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CORRIGENDA: “STABILIZATION IN H
∞

R
(D)”

Brett D. Wick

Abstract

In this corrigenda we outline the necessary changes to the paper [3]
so that the main result in that paper is made correct. The mistake
the author made in the previous version was that the condition
that f1 being positive on the zeros of f2 was not strong enough
to guarantee the existence of the logarithm in H∞

R
(D).

In particular, the main result now is the following theorem: Sup-
pose that f1, f2 ∈ H∞

R
(D), with ‖f1‖∞, ‖f2‖∞ ≤ 1, with

inf
z∈D

(|f1(z)|+ |f2(z)|) = δ > 0.

Assume for some ǫ > 0, f1 has the same sign on the set {x ∈

(−1, 1) : |f2(x)| < ǫ}. Then there exists g1, g
−1

1
, g2 ∈ H∞

R
(D)

with ‖g1‖∞, ‖g2‖∞, ‖g−1

1
‖∞ ≤ C(δ, ǫ) and

f1(z)g1(z) + f2(z)g2(z) = 1 ∀ z ∈ D.

1. Introduction

In the original paper [3] the proof of the main result is unfortunately
incorrect, however the method of proof is the correct approach. In this
corrigenda, we outline the modifications necessary to modify the existing
proof to be correct. The full version of the paper with the necessary
corrections has been posted to the http://arxiv.org/abs/0809.1573.

The problem with the main result in [3] is that the initial hypothesis
was that f1 was of the same sign on the real zeros of f2. This condition,
while necessary is unfortunately not strong enough to be sufficient and
to guarantee that the logarithm will exist in H∞

R
(D). First, we need to

extend the definition of positive on zeros. This is accomplished by the
following lemma.
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Lemma 1.1. Let f1, f2∈H∞
R
(D) and suppose that there exist g1, g

−1
1 , g2∈

H∞
R
(D) such that

f1g1 + f2g2 = 1 ∀ z ∈ D.

Then, for some ǫ > 0 we have that f1 has the same sign on the set
{x ∈ (−1, 1) : |f2(x)| < ǫ}.

Proof: The proof of this lemma is a quantification and repetition of the
argument given in [3] and one can see that argument shows that f1 has
the same sign on the set {x ∈ (−1, 1) : |f2(x)| < ǫ}. We provide the
details now. Choose any 0 < ǫ < ‖g2‖

−1
∞ . With this choice we have that

1− f2(x)g2(x) > 0 on {x ∈ (−1, 1) : |f2(x)| < ǫ}.

If f1 is not of the same sign on the set {x ∈ (−1, 1) : |f2(x)| < ǫ} then
there exists two points x1 and x2 in {x ∈ (−1, 1) : |f2(x)| < ǫ} such that
f1(x1) > 0 > f1(x2).

We then have

1− f2(x1)g2(x1) = f1(x1)g1(x1)

1− f2(x2)g2(x2) = f1(x2)g1(x2)

and so g1(x1) > 0 > g1(x2) since the same inequality holds for f1 at the
points x1 and x2. But, this is clearly a contradiction to the hypothesis
that g−1

1 ∈ H∞
R
(D) since by continuity there must exist a point x12

between x1 and x2 such that g1(x12) = 0 which is forbidden since g1 is
invertible in H∞

R
(D).

With this condition, we now state the correct form of the main theo-
rem from [3].

Theorem 1.2. Suppose that f1, f2 ∈ H∞
R
(D), ‖f1‖∞, ‖f2‖∞ ≤ 1. As-

sume that for some ǫ > 0, f1 has the same sign on the set {x ∈ (−1, 1) :
|f2(x)| < ǫ} and

inf
z∈D

(|f1(z)|+ |f2(z)|) = δ > 0.

Then there exists g1, g
−1
1 , g2 ∈ H∞

R
(D) with ‖g1‖∞, ‖g2‖∞, ‖g−1

1 ‖∞ ≤
C(δ, ǫ) and

f1(z)g1(z) + f2(z)g2(z) = 1 ∀ z ∈ D.

Here the constant C(δ, ǫ) depends on the condition arising from f1 be-
ing positive on the set {x ∈ (−1, 1) : |f2(x)| < ǫ}. The original statement
of the theorem did not take this parameter ǫ into consideration.
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2. Outline of the corrections

We first remark that the condition that f1 being positive on the set
{x ∈ (−1, 1) : |f2(x)| < ǫ} is clearly necessary by Lemma 1.1. First note
that if f1 has the same sign on the set {x ∈ (−1, 1) : |f2(x)| < ǫ}, then
by multiplying the function f1 by −1 if necessary we can assume that
f1 is positive there. Next observe that if f1 is positive on the set {x ∈
(−1, 1) : |f2(x)| < ǫ} then we will have that f1 is positive on the real zeros
of f2. We now transfer the construction and conditions to the upper half
plane C+ where certain computations are easier. Note that in this case
the condition is that f1 is positive on the set {y ∈ R+ : |f2(iy)| < ǫ}.

It remains to address the necessary corrections to the delicate con-
struction to the proof appearing in [3]. The proof of Theorem 1.2 can be
reduced to proving the corresponding result for finite Blaschke products
that are real symmetric and possess the extended positivity on the real
zeros.

Theorem 2.1. Let B be a real symmetric Blaschke product with sim-
ple zeros, and let σ denote its zero set. Given 0 < γ < 1, let ϕ be
a real symmetric analytic function on the set {z : |B(z)| < γ} and
satisfying |ϕ(z)| ≤ 1 there. Then there exists a real symmetric func-
tion h ∈ H∞

R
(C+) such that

ϕ(z) = h(z) ∀ z ∈ σ.

Moreover, ‖h‖∞ ≤ C(γ)‖ϕ‖∞.

We remark that it suffices to have ϕ symmetric only on the zeros of
the function B, however, we state the result in a slightly stronger form.
To prove Theorem 2.1, one simply takes the resulting function that exists
in H∞(C+) (as demonstrated by Carleson in [1]), call it l(z), and then

symmetrize it by setting h(z) = l(z)+l(−z)
2 . Since l does the interpolation

and everything is symmetric, the result then follows.
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Since f1 is rational, we have a bounded branch of the logarithm log f1
on the set {z : |f2(z)| < δ′}. Additionally, by choice of ǫ > 0 we
have that f1 is positive on the the set {y ∈ R+ : |f2(iy)| < ǫ} so we
can interpolate the logarithm of f1 with a function h ∈ H∞

R
(C+) with

‖h‖∞ ≤ C(δ, ǫ)‖ log f1‖∞, and

eh(z) = f1(z) for all z in the zero set of f2.

The function eh is invertible in H∞
R
(C+) and there is a function G ∈

H∞
R
(C+) with eh = f1 + f2G.

This is almost enough to conclude the proof of the theorem. If log f1
were bounded on {z ∈ C+ : |f2(z)| < δ′} by a constant only depending
on δ and ǫ and not on the degrees of f1 and f2, we would be done.
However, this is not generally true, so we need a method to overcome
this difficulty. To do this we will find an analytic function κ that is real
symmetric and will “correct” the function f1. To correct the function f1
it suffices to prove the following proposition, which has been corrected
from [3].

Proposition 2.2. Let p, q ∈ H∞
R
(C+) be finite simple real symmetric

Blaschke products with infz∈C+
(|p(z)| + |q(z)|) = δ > 0 such that for

some ǫ > 0, p has the same sign on the set {y ∈ R+ : |q(iy)| < ǫ}. Then
there exists a function V with the following properties:

(i) |ReV (z)| ≤ C(δ, ǫ) ∀ z ∈ C+;

(ii) | log p(z) − V (z)| ≤ C(δ, ǫ) for all z in {z ∈ C+ : |q(z)| < δ′}
for some 0 < δ′ sufficiently small with respect to δ and ǫ and an
appropriate branch of log p on the set {z ∈ C+ : |q(z)| < δ′};

(iii) V (z) = V (−z) ∀ z ∈ C+;

(iv) some conditions to guarantee the existence of a bounded solution v
on the entire upper half-plane C+ of the equation ∂̄v = ∂̄V , in
particular:
(a) |∆V (z)|Im z dx dy is a Carleson measure with intensity C(δ, ǫ);

(b) |∂V (z)| dx dy is a Carleson measure with intensity C(δ, ǫ);

(c) |∆V (z)| ≤ C(δ,ǫ)
(Im z)2 ∀ z ∈ C+.

Once one has constructed this function V then the solution to the
Corona problem follows from the same argument as in the original paper.
The basic idea in proving Proposition 2.2 was correct and now we must
describe how to incorporate the condition that p has the same sign on
the set {y ∈ R+ : |q(iy)| < ǫ}.
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We remark that it is always possible to construct a symmetric func-
tion V from the problem. This simply follows from the symmetrization
of the proof in [2] and that the data p and q have this symmetry prop-
erty. However, we remark that the positivity condition on p and q is
necessary to construct the symmetric branch of logarithm this correct-
ing function V will approximate. It was here that the author made a
mistake in the previous version of [3].

First, as in the paper [3] we construct a symmetric Carleson contour
about the zero set of p. Here we will use the same notation as appeared
in [3]. This resulted in a collection of zeros σ1 and regions R.

We have to now split the construction of the function V into the
cases when the zeros of p are off the imaginary axis and when the zeros
are on the imaginary axis. This is necessary so that we can define the
appropriate branch of the logarithm. When the zeros are off the axis,
the construction is straightforward and one can just take the construc-
tion in [2] and symmetrize it appropriately, which was what originally
appeared in [3]. However, when the zeros are on the imaginary axis,
we need a different construction, in particular different than what ap-
pears in [3]. This is a place where the original paper did not have the
appropriate construction.

Here is a rough idea about the corrections that need to be made for
the construction of the function V . If the region in question had an
even number of real zeros, then we would be fine. In this case we have
that above and below the region, a certain Blaschke product will be
positive, and so we can select a branch of the logarithm so that it is real
symmetric. In this case we can appeal to a similar construction to what
appears when the regions avoid iR+.

The difficulty in the construction when the zeros are on the imaginary
axis is that they could occur in “groups” with an odd multiplicity. If this
happens, then it will be impossible to define the branch of the logarithm
that is real symmetric, since above the region we are interested in a
related Blaschke factor that will be positive while below the region it
will be negative, and so we can not define a branch of the logarithm
that is real symmetric. This difficulty will not allow us to define the
approximating function V in a simple manner, and instead we will have
to “pair” certain zeros to overcome this difficulty. The idea will be to
pair regions with an odd number of real zeros to make regions with an
even number of real zeros so that we can then appeal to the construction
when there are an even number of real zeros. Because of hypotheses of
the problem, we will always be able to pair two regions with an odd
number of zeros to create the regions with the even number of zeros.
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Outline of the construction of V . The case when the regions avoid
the positive imaginary axis iR+ was handled correctly in the paper [3].
We now describe the situations when the regions intersect the positive
imaginary axis iR+ and the construction necessary. In this case we need
to pair regions R and R′ together in an appropriate way. Similarly we
need to pair to real zeros from σ1. We additionally will need to join a
region R and a zero from σ1. We discuss each of these constructions
now.

Connecting regions R and R
′ with an “odd” number of zeros.

We first consider the case of when there are two symmetric regions R
and R′ that intersect iR+ and there are an even number of real ze-
ros of p in R ∩ R′ ∩ iR+. Let BR :=

∏

a∈σ∩R
ba. Now note that the

function BRBR′ ∈ H∞
R
(C+) since the domains R and R′ are symmet-

ric. We also have that the function BRBR′ is positive on iR+ above
the domain R and below the domain R′. We then connect these two
domains via a slit I on the positive imaginary axis iR+. We can then
take all the corresponding slits from the region R, except the slit on the
imaginary axis connecting R and R. We can also then take the slits for
the domain R′ and this decomposes the domain C+ \ (R∪R′ ∪ I) into
connected components. By construction of the slits and the domains R
and R′ we have that the slits are disjoint, and similarly the δ′ neigh-
borhoods of the slits will be disjoint. We are now in the setup where
we have a symmetric region with an even number of zeros and so the
discussion above holds.

We then define,

ϕ(z) :=

{

0 : z ∈ Rδ′ ∪R′
δ′ ∪ Iδ′

log(BRBR′) : C+ \ (Rδ′ ∪R′
δ′ ∪ Iδ′ ) ,

for an appropriate branch of the logarithm that is real symmetric. Re-
peating the argument from above, it is possible to then split the do-
main C+ \ (Rδ′ ∪ R′

δ′ ∪ Iδ′) into connected components via slits and
Γ-slits, and enlarge the slits by hyperbolic neighborhoods so that they
are disjoint. We can then define in each such domain a branch of log-
arithm that is analytic, bounded and real symmetric since BRBR′ has
an even number of zeros on iR+. The construction is explained in the
figure below.
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iR+

R

R

R
′

I

Γ

S

Figure 1

As before in [3], let S denote the collection of all slits for the com-
ponent R and R′ and the slit joining these regions together (except

the slit connecting R to R) and let Γδ′

R,R′ denote the δ′

100 hyperbolic

neighborhood of the region R∪R′ ∪ I. These estimates and the bound-
edness of the jumps of ϕ allow one to change the function ϕ on the set
Γδ′

R,R′ ∪
⋃

S∈S
Sδ′ to obtain a function VR,R′ satisfying

VR,R′ = ϕ(z) ∀ z /∈ Γδ′

R,R′ ∪

(

⋃

S∈S

Sδ′

)

,

|V ′
R,R′(z)| ≤

C(δ, ǫ)

Im z
, |∆VR,R′(z)| ≤

C(δ, ǫ)

(Im z)2
∀ z ∈ Γδ′

R,R′ ,

|V ′
R,R′(z)| ≤

C(δ, ǫ)

d
, |∆VR,R′(z)| ≤

C(δ, ǫ)

d2
∀ z ∈ Sδ′ .

As before, to obtain the desired function VR,R′ , simply convolve the
function ϕ with an appropriate symmetric smooth kernel. Here the pa-
rameter d is the altitude of the slit S as defined in [2] and [3].

Connecting two regions corresponding to zeros in σ1. The next
case arises when we have to connect two zeros in σ1 on the imaginary
axis. Let a, a′ denote the zeros labeled so that a is the point closest to
the real axis. About a let Da denote the disc with center at the point a
of radius δ′ Im a, and let Ta = ∂Da. Repeat this construction for the
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point a′. Then connect these discs together by drawing a vertical slit on
the imaginary axis, denoted Ia,a′ , which connects Da to Da′ . Finally,
draw the slit I0,a connecting the boundary of the disc Da with the real
axis. The construction is explained in the figure below.

iR+

R

a

a
′

Ia,a′

Ta

Ta′

I0,a

Figure 2

Then, one notes that |baba′ | ≤ C(δ, ǫ) on Da∪Da′ ∪Ia,a′ and |baba′ | ≥
C(δ, ǫ) for points in the complement. We then define ϕ in the following
manner,

ϕ(z) :=

{

0 : z ∈ Da ∪Da′ ∪ Ia,a′

log (baba′) : otherwise.

Note that we have baba′ is real and positive on iR+ above the point a′+
δ′ Im a′ and below a − δ′ Im a. Clearly we have that ϕ is analytic,
bounded (with a bound depending on δ and ǫ) and real symmetric.
We again smooth ϕ to find our function V . Namely, we change ϕ in

a δ′

100 min{Im a, Im a′} neighborhood of I0,a ∪ Ta ∪ Ia,a′ ∪ Ta′ to obtain a
smooth function on C+ such that:

(i) |∂̄Va,a′(z)| ≤ C(δ, ǫ)min
{

1
Im a′

, 1
Im a

}

;

(ii) |∆Va,a′(z)| ≤ C(δ, ǫ)min
{

1
(Im a′)2 ,

1
(Ima)2

}

;

(iii) Va1,a2
(z) = ϕ(z) if dist (z, Ta ∪ Ia,a′ ∪ Ta′) > δ′

100 min{Ima, Im a′};

(iv) Va,a′(z) = Va,a′(−z).



Corrigenda: “Stabilization in H∞
R
(D)” 259

Connecting a region R with a zero in σ1. The final case is when
we have to pair a region R with an odd number of zeros in iR+ and a
zero a ∈ σ1 ∩ iR+. We describe the case when the zero in σ1 ∩ iR+ lies
below the domain R since the opposite situation is similar. We connect
the region Rδ′ and the region Da by a slit IR,a on the imaginary axis.
We then take the slits corresponding to the region R, except for the
slit on the imaginary axis connecting the region R with R. We finally
connect the boundary of Da to the real axis by a slit I on the imaginary
axis.

Now consider the function BRba ∈ H∞
R
(C+) which has an even num-

ber of real zeros, and so, when we consider the simply connected regions
given by the splitting of C+ \ (Rδ′ ∪Da∪Iδ′ ) using the appropriate slits,
we can define a real symmetric branch of the logarithm.

In this situation, we now define

ϕ(z) :=

{

0 : z ∈ Rδ′ ∪Da ∪ Iδ′

log(BRba) : C+ \ (Rδ′ ∪Da ∪ Iδ′) ,

where we choose a branch of the logarithm that is real symmetric. A
repetition of the argument from above, shows that it is possible to then
split the domain C+ \ (Rδ′ ∪ Da ∪ Iδ′) into connected components via
slits and Γ-slits, and enlarge the slits by hyperbolic neighborhoods so
that they remain disjoint. We can then define in each such domain a
branch of logarithm that is analytic, bounded and real symmetric since
BRba has an even number of zeros on iR+.

As above we let S denotes the collection of all slits for the compo-
nent R (with out the slit joining R to R) and the slit joining R and Da

and the slit joining togetherDa and R. Let Γδ′

R
denote the δ′

100 hyperbolic

neighborhood of the region R. Let T δ′

a denote the δ′ Im a neighborhood
of Ta. The estimates from above and the boundedness of the jumps of ϕ
allow one to change the function ϕ on the set Γδ′

R,R′ ∪
⋃

S∈S
Sδ′ ∪ T δ′

a to
obtain a function VR,a satisfying

VR,a = ϕ(z) ∀ z /∈ Γδ′

R ∪

(

⋃

S∈S

Sδ′

)

∪ T δ′

a ,

|V ′
R,a(z)| ≤

C(δ, ǫ)

Im z
, |∆VR,a(z)| ≤

C(δ, ǫ)

(Im z)2
∀ z ∈ Γδ′

R,

|V ′
R,a(z)| ≤

C(δ, ǫ)

d
, |∆VR,a(z)| ≤

C(δ, ǫ)

d2
∀ z ∈ Sδ′ .

Convolution of ϕ produces the smooth function VR,a that we seek.
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Demonstrating the properties of V . It then remains to demonstrate
the the function V has all the desired properties in Proposition 2.2. How-
ever, the general argument in [3] handles this. One needs only incorpo-
rate the changes in the construction of the function V , but with this new
construction the symmetry has been preserved and all the claimed prop-
erties hold. For the sake of brevity of this corrigenda we omit the details,
though point the reader to the http://arxiv.org/abs/0809.1573.
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