n foliations are obtained as the image of the integral
curves of the polar linear forms through the polar blow-down. Moreover,
since the characteristic polynomial has only simple roots, then the prob-
lem is simpler, because the polar linear forms only have singularities of
saddle or node type.

Definition 6.1. Let ω be a totally real differential n-form with a non
degenerate singular point p. Let x be a point near p and let L be one of
the n leaves of the web passing through x. We say that L is

(1) hyperbolic: if p is not an accumulation point of L;

(2) parabolic: if p is an accumulation point on just one side of L;

(3) elliptic: if p is an accumulation point on both sides of L.

If the leaf L is hyperbolic (respectively parabolic, elliptic), then it
corresponds to an integral curve of one of the polar linear forms joining
two saddles (respectively a saddle and a node, two nodes). In order to
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have a complete description of the configuration of ω, we need to know
how many sectors the leaf is going to pass through when connecting the
two characteristic curves (Figure 1).

(1) Hyperbolic (saddle-saddle).

eitj+k eitj+1 eitj
tj tj+1 tj+k

π

(2) Parabolic (saddle-node).

tj tj+1 tj+k

π eitj+k eitj+1 eitj

(3) Elliptic (node-node).

eitj+k eitj+1 eitj

tj tj+1

π
tj+k

Figure 1. Types of leaves.

Lemma 6.2. Let x be a point near p and let L be a hyperbolic leaf
through x joining two saddles. Assume that L passes through k sectors
containing n1 saddles and n2 nodes (so that n1 + n2 = k − 1). Then,

k = n+ 2n2.

Proof: Let R be the union of the closed sectors that L passes through,
which is bounded by the two characteristic curves S1 and S2 of saddle
type. Since R is simply connected, we can separate the web in R into
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n foliations F1, . . . ,Fn. We will assume that L is a leaf of F1. Then
F1 also contains the curves S1, S2 and all its other leaves of F1 are also
hyperbolic.

Let Fi be one of the other foliations, with i = 2, . . . , n. We can use the
leaves of Fi to define a continuous map φi : L → S1 ∪ S2. Given y ∈ L,
we take the leaf Li of Fi passing through y. Because of transversality,
either Li intersects S1 ∪ S2 in a single point which we define as φi(y)
or p is an accumulation point of Li, in which case we define φi(y) = p
(see Figure 2).

L
Li

yS1

Φi(y)

p = Φi(y)

S2

Li

y

Figure 2. The map φi.

Since the leaves of Fi are disjoint, we have two possibilities: either
φ−1
i (p) is just one point and Fi contains just one saddle, or φ

−1
i (p) is an

interval, so that Fi contains one node and two saddles (see Figure 3).

L

S1

S2

S+
S
−

L

S1

S2

S+

S+

Figure 3. Possibilities for a hyperbolic leaf.

Finally, assume there are a foliations of the first type and b of the
second type, with a + b = n − 1. Then, n1 = a + 2b and n2 = b, which
gives the desired result.

Lemma 6.3. Let x be a point near p and let L be an elliptic leaf
through x joining two nodes. Assume that L passes through k sectors
containing n1 saddles and n2 nodes (so that n1 + n2 = k − 1). Then,

k = n+ 2n1.
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Proof: We assume that p = 0 and that ω has the following principal part

ωk = Ak
0 dz

n + · · ·+Ak
n dz

n,

where Ak
i are homogeneous polynomials of degree k. We take now the

inversion z = 1/w, which gives:

dzn = −
dw

w2n
−

w2ndw

(ww)2n
,

and

Ak
i (z) = Ak

i

(

1

w

)

=
Ak

i (w)

(ww)k
.

Then we obtain that in C \ {0}, ωk is equivalent to the differential form

σk = Ak
0(w)w

2n dwn + · · ·+Ak
n(w)w

2n dwn.

Note that σk is also totally real with non degenerate principal part and
the characteristic polynomial has the same roots as ωk, although the
inversion transforms saddles into nodes and nodes into saddles. More-
over, elliptic leaves of the foliations of ωk are transformed into hyper-
bolic leaves of σk and vice versa. Thus, the result is a consequence of
Lemma 6.2. In Figure 4 we present the result of taking the inversion of
Figure 3.

L
S1

S2

S+S
−

S1
L

S
−

S2

S
−

Figure 4. Possibilities for an elliptic leaf.

Lemma 6.4. Let x be a point near p and let L be a parabolic leaf
through x connecting a saddle and a node. Assume that L passes through
k sectors containing n1 saddles and n2 nodes (so that n1 + n2 = k − 1).
Then,

k = 1 + 2n2.

Proof: We follow a similar argument to that of the proof of Lemma 6.2.
We denote by R the union of sectors containing the leaf L, which is
bounded by the saddle S1 and the node S2. Let F1, . . . ,Fn be the
n foliations determined by ω in R so that L is a leaf of F1.
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For each one of the foliations Fi, with i = 2, . . . , n we have again two
possibilities as listed in Figure 5. In one case Fi does not contain any
characteristic direction, while in the other cased it contains one saddle
and one node. If we denote by a, b the number of foliations of each type
respectively, we have a+ b = n− 1 and n1 = n2 = b. Therefore, we get
k = 1 + 2n2.

L

S1

S2
S+

S
−

S1

L S2

Figure 5. Possibilities for a parabolic leaf.

Remark 6.5. Once we know how many directions of saddle or of node
type we have, as well as their relative position around the singular
point p, the three above lemmas allow us to complete the phase por-
trait of all the leaves of the n web determined by ω. We call this the
phase portrait of ω at p. When n ≤ 2, it is well known that this is enough
for topological classification, that is, if two differential n-forms have the
same phase portrait at a point, then they are locally topologically equiv-
alent. For n ≥ 3, this is not true anymore because the curvature of the
web is a topological invariant.

7. Phase portraits near Darbouxian singular points

In this section we give the possible phase portraits of Darbouxian
singularities of totally real differential n-forms. These singularities are
generic in the sense that a generic choice of coefficients in the linear part
of the form should give a Darbouxian singularity.

Definition 7.1. We say that p is a Darbouxian singular point of a
totally real differential n-form ω if it is simple and the characteristic
polynomial Pω has only simple roots.

Theorem 7.2. Let p be a Darbouxian singular point of a totally real
differential n-form ω (n ≥ 2). Then, there are only three possible phase
portraits of the foliations of ω around p:
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(1) Type D1 (lemon): there are n − 1 directions of saddle type with
hyperbolic leaves passing through n sectors.

(2) Type D2 (monstar): there are n directions of saddle type and one
of node type; the hyperbolic leaves pass through n+2 sectors, while
the parabolic leaves pass through one sector.

(3) Type D3 (star): there are n + 1 directions of saddle type with hy-
perbolic leaves passing through n sectors.

Proof: Let S+ and S− be the numbers of directions of saddle and node
type respectively. The sum S+ + S− is the total number of roots of the
characteristic polynomial Pω, which has degree n + 1. Since the roots
are simple,

0 ≤ S+ + S− ≤ n+ 1, S+ + S− ≡ n+ 1 mod 2.

Assume that S+ + S− = n + 1. If S− ≥ 2, then S+ ≤ n − 1 and by
Theorem 5.7,

ind(ω, p) = 1−
S+ − S−

n
≥ 1−

n− 1− 2

n
=

3

n
.

This is not possible, by Corollary 4.5, since the index can only be ±1/n.
Thus, the only possibilities are S+ = n+ 1, S− = 0 or S+ = n, S− = 1
which correspond to the types D3 and D2 respectively. Note that the
index in each case is −1/n or 1/n respectively.

Next case is S+ + S− = n− 1. As above, if we suppose that S− ≥ 1,
then S+ ≤ n− 2 and hence,

ind(ω, p) = 1−
S+ − S−

n
≥ 1−

n− 2− 1

n
=

3

n
.

The only possibility is S+ = n − 1, S− = 0 which correspond to the
type D1 and has index 1/n.

Finally, assume that S+ + S− ≤ n − 3. Then necessarily S− ≥ 0,
S+ ≤ n− 3 and hence,

ind(ω, p) = 1−
S+ − S−

n
≥ 1−

n− 3− 0

n
=

3

n
.

The discussion about the number of sectors of hyperbolic or parabolic
leaves is a consequence of above lemmas.

The above classification in the case n = 2 gives the classification ob-
tained by Darboux for the curvature lines around generic umbilic points
of an immersed surface in R3 (see [1] and [19]). A proof for the gen-
eral case of Darbouxian singular points of quadratic forms can be found
in [11].
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Quadratic lemon Quadratic monstar Quadratic star

Cubic lemon Cubic monstar Cubic star

Figure 6. Pictures of the Darbouxian singularitiesD1,
D2, D3.

Example 7.3. Consider ω1 = z dzn + z dzn. By Theorem 4.3,

ind(ω1, 0) = − deg(z, 0)/n = 1/n.

Moreover, the characteristic polynomial is

Pω1
= zzn + zzn = zz(zn−1 + zn−1),

which has n− 1 real simple roots. Thus, for any n, ω1 has a Darbouxian
singular point of type D1 (lemon).

Now, let ω2,ǫ = (iz− (1+ ǫ)iz) dzn+(−iz+(1+ ǫ)iz) dzn, with ǫ > 0.
In this case, the index is again 1/n and the characteristic polynomial is

Pω2,ǫ
= (iz − (1 + ǫ)iz)zn + (−iz + (1 + ǫ)iz)zn

= (iz − iz)(zn + zn) + ǫizz(zn−1 − zn−1).

Given n, it follows that for ǫ small enough, Pω2,ǫ
has exactly n+ 1 real

simple roots. Then, ω2,ǫ has a Darbouxian singular point of type D2

(monstar).
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Finally, we consider ω3 = z dzn + z dzn. The index is now −1/n and
Pω3

= zn+1 + zn+1. For any n, it has n + 1 simple real roots, so that
ω3 is of type D3 (star).

Figure 6 gives the configurations of the foliations for the three exam-
ples D1, D2, D3 in the cases n = 2 (top) and n = 3 (bottom) obtained
with Mathematica (D1 and D3) and with the program Homogeneous

equations lines by A. Montesinos [17] (D2 with ǫ = 1/2).
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