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A STABILITY RESULT FOR NONLINEAR NEUMANN

PROBLEMS IN REIFENBERG FLAT DOMAINS IN R
N

Antoine Lemenant and Emmanouil Milakis

Abstract

In this paper we prove that if Ωk is a sequence of Reifenberg-flat
domains in R

N that converges to Ω for the complementary Haus-
dorff distance and if in addition the sequence Ωk has a “uniform
size of holes”, then the solutions uk of a Neumann problem of the
form

(0.1)

{

− div a(x,∇uk) + b(x, uk) = 0 in Ωk

a(x,∇uk) · ν = 0 on ∂Ωk

converge to the solution u of the same Neumann problem in Ω.
The result is obtained by proving the Mosco convergence of
some Sobolev spaces, that follows from the extension property
of Reifenberg-flat domains.

Introduction

In this paper we study the stability of solutions for the following
nonlinear Neumann problem

(0.2)

{

− div a(x,∇u) + b(x, u) = 0 in Ω

a(x,∇u) · ν = 0 on ∂Ω

where Ω is a bounded subset of RN, a : RN×R
N → R

N and b : RN×R → R

are two Carathéodory functions satisfying suitable monotonicity, coer-
civeness and growth conditions (see (1.1)–(1.3) below). More precisely,
we are interested in the following question. Let Ωk be a sequence of
open sets in R

N that converges to Ω for the complementary Hausdorff
distance. Let uk be the sequence of solutions for the problem (0.2) in Ωk

and let u be the solution associated to Ω. Is it true that uk converges
to u? If the answer is positive we say that the problem (0.2) is stable
along the sequence Ωk (see Definition 3).
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This question was studied by many authors in the last decade, prin-
cipally in dimension 2, for smooth and non smooth domains. The case
of non smooth domain, and more specifically domains with cracks, ap-
pears typically in applications from fracture mechanics. In addition, the
problem of stability is linked to the notions of Mosco convergence or
Gamma convergence, which are powerful tools to study the semiconti-
nuity of functionals in shape optimization problems or for instance the
Mumford-Shah functional in image processing.

Recently, G. Dal Maso, F. Ebobisse and M. Ponsiglione [3] proved
that in dimension 2, if Ωk tends to Ω for the complementary Hausdorff
distance in R

2, |Ωk| tends to |Ω| and if the number of the connected
components of the complements Ωc

k are uniformly bounded, then the
problem (0.2) is stable. This stability property extends the correspond-
ing results of A. Chambolle and F. Doveri [2] and also D. Bucur and
N. Varchon [1]. In particular, the authors showed that the stability is
equivalent to the convergence of some Banach spaces in the sense of
Mosco.

According to the authors knowledge, only few results have been proven
in higher dimensions. In [8], A. Giacomini proves a stability result in R

N

for fractured locally Lipschitz domains where an approach involving the
Mosco convergence is also used.

A famous example called the “Neumann Sieve” ([7], [15], [17]), shows
that in many cases the stability is not true. The general idea, for in-
stance in dimension 2, is that if one considers a sequence of 1-dimensional
sets Ek in B(0, 1) with more and more holes of size 1

k
but with always

same global length, it could happen that {Ek} converges to a segment
while the problem (0.2) is not stable along the sequence {B(0, 1)\Ek}.

In this paper, we prove that if {Ωk} converges to Ω for the complemen-
tary Hausdorff distance in R

N and if {Ωk} is a sequence of Reifenberg flat
domains with “uniform size of holes”, then problem (0.2) is stable along
the sequence {Ωk} (see Theorem 7). The main point is to prove that
the limit in the sense of Mosco, of the space of restrictions of functions
in W 1,p(Ωk) is the space of restrictions of functions in W 1,p(Ω).

The notion of “uniform size of holes” (Definition 8) is here to avoid
the “Neumann Sieve” problem as described above. Indeed, we want to
allow crack domains but according to our definition of uniform size of
holes, the “tips” of the cracks can never become arbitrary closer to each
other at the limit.

Our theorem partially extends the result of [3] in any dimension, and
it also can be considered as an extension of [8] since the regularity of our
sets is weaker than Lipschitz. Indeed, Reifenberg flat sets are ones that
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are locally well-approximated by hyperplanes, at every scale. This allows
for instance some “Hölderian spirals” or fractal boundaries (see [6]).

Reifenberg flat sets are rough domains that have naturally been used
in the study of boundary regularity and the regularity of free boundaries
coming from a minimization problem (see for instance [4], [5], [10], [12],
[14] and references therein). As we shall see in the sequel, Reifenberg
flat domains are moreover very well-adapted in the construction of good
extensions for functions in the Sobolev space, which is the key ingredient
for proving the Mosco convergence.

This sort of technics were also used in [11], and probably appeared
for the first time in [9] while Peter Jones was seeking some geometrical
conditions to define a class of extension domains. Notice however that
our extension is slightly different than the classical extension of Jones,
since we allow ourselves to modify the function inside the domain in a
very small neighborhood of the boundary. On the other hand there is
a little topological difficulty to overcome, coming from the fact that our
domains admit some cracks (i.e. holes in the boundary).

Once the Extension Lemma is established, the Mosco convergence
comes fairly easily and this completes the proof of our main result. Let
us list here some notations that will be used along the present paper.

Notation.

∂Ω := Ω\Ω, the topological boundary of Ω.

W 1,p(Ω) := the Sobolev space.

C1
c (Ω) := space of C1(Ω) functions with compact support.

ν := the outward normal vector.

|A| := the Lebesgue measure of the Borel set A.

dH := the Hausdorff distance (defined in (1.7)).

Ac := the complement of the set A.

A△B := A\B ∪B\A.

B(x, r) := the ball with center at x and radius r.

C := a positive constant, that could vary from line to line, and
that only could depend on dimension.

1. Stability for the nonlinear Neumann problem

Let Ω be an open bounded subset of RN and let the real numbers p
and q satisfy 1 < p ≤ 2 ≤ q < +∞ and 1

p
+ 1

q
= 1. In this section
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we prove the stability for problem (0.2) where a : RN × R
N → R

N and
b : RN ×R → R are two Carathéodory functions satisfying the following
assumptions: there exist 0 < c1 ≤ c2, α ∈ Lq(RN ), and β ∈ L1(RN ) such
that, for almost every x ∈ R

N and for every ξ, ξ1, ξ2 ∈ R
N with ξ1 6= ξ2

〈a(x, ξ1)− a(x, ξ2), (ξ1 − ξ2)〉 > 0;(1.1)

|a(x, ξ)| ≤ α(x) + c2|ξ|
p−1;(1.2)

a(x, ξ) · ξ ≥ −β(x) + c1|ξ|
p.(1.3)

We assume that b satisfies the same inequalities, with possible different α,
β, c1 and c2. For simplicity we use the same notation.

〈b(x, ξ1)− b(x, ξ2), (ξ1 − ξ2)〉 > 0;(1.4)

|b(x, ξ)| ≤ α(x) + c2|ξ|
p−1;(1.5)

b(x, ξ) · ξ ≥ −β(x) + c1|ξ|
p.(1.6)

Throughout the paper we assume that (0.2) is satisfied in the usual weak
sense of Sobolev spaces, that is u ∈W 1,p(Ω) and

∫

Ω

〈a(x,∇u),∇ϕ〉 + 〈b(x, u), ϕ〉dx = 0

for all ϕ ∈ W 1,p(Ω). It is well known that problem (0.2) has a unique
solution in W 1,p(Ω) (see [13]).

If A and B are two nonempty closed subsets of RN , we define the
Hausdorff distance between A and B by

(1.7) dH(A,B) := max{sup
x∈B

d(x,A), sup
x∈A

d(x,B)}

where d(x,A) = dist(x,A).

Definition 1. Let {Ωk}k∈N and Ω be some nonempty open subsets
of RN . We say that Ωk converges to Ω for the complementary Hausdorff
distance if dH(Ωc

k,Ω
c) tends to 0.

Remark 2. If Ωk tends to Ω for the complementary Hausdorff distance,
then dH(∂Ωk, ∂Ω) tends to zero, but observe that the converse is false
in general (for instance take Ωk := ( 1

k
,+∞) and Ω := (−∞, 0)).
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Suppose that Ωk converges to Ω for the complementary Hausdorff
distance, and let uk be a weak solution of the problem

(1.8)

{

− div a(x,∇uk) + b(x, uk) = 0 in Ωk

a(x,∇uk) · ν = 0 on ∂Ωk.

Definition 3. We say that problem (0.2) is stable along the sequence Ωk,
if the following holds: Let uk ∈ W 1,p(Ωk) be a sequence of solutions
of the problem (1.8) in Ωk. Then (1Ωk

uk, 1Ωk
∇uk) converges strongly

to (1Ωv, 1Ω∇v) in Lp(RN ) × Lp(RN ,RN ) and v is a solution of prob-
lem (0.2).

We seek conditions on Ωk to make the problem (0.2) stable.

Definition 4. A (δ, r0)-Reifenberg-flat domain Ω ⊂ R
N is an open

bounded set such that for each x ∈ ∂Ω and for any r ≤ r0 there ex-
ist a hyperplane P (x, r) containing x such that

(1.9)
1

r
sup

y∈∂Ω∩B(x,r)

dist(y, P (x, r)) ≤ δ.

Our definition of Reifenberg-flat domains is not exactly the same that
could be found in the literature, essentially from the fact that we did
not take a bilateral definition of the distance in (1.9) in order to al-
low cracks (when the domain lies in each side of its boundary). Using
the terminology of [11], our Reifenberg-flat domains should be called
“weak Reifenberg-flat domains”. Observe that our definition allows the
fact that ∂Ω could have an infinite number of connected components.
Moreover in our definition, Ω is not supposed to be connected.

The topological disc theorem of Reifenberg [16] says that, under some
additional separation conditions and if δ is small enough, then the bound-
ary of a (δ, r0)-Reifenberg-flat domain is locally the bi-hölderian image
of a N − 1 dimensional unit disc. In addition, this is optimal since a
Reifenberg-flat domain can admit some Hölder spiral. It is worth men-
tioning that a Reifenberg-flat domain could have a fractal “snowflake-
like” boundary (see [6]).

Now we consider a topological assumption in order to avoid the prob-
lem of “Neumann Sieves” (see [15]). For a Reifenberg-flat domain Ω and
for any ball B(x, r) centered at ∂Ω and with radius r ≤ r0, let us define
the sets D+(x, r) and D−(x, r) by the following way. Let P (x, r) be the
hyperplane given by the definition of Reifenberg flatness of Ω. Denote
by z±(x, r) two points of B(x, r) that lie at distance 3r/4 from P (x, r)
and whose orthogonal projections on P (x, r) are equal to x. Then we
set D±(x, r) := B(z±, r/4) as in the following picture.



418 A. Lemenant, E. Milakis

P (x, r)

D+(x, r)

D−(x, r)

�

�

∂Ω

Definition 5. Let Ω be a (δ, r0)-Reifenberg flat domain. We say that
Ω has a uniform size of holes with constant C0 ≥ 1/2, if for every
ball B(x, r) centered at ∂Ω with radius r ≤ 1

2r0 and such that D+(x, r)
and D−(x, r) lie in the same connected component of B(x, r) ∩Ω, there
exists a ball B(y, s) centered on P (x, 2r)∩B(x, 2r) with radius s > 1

C0
r

such that B(y, s)∩ ∂Ω = ∅. By convention if Ω is such that D±(x, r) al-
ways lie in different connected components we say that Ω has a uniform
size of holes with C0 = 1/3.

Remark 6. If Ω has a uniform size of holes with constant C0 ≥ 1/2 then
Ω has a uniform size of holes with any constant C > C0. Therefore,
we will usually take C0 as being the minimal constant satisfying the
property of Definition 5 which can never be less than 1/2 for obvious
geometrical reasons. Moreover when we mean that a sequence Ωk has a
uniform size of holes with same constant C0, we say that all the minimal
constants associated to Ωk are bounded by a same constant C0 (see also
the examples given below).

The rest of the section is devoted to the proof of the following result.

Theorem 7. Let C0 ∈ [2,+∞) ∪ {1/3} be a constant and assume that
{Ωk}k∈N, Ω are (δ, r0)-Reifenberg flat domains with δ < 10−3C−1

0 , hav-
ing a uniform size of holes with same constant C0, and such that Ωk con-
verges to Ω for the complementary Hausdorff distance. Then the Neu-
mann problem (0.2) is stable along the sequence Ωk.

Before passing to the details of the proof of Theorem 7, we give two
examples for domains described in the discussion above.
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1.1. Examples.

We would like to emphasize the fact that according to Definition 5, in
Theorem 7 we do not consider “sieve domains” with holes in the bound-
ary that are becoming smaller when Ωk tends to Ω, but only “crack do-
mains” which contain some holes but with a fixed size bigger than C−1

0 r0
and controlled shape. To illustrate this, let us show two basic examples
in dimension 2.

1.1.1. A counterexample.

Let us consider the 2 dimensional Sieve Domain defined as follow. For
a fixed ε set rn := ε2−n,

Γn := [0, 1]\
2n⋃

k=1

[k2−n − rn, k2
−n]

and Ωn := B((1/2, 0), 1)\Γn.

-� -�ε2−n (1− ε)2−n

Ωn

Since the boundary of Ωn is “smooth”, for every δ ∈ (0, 1), one can
easily obtain a radius rδ ∈ (0, 1

10 ) such that all the Ωn are (δ, rδ)-Reifen-
berg flat domains. Now for n big enough, we claim that the minimal
constant Cn

0 of uniform size of holes in Ωn is bounded from below
by C2n. Indeed, we denote x0 := (1/2, 0) ∈ R

2 and consider the ball
B(x0, rδ/2). The corresponding domains D±(x0, rδ/2) lie in the same
connected components of Ω and P (x, rδ/2) is the first axis. Now since
rδ <

1
10 , any ball B(y, s) centered on P (x0, rδ)∩B(x0, rδ) and such that

B(y, s) ∩ ∂Ωn = ∅ must have a radius s < ε2−(n+1). This means that

Cn
0 ≥ rδ

2n+1

ε
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thus the sequence Ωn cannot have a uniform size of hole with same
constant C0.

1.1.2. An example with fractured domains.

Further, we give another example where the domains Ωn have now
a uniform size of holes with same constant. Of course we could also
take some “non-fractured” domains for which the constant is fixed to 1

3
by convention, but let us consider the following more instructive crack
situation. Let S be the segment [−1, 1]× {0} ⊂ R

2 and Ω := B(0, 2)\S.
Now let Γn := {(t, fn(t)); t ∈ [−an, an] ⊂ R} be a sequence of Lips-
chitz graphs with same Lipschitz constant L and such that dH(Γn, S) ≤
2−n−3.

R

S

�

Γn

B(0, 2)

It is not difficult to see that the sequence Ωn := B(0, 2)\Γn is a se-
quence of (δ, r0)-Reifenberg-flat domains converging to Ω\S for the com-
plementary Hausdorff distance. Indeed, they are Reifenberg-flat with a
good choice of δ and r0 depending only on the Lipschitz constant L.
Moreover we have that dH(Ωc

n,Ω
c) = dH(Γn, S) ≤ 2−n−3. Finaly, Ωn

and Ω have all a uniform size of holes with constant C0 ≤ 10. This is
easy to prove for Ω because the only way for a ball B(x, r) to be centered
on ∂Ω and having the property that B(x, r) ∩ Ω is connected is to be
centered on S with a radius r > dist(x,E(S)) where E(S) are the two
endpoints of S. In this case it is clear that B(x, 2r) contains a ball of
radius s > 10−1r centered on the first axis that does not meet ∂Ω. Now
one can see this also for Ωn by exactly the same argument, replacing the
endpoints of S by the endpoints of Γn, using also that Γn is a graph.
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Of course in our example, Lipschitz graphs was assumed for conve-
nience and one could try to weaken the regularity assumption on Γn

taking for instance a sequence of connected Reifenberg-flat sets with ad-
mitting some tangents at the endpoints, but the proof becomes a bit
more technical in this case.

1.2. Extension Lemma.

The main ingredient for proving the Mosco convergence will be the
Extension Lemma contained in this section. For every function u ∈
L1(B(x, r)) we denote by m±(u) the average of u on D±(x, r)

(1.10) m±(u) :=
1

|D±(x, r)|

∫

D±(x,r)

u(x) dx.

We begin with the following fact.

Proposition 8. Let p ≥ 1, C0 ≥ 1/2 and let Ω be a (δ, r0)-Reifenberg
flat domain with δ < 10−3C−1

0 and having uniform size of holes with
constant C0. Then for every ball B(x, r) centered at ∂Ω with r ≤ 1

4r0
such that D+(x, r) and D−(x, r) lie in the same connected component of
B(x, r) ∩ Ω, we have that

(1.11) |m+(u)−m−(u)| ≤ C
1

rN−1

∫

B(x,3r)

|∇u| dx

for any function u ∈ W 1,1(B(x, 3r) ∩ Ω), and where C is depending on
dimension N and constant C0.

Proof: The proof is an easy consequence of the classical Poincaré inequal-
ity. Indeed, the definition of Uniform size of holes implies that there exist
a ball B(x, s) centered on P (x, 2r)∩B(x, 2r) such that B(x, s)∩∂Ω = ∅,
and with s > 1

C0
r. Now the proposition follows from the following

fact: since ∂Ω is at distance less than 2δr < 2.10−3C−1
0 r from P (x, 2r)

in B(x, 2r), one can define a Lipschitz domain A contained in B(x, 3r),
that contains D+(x, r)∪D−(x, r)∪B(x, s2 ), and such that the Poincaré
constant in A is less than C(C0, N)r, where C(C0, N) is only depend-
ing on C0 and N and is independent from all the possible positions
of B(x, s).

Next we give the Extension lemma.
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Lemma 9. Let r0 be a positive radius, τ ∈ (0, r0) and C0 ∈ [1/2,+∞)∪
{1/3}. Let Ω1 and Ω2 be two (δ, r0)-Reifenberg-flat domains with δ <
10−3C−1

0 , having a uniform size of holes with same constant C0 and such
that

dH(Ωc
1,Ω

c
2) ≤ 10−3C−1

0 τ.

Then setting

W (τ) := {y ∈ R
N ; d(y, ∂Ω1) ≤ τ},

for any v ∈ W 1,p(Ω1) there exists a function ṽ ∈ W 1,p(Ω2) such that
v = ṽ in Ω1\W (10τ) and

‖ṽ‖Lp(Ω2∩W (10τ)) ≤ C‖v‖Lp(Ω1∩W (10τ))(1.12)

‖∇ṽ‖Lp(Ω2∩W (10τ)) ≤ C1‖∇v‖Lp(Ω1∩W (100τ))(1.13)

with C depending only on the dimension N , while C1 depends on con-
stant C0 and on dimension N .

Proof: Let τ ∈ (0, r0) be fixed and let Bi := B(xi, τ) be a family of balls
of radius τ , centered at xi ∈ ∂Ω1, and maximal for the property that
1
10Bi ∩

1
10Bj = ∅ for all i, j ∈ I with i 6= j. Notice that by this way,

W (9τ) ⊂
⋃

i∈I

10Bi ⊂W (10τ).

We want to construct a partition of unity associated to {Bi}i∈I . For all i,
define a function ϕi ∈ C1

c (10Bi), such that ϕ = 1 in 8Bi, |∇ϕ| ≤ τ−1

and let ϕ0 be a function that is equal to 1 in Ω1\
⋃

i∈I 10Bi, ϕ0 = 0
in
⋃

i∈I 8Bi and ϕ0 +
∑

i∈I ϕi ≥ 1 in Ω1 ∪
⋃

i∈I 10Bi. Moreover, we
can assume that there is a constant C such that for all x ∈ 10Bi\8Bi,
|∇ϕ0(x)| ≤ Cτ−1. Indeed, such a function ϕ0 can be obtained by setting

ϕ0(x) :=
∏

i∈I

l(d(x, xi)/τ)

where l is a Lipschitz function equal to 0 in [0, 8], equal to 1 in [10,+∞)
and l′(x) ≤ 10. Finally, define

θi :=
ϕi

ϕ0 +
∑

i∈I ϕi

for i ∈ I ∪ {0}

thus we now have a partition of unity in Ω1 ∪
⋃

i∈I Bi. To define a

function ṽ ∈ W 1,p(Ω2), it suffices to define an extension of v in Ω2 ∩
⋃

i∈I 10Bi since Ω1△Ω2 is contained in
⋃

i∈I 10Bi.
Let Pi := P (xi, 10τ) be the hyperplane associated to Ω1 given by

Definition 4. Recall that since dH(Ωc
1,Ω

c
2) ≤ 10−3C−1

0 τ , we have that

10Bi ∩ (∂Ω2) ⊂ {y ∈ 10Bi; d(y, Pi) ≤ 2.10−2C−1
0 τ}.
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For each ball Bi, we denote by D±(xi, 10τ) the two balls defined just
before Definition 8 associated to Ω1, and we assume this notation to
be coherent with the orientation of ∂Ω1. More precisely we assume the
notation of positive and negative signs of D±(xi, 10τ), to be chosen in
such a way that for any i, j satisfying B(xi, 10τ) ∩ B(xj , 10τ) 6= ∅, we
have that D+(xi, 10τ) and D

+(xj , 10τ) both lie in the same connected
component of B(xi, 100τ) \ P (xi, 100τ). This of course can be done
without loss of generality, starting from a first choice of D+(xj , 10τ)
and then defining the others successively. Then we need to consider
three cases.

• Cracktip case: D+(xi, 10τ) and D
−(xi, 10τ) lie both in the same

connected component of B(x, 10τ)∩Ω2. Let Ic be the set of indices
corresponding to the balls in this situation and for every i ∈ Ic
define mi := m+(v) (as in (1.10)).

• Boundary case 1: D+(xi, 10τ) and D−(xi, 10τ) lie in different
connected components of B(x, 10τ) ∩ Ω2. Let Ib1 be the set of
indices corresponding to the balls in this situation. For every i ∈
Ib1 , let A

+
i and A−

i be the two connected components of 10Bi\∂Ω2

that contain respectively D+(xi, 10τ) and D
−(xi, 10τ) and define

m±
i := m±(v).

• Boundary case 2: One of D±(xi, 10τ) lies in Ω2 while the other
one lies in Ωc

2. Let Ib2 be the set of indices corresponding to the
balls in this situation. For every i ∈ Ib2 , let mi be equal to the
one of m±(v) corresponding to ball D±(xi, 10τ) that lies in Ω2.
Finally as for Ib1 , let A+

i and A−
i be the two connected com-

ponents of 10Bi\∂Ω2 that contain respectively D+(xi, 10τ) and
D−(xi, 10τ).

Notice that since τ is chosen sufficiently small, the preceding 3 cases
would be the same if Ω1 was taken instead of Ω2 in their definition.

We are now ready to define ṽ. It could be that Ω2 has some tiny
connected components hidden in some 10Bi\(A

+
i ∪ A−

i ) for i ∈ Ib1 . In
those components, let us define ṽ to be equal to 0. Then, anywhere else,
i.e. for all x ∈ A := (Ω2\

⋃

i∈Ib1
10Bi) ∪ (

⋃

i∈Ib1
A+

i ∪ A−
i ), define

(1.14) ṽ(x) :=θ0v(x)+
∑

i∈Ic∪Ib2

θi(x)mi+
∑

i∈Ib1

θi(x)(m
+
i 1A+

i
(x)+m−

i 1A−

i
(x)).

The function ṽ is now well defined for every x ∈ Ω2. We claim that
ṽ ∈ W 1,p(Ω2) and that (1.12) and (1.13) are satisfied. Let us first
show (1.12). Using Hölder inequality and extending v by 0 outside of Ω1,
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we have for all i ∈ Ib2 ∪ Ic,

(1.15) |mi|
p ≤ C

(
1

|Bi|

∫

Bi

|v| dx

)p

≤ C|Bi|
−1

∫

Bi

|v|p

and by the same way for i ∈ Ib1 we also have

(1.16) |m±
i |

p ≤ C|Bi|
−1

∫

Bi

|v|p.

In addition, since Bi are in a bounded cover (with a universal con-
stant C), the sums in (1.14) are locally finite. Thus, since θi(x) ≤
110Bi

(x) and using (1.15) and (1.16),
∥
∥
∥
∥
∥
∥

∑

i∈Ic∪Ib2

θi(x)mi

∥
∥
∥
∥
∥
∥

p

Lp(Ω2)

≤ C
∑

i∈Ic∪Ib2

∫

10Bi

|mi|
p

≤ C
∑

i∈I

∫

10Bi

|v|p dx ≤ C‖v‖p
Lp(W (10τ))

and by the same way
∥
∥
∥
∥
∥
∥

∑

i∈Ib1

θi(x)(m
+
i 1A+

i
(x) +m−

i 1A−
i
(x))

∥
∥
∥
∥
∥
∥

p

Lp(Ω2)

≤ C
∑

i∈I

∫

10Bi

|v|p dx

≤ C‖v‖p
Lp(W (10τ))

thus taking the Lp norm in (1.14) we deduce that (1.12) holds. Let us
now prove (1.13), which will also imply that ṽ ∈ W 1,p(Ω2). By definition,
ṽ = v in Ω2\

⋃

i∈I 10Bi, thus all we have to prove is that

(1.17)

∫

A∩
⋃

i∈I
10Bi

|∇ṽ|p ≤

∫

Ω1∩W (60τ)

|∇v|p.

Let i0 be a fixed index such that x ∈ A ∩ 10Bi0 . Let Ix be the
finite set of indices i ∈ I such that x ∈ Bi. All balls Bi for i ∈ Ix are
contained in B(xi0 , 20τ). Let us first make the following assumption on
the orientation:

(1.18)
For any i ∈ (Ib1 ∪ Ib2) ∩ Ix, x lie in the same connected
component as D(xi0 , 10τ)

+ of B(xi, 10τ) ∩ Ω2.

Next we define a convex domains D+
x , as being the convex hull of all

the D+(xi, 10τ) for i ∈ Ix. Since (∂Ω1 ∪ ∂Ω2)∩B(xi0 , 20τ) is contained
in {y; d(y, P0) ≤

2τ
10} for some hyperplane P0, we have that D

+
x does not

meet (∂Ω1 ∪ ∂Ω2) ∩B(xi0 , 20τ) and is contained in B(xi0 , 100τ).



Neumann Stability in R.-Flat Domains 425

Define

m+
x :=

1

|D+
x |

∫

D
+
x

v(x) dx, and

mi0 :=
1

|D(xi0 , 20τ)
+|

∫

D(xi0
,20τ)+

v(x) dx.

Since ∇θ0 +
∑

i∈I ∇θi = 0 we have, using our assumption (1.18),

∇ṽ(x)=θ0(x)∇v(x)+∇θ0(x)v(x)+
∑

i∈Ic∪Ib2

∇θimi +
∑

i∈Ib1

∇θim
+
i 1A+

i
(x)

=θ0(x)∇v(x)+∇θ0(x)(v(x) −mi0)
︸ ︷︷ ︸

f1

+
∑

i∈Ic∪Ib2

∇θi(mi −mi0) +
∑

i∈Ib1

∇θi(m
+
i −mi0)

︸ ︷︷ ︸

f2

.

To estimate f1, since supp(∇θ0) ∩B(xi0 , 60τ) is contained in a Lips-
chitz domain with universal constant, we infer that

∫

B(xi0
,10τ)

|f1(x)|
p ≤

1

τp

∫

B(xi0
,60τ)

1supp(∇θ0(x))|v(x)−mi0 |
p

≤ C

∫

B(xi0
,60τ)

|∇v|p.

(1.19)

Now we estimate f2 still using the Poincaré inequality. Firstly for any
i ∈ Ix ∩ Ib1 we have that

(1.20) |m+
i −mi0 | ≤ |m+

i −m+
x |+ |m+

x −mi0 | ≤
C

τN−1

∫

D
+
x

|∇v|.

If i ∈ Ic, we have the same inequality with mi instead of m+
i , because

by definition mi = m+(v) in this case.
Therefore we have proved that under assumption (1.18),

(1.21) |f2(x)| ≤ C
1

τN

∫

B(xi0
,100τ)

|∇v| dx.

Now assume that instead of (1.18) we had:

(1.22)
For any i ∈ (Ib1 ∪ Ib2) ∩ Ix, x lie in the same connected
component as D(xi0 , 10τ)

− of B(xi, 10τ) ∩ Ω2.
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Then we can proceed exactly as above with negative signs in the no-
tations instead of positive signs, except for inequality (1.20) with i ∈ Ic
since by convention in this case we have setmi := m+(v). However, since
the boundary of ∂Ω1 has a uniform size of holes, we can estimate the dif-
ference |m+(v) −m−(v)| by (1.11). Indeed, we know that D±

Ω1
(xi, 10τ)

lie in the same connected component of B(xi, 10τ) ∩ Ω2. This means
that there is a ball B(yi, s) centered on P (xi, 10τ) ∩B(xi, 20τ) with ra-
dius s > C−1

0 20τ , such that B(yi, s)∩ ∂Ω1 = ∅. But since dH(Ωc
1,Ω

c
2) <

10−3C−1
0 τ , we deduce that B(yi,

s
2 )∩∂Ω2 = ∅ thus D±

Ω2
(x′i, 20τ) (the one

associated to Ω2 for a x′i ∈ ∂Ω2 satisfying dist(xi, x
′
i) ≤ 10−3C−1

0 τ), lie
also in the same connected components of B(x′i, 20τ)∩Ω2. Then Propo-
sition 8, together with an other application of the Poincaré inequality
to estimate the difference between the average on D±

Ω2
(x′i, 20τ) and the

average on D±
Ω1
(xi, 10τ), gives

|mi −m−
x | ≤ |mi −m−(v)| + |m−(v)−m−

x | ≤
C

τN−1

∫

B(xi,60τ)

|∇u|

where C is now depending on C0.
Therefore, in any cases we have proved (1.23). Subsequently,

(1.23) ‖f2(x)‖Lp(B(xi0
,10τ)) ≤ ‖∇v‖Lp(B(xi0

,100τ)).

In conclusion we have obtained,

‖∇ṽ(x)‖Lp(Ω2∩10Bi0
) ≤ C‖∇v‖Lp(Ω1∪100Bi0

),

and (1.13) follows using the fact that {Bi} forms a locally finite covering
of W (10τ).

1.3. Mosco-convergence.

For every open set Ω ⊂ R
N we define the closed linear subspace XΩ

of Lp(RN )× Lp(RN ,RN ) by

(1.24) XΩ := {(u1Ω,∇u1Ω); u ∈W 1,p(Ω)}.

Definition 10 (Mosco-convergence). Let Ωk and Ω be open subsets
of RN and let XΩk

and XΩ be the corresponding subspaces of Lp(RN )×
Lp(RN ,RN) defined by (1.24). We say that XΩk

converges to XΩ in the
sense of Mosco if the following two properties hold:

(M1) for every u ∈ W 1,p(Ω), there exists a sequence uk ∈ W 1,p(Ωk)
such that uk1Ωk

converges to u1Ω strongly in Lp(RN ) and ∇uk1Ωk

converges to ∇u1Ω strongly in Lp(RN ,RN );
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(M2) if hk is a sequence of indices converging to ∞, uk is a sequence
such that uk ∈ W 1,p(Ωhk

) for every k, and uk1Ωhk
converges

weakly in Lp(RN ) to a function φ, while∇uk1Ωhk
converges weakly

in Lp(RN ,RN ) to a function ψ, then there exists u ∈W 1,p(Ω) such
that φ = u1Ω and ψ = ∇u1Ω a.e. in R

N .

The Mosco convergence is a great tool to study stability for Neumann
problems. In particular, we have the following result coming from [3,
Theorem 2.3], which is stated in R

2 in [3] but can be extended in R
N

with the same proof.

Theorem 11 ([3]). Let Ωk and Ω be open subsets of RN . Then Ω is
stable for the problems (0.2) along the sequence Ωk, if and only if XΩk

converges to XΩ in the sense of Mosco.

According to Theorem 11, Theorem 7 will be a consequence of the
following result.

Theorem 12. Let r0 > 0, C0 ∈ [1/2,+∞) ∪ {1/3} and let {Ωk}k∈N

and Ω be (δ, r0)-Reifenberg flat domains with δ < 10−3C−1
0 and having a

uniform size of holes with same constant C0. Assume that Ωk converges
to Ω for the complementary Hausdorff distance. Then XΩk

converges
to XΩ in the sense of Mosco.

Proof: Let u ∈W 1,p(Ω) and assume without loss of generality that τk :=
dH(Ωc

k,Ω
c) < C−1

0 10−4r0. Set W (t) := {x; d(x, ∂Ω) ≤ t} and let ũk
be the extension function given in Lemma 9 for Ω1 := Ω, Ω2 := Ωk,
v := u, τ := C010

3τk. Since ũk ∈ W 1,p(Ωk), all we have to prove is
that (ũk1Ωk

,∇ũk1Ωk
) converges strongly to (u1Ω,∇u1Ω) in Lp(RN ) ×

Lp(RN ,RN). Since u = ũk in Ω\W (10τk) we have that

(∫

RN

|ũ1Ωk
−u1Ω|

p dx

)1
p

=

(
∫

W (10τk)

|ũ1Ωk
− u1Ω|

p dx

) 1
p

≤

(
∫

W (10τk)

|ũ1Ωk
|p dx

)1
p

+

(
∫

W (10τk)

|u1Ω|
p dx

)1
p

≤ C‖u‖Lp(W (10τk))

which tends to zero when k tends to +∞ because ∂Ω is closed and |∂Ω| =
0. For the gradients, a similar argument can be done, using (1.13). That
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is,

(∫

RN

|∇ũ1Ωk
−∇u1Ω|

p dx

) 1
p

=

(
∫

W (10τk)

|∇ũ1Ωk
−∇u1Ω|

p dx

) 1
p

≤

(
∫

W (10τk)

|∇ũ1Ωk
|p dx

) 1
p

+

(
∫

W (10τk)

|∇u1Ω|
p dx

) 1
p

≤ C‖∇u‖Lp(W (60τk))

which tends to 0, thus (M1) is proved.

Let us now prove (M2). Let ϕ ∈ C∞(RN ) be compactly supported
in Ω. Then we know by the weak convergence that

(1.25)







∫

Ω
uk1Ωhk

ϕdx
k→+∞
−−−−−→

∫

Ω
φϕdx

∫

Ω
〈∇uk1Ωhk

, ϕ〉dx
k→+∞
−−−−−→

∫

Ω
ψϕdx.

On the other hand, since Ωhk
converges to Ω for the complementary

Hausdorff distance, for k large enough 1Ωhk
is equal to 1 everywhere on

the support of φ. Thus (1.25) shows that uk converges to φ in D′(Ω)
and ∇uk converges to ψ in D′(Ω). By uniqueness of the limit in D′(Ω)
we conclude that

(1.26) ψ = ∇φ in D′(Ω).

Moreover since ψ ∈ Lp(RN ,RN ), we deduce that (1.26) in true in
Lp(Ω,RN ) thus ψ = ∇φ a.e. in Ω and therefore φ|Ω ∈W 1,p(Ω). To con-
clude, all we have to show is that ϕ = ψ = 0 in Ωc. To see this, we use a
similar argument as above by defining a function ϕ compactly supported
in Ωc. By the weak convergence, and because Ωk converges to Ω for the
complementary Hausdorff distance, we deduce that

∫

Ω
φϕdx = 0. This

holds for any function ϕ compactly supported in Ωc. Since φ ∈ Lp(RN )
we conclude that φ = 0 in Ωc. In a similar way we obtain that ψ = 0
in Ωc and since the Lebesgue measure of ∂Ω is zero, the proof is com-
plete.
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2. Stability for problems with mixed boundary
conditions

In this last section we state some similar stability result for the prob-
lem with mixed boundary conditions, directly coming from the proof of
Theorem 6.3 in [3]. The main motivation is that those statements could
be useful to obtain estimates of solutions for elliptic partial differential
equations in Reifenberg-flat domains using a perturbation argument.

Let A ⊂ R
N be a bounded open set with Lipschitz boundary ∂A,

and let ∂DA be a relatively open subset of ∂A. For every compact
set K ⊂ Ā, for every g ∈W 1,p(A), and for every pair of function a and b
satisfying the properties (1.1)–(1.3) we consider the solutions u of the
mixed problem

(2.1)







− div a(x,∇u) + b(x, u) = 0 in A\K,

u = g on ∂DA\K,

a(x,∇u) · ν = 0 on ∂(A\K)\(∂DA\K).

Definition 13. We say that the problem (2.1) is stable along the se-
quence (Kk, gk), if the following holds: Let uk ∈ W 1,p(A\K) be a se-
quence of solutions of the problem (2.1) corresponding to Kk and gk.
Then (uk1A\Kk

,∇uk1A\Kk
) converges strongly to (v1A\K ,∇v1A\K) in

Lp(RN )× Lp(RN ,RN ) and v is a solution of problem (2.1).

For all g ∈ W 1,p(A) we denote

W 1,p
g (A\K, ∂DA\K) := {u ∈W 1,p(A\K) : u = g on ∂D\K}.

As in (1.24) we define the closed linear subspace Xg
K(A) of Lp(A) ×

Lp(A,RN ) by

(2.2) Xg
K(A) := {(u1Kc ,∇u1Kc); u ∈W 1,p

g (A\K, ∂DA\K)}.

Definition 14 (Mosco-convergence). We say that Xgk
Kk

(A) converges

to Xg
K(A) in the sense of Mosco if the following two properties hold:

(M1′) for every u ∈ W 1,p
g (A\K, ∂DA\K), there exists a sequence uk ∈

W 1,p
gk

(A\Kk, ∂DA\Kk) such that uk1Kc
k
converges to u1Kc strongly

in Lp(A) and ∇uk1Kc
k
converges to ∇u1Kc strongly in Lp(A,RN );

(M2′) if hk is a sequence of indices converging to ∞, uk is a sequence
such that uk ∈ W 1,p

gk
(A\Kk) for every k, and uk1Kc

k
converges

weakly in Lp(A) to a function φ, while∇uk1Kc
k
converges weakly in

Lp(A,RN) to a function ψ, then there exists u∈W 1,p
g (A\K, ∂DA\K)

such that φ = u1Kc and ψ = ∇u1Kc a.e. in R
N .
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Remark 15. As it is pointed out in [3], by adopting the same proof as in
Theorem 11, the Mosco convergence of Xgk

Kk
(A) to Xg

K(A) is equivalent

to the stability of the mixed problem (2.1) along the sequence (Kk, gk).

Finally we obtain the corresponding result in the case of the mixed
boundary conditions.

Theorem 16. Let A be a bounded open subset of R
N with Lipschitz

boundary ∂A, let ∂DA be a relatively open subset of ∂A and let C0 be a
positive constant. Let gh be a sequence in W 1,p(A) converging strongly to
a function g ∈W 1,p(A), and let Kh be a sequence of compact subsets of Ā
converging to a set K in the Hausdorff metric. Assume in addition that
for every h, A\Kh is a (δ, r0)-Reifenberg flat domain with δ < 10−3C−1

0

and having a uniform size of holes with constant C0. Then Xgh
Kh

(A)

converges to Xg
K(A) in the sense of Mosco.

Proof: The proof is essentially the same as the proof of Theorem 6.3
in [3], consisting of an idea due to Chambolle. The only difference is
that the sets

Ωh := Σ \ (Kh ∪ (∂A \ ∂DA)) and Ω := Σ \ (K ∪ (∂A \ ∂DA))

where Σ is an open ball in R
N such that Ā ⊂ Σ, are now satisfying

the assumptions of Theorem 12 and thus the Mosco convergence in that
setting. We refer the reader to [3, Theorem 6.3], for the details in that
approach.
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