
Publ. Mat. 54 (2010), 359–368

EMBEDDING THE BRAID GROUP IN MAPPING

CLASS GROUPS

B lażej Szepietowski

Abstract

Motivated by a question of B. Wajnryb we construct embeddings
of the braid group in mapping class groups of surfaces, which are
not geometric in the sense that the images of standard generators
are not Dehn twists. Our construction uses non-orientable sur-
faces and the fact that the mapping class group of such a surface
embeds via lifting of homeomorphisms in the mapping class group
of its orientable double cover.

1. Introduction

Let S be a compact connected surface, possibly with boundary and
with a finite set P of distinguished points in the interior of S called
punctures. The mapping class group M(S, P ) is the group of isotopy
classes of all homeomorphisms S → S which are equal to the identity
on the boundary ∂S, preserve the set P , and preserve orientation if S is
orientable. The isotopies are required to fix the points of ∂S and the
punctures. If P is empty, then we abbreviate the notation to M(S).

The braid group on n strands, denoted by Bn, may be defined by the
presentation with generators σ1, . . . , σn−1 and relations:

σiσj = σjσi if |i− j| ≥ 2,

σiσi+1σi = σi+1σiσi+1 for i = 1, . . . , n− 2.

Over the years, more and more connections have been discovered between
the mapping class group and the braid group, which share many very
specific properties. Actually, Bn is isomorphic to the mapping class
group of a disc with n punctures via an isomorphism which sends the
generators σi to half-twists about arcs connecting pairs of punctures (see

2000 Mathematics Subject Classification. Primary: 20F36; Secondary: 57N05, 20F38.
Key words. Mapping class group, braid group, non-geometric embedding.
Supported by MNiSW grant N N201 366436.



360 B. Szepietowski

Section 3 for details). This fact is so convenient that it is often used as
a definition of the braid group.

The braid group can also be seen as a subgroup of the mapping class
group a surface without punctures in the following way. Suppose that
we are given n − 1 two-sided simple closed curves α1, . . . , αn−1 on a
surface S, such that αi and αj are disjoint whenever |i − j| ≥ 2, and
αi intersects αi+1 transversally at one point for i = 1, . . . , n − 2. Let
Σ ⊆ S be a closed regular neighborhood of the union of the curves αi.
Fix an orientation of Σ and let tαi

denote the right Dehn twist about αi.
Then it follows from the presentation of Bn and well known properties
of Dehn twists, that the assignment σi 7→ tαi

for i = 1, . . . , n−1 extends
to a homomorphism Bn → M(S). If Σ = S then this homomorphism is
injective by a theorem of Birman and Hilden (see [4] and [5]).

It is natural to ask if one can see the braid group as a subgroup of the
mapping class group in some other way. The following definition and
question are due to Wajnryb [12].

Definition 1. A homomorphism form the braid group to the mapping
class group, which maps the generators σi on Dehn twists is called geo-
metric.

Question 2. Are there non-geometric embeddings of the braid group in
the mapping class group?

The aim of this paper is to give an affirmative answer to this ques-
tion by showing how such embeddings can be constructed using non-
orientable surfaces. In Section 2 we show that the mapping class group
of a non-orientable surface N is isomorphic to a subgroup of the map-
ping class group of its orientable double cover S containing no (powers
of) Dehn twists. Thus, from every embedding ϕ : Bn → M(N) we can
obtain an embedding ψ : Bn → M(S), whose image contains no Dehn
twists. In Section 3 we use the fact that the braid group is isomorphic to
the mapping class group of a punctured disc, to construct an embedding
ϕ : Bn → M(N), where N is obtained from the disc by replacing each
puncture by the Möbius strip. In Section 4 we describe the image ψ(σi)
of a standard generator of the braid group, where ψ : Bn → M(S) is the
embedding obtained by “lifting” ϕ to the mapping class group of the
orientable double cover of N .

2. Preliminaries

Suppose that F ⊆ S is a subsurface such that ∂F ∩ P = ∅. Every
homeomorphism of F equal to the identity on ∂F may be extended by the
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identity on S\F to a homeomorphism of S. Thus we have the induced
homomorphism

i∗ : M(F, P ∩ F ) → M(S, P ),

whose kernel is described in Theorem 4.1 of [9] and Theorem 3.6 of [10].
Let N be a non-orientable surface of genus g with b boundary com-

ponents and no punctures. Let p : S → N be the orientation double
covering of N , so that S is an orientable surface of genus g − 1 with
2b boundary components, and let τ : S → S be the covering involution.
We call a homeomorphism h : S → S symmetric if hτ = τh. If h is
symmetric, then it projects to h′ : N → N defined by ph = h′p. We say
that h is a lift of h′. Let SM(S) denote the subgroup of M(S) con-
sisting of isotopy classes of symmetric homeomorphisms which preserve
orientation and are equal to the identity on ∂S.

Lemma 3. Suppose that g + 2b ≥ 3. Then M(N) and SM(S) are

isomorphic via π : M(N) → SM(S) defined as π(h) = h̃, where h̃ is the
unique orientation preserving lift of h.

Proof: Suppose that N is closed. Let M⋄(S) denote the extended map-
ping class group of S including also the classes of homeomorphisms re-
versing orientation, and let SM⋄(S) denote its subgroup consisting of
classes of symmetric homeomorphisms. By [3], projecting symmetric
homeomorphisms induces surjective homomorphism SM⋄(S) → M(N)
with kernel 〈τ〉. Since the involution τ reverses orientation, SM⋄(S)/〈τ〉
is obviously isomorphic to SM(S). The lemma follows.

If N is not closed, then we obtain a closed non-orientable surface N ′

of genus g′ = g + 2b by gluing to N one copy of a torus with one hole
along each of the b boundary components. Let p′ : S′ → N ′ be an ori-
entation double covering, such that S = p′−1(N) and p′|S = p. If T is

a connected component of N ′\ int(N) then the pre-image T̃ = p′−1(T )

is not connected. That is because if there was a path in T̃ connecting
any point x to τ(x), then its projection would be a one-sided closed
path in T , because τ is orientation reversing, which is impossible. Since

T has one boundary component and χ(T ) = −1, T̃ has two bound-

ary components and χ(T̃ ) = −2. It follows that T̃ is the disjoint
union of two copies of a torus with one hole. Hence S′\S is the dis-
joint union of 2b such copies. By Corollary 3.8 in [10] and Corol-
lary 4.2 in [9] the induced homomorphisms i∗ : M(N) → M(N ′) and
i∗ : M(S) → M(S′) are injective. From the previous argument we
have the isomorphism π : M(N ′) → SM(S′). We want to show that
π(i∗(M(N))) = i∗(SM(S)).
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If h is a symmetric homeomorphism of S equal to the identity on ∂S,
then its extension to S′ is also symmetric and it projects to a homeo-
morphism of N ′ equal to the identity on N ′\N . Hence i∗(SM(S)) ⊆
π(i∗(M(N))).

Suppose that f is a homeomorphism of N ′ equal to the identity
on N ′\N and let f̃ be the orientation preserving lift of f . We need

to show that f̃ is equal to the identity on S′\S. It suffices to prove that

f̃ fixes every component of ∂S. If γ is a connected component of ∂S, then
either f̃(γ) = γ or f̃(γ) = τ(γ). In the latter case we have τ f̃ (γ) = γ,

and since τ f̃ preserves S and reverses its orientation, it must reverse
orientation of γ. Thus the projection of τ f̃ reverses orientation of p(γ).

But τ f̃ projects to f , which is equal to identity on p(γ). Hence f̃(γ) = γ
and π(i∗(M(N))) ⊆ i∗(SM(S)).

The following lemma asserts that SM(S) contains no nontrivial pow-
ers of Dehn twists.

Lemma 4. Suppose that γ is a simple closed curve in S which is not null-
homotopic and let tγ denote the right Dehn twist about γ. If tiγ ∈ SM(S)
for some integer i, then i = 0.

Proof: If tiγ ∈ SM(S) then τtiγτ = tiγ . On the other hand, since τ is

orientation reversing, τtiγτ = t−i
τ(γ). Thus tiγ = t−i

τ(γ), which implies, by

the well known property of Dehn twists (see for example Theorem 4.1
in [6]), that γ is isotopic to τ(γ) and i = −i. Hence i = 0.

We record the following immediate corollary, although it is not used
in this paper.

Corollary 5. The index of SM(S) in M(S) is infinite.

Proof: Let γ be any simple closed curve in S which is not null-homotopic.
By Lemma 4 different powers of tγ represent different cosets of SM(S)
in M(S).

From Lemmas 3 and 4 we obtain the following theorem.

Theorem 6. Suppose that ϕ : Bn → M(N) is any embedding of the
braid group in the mapping class group of a non-orientable surface of
genus g with b boundary components, where g+2b ≥ 3. Define ψ to be the
composition π ◦ ϕ, where π : M(N) → SM(S) is the isomorphism from
Lemma 3. Then ψ is an embedding of Bn in the mapping class group of
an orientable surface of genus g−1 with 2b boundary components, whose
image contains no nontrivial powers of Dehn twists. In particular ψ is
not geometric.
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Suppose that ϕ : Bn → M(N) in Theorem 6 is geometric, so that
ϕ(σi) = tγi

for i = 1, . . . , n − 1, where γi is a two-sided simple close
curve in N . The pre-image p−1(γi) consists of two disjoint simple closed
curves γ′i, γ

′′
i . If tγ′

i
and tγ′′

i
are right Dehn twists, then since τ is ori-

entation reversing, we have τtγ′

i
τ = t−1

γ′′

i

. Since twists about γ′i and γ′′i

commute, it follows that tγ′

i
t−1
γ′′

i

is symmetric. Its projection is clearly a

Dehn twist about γi. Thus ψ(σi) = π(tγi
) = (tγ′

i
t−1
γ′′

i

)±1 and the embed-

ding ψ : Bn → M(S) can be seen as the composition ψ = ψ′ ◦ ρ, where
ρ : Bn → B2n is the doubling homomorphism defined as ρ(σi) = σiσ

−1
2n−i

for i = 1, . . . , n − 1, and ψ′ : B2n → M(S) is a geometric embedding.
In order to construct a more interesting embedding ψ : Bn → M(S), we
have to start from an embedding ϕ : Bn → M(N) which is not geomet-
ric.

3. Non-orientable surface

The aim of this section is to construct an embedding ϕ : Bn → M(N)
of the braid group in the mapping class group of a non-orientable surface,
which is not geometric in the sense of Definition 1.

Let D be a disc with n punctures P = {x1, . . . , xn}. For i = 1, . . . , n
let Ui be a small closed disc in D containing xi and disjoint from ∂D.
We assume that Ui ∩ Uj = ∅ for i 6= j. Denote by αi the boundary
of Ui. Define F to be D with the union of interiors of Ui deleted. Fix
an orientation of F and orient each αi as boundary curve of F . Let M
be the Möbius strip. We construct a non-orientable surface N by gluing
a copy of M to ∂F along αi regarded as a function αi : ∂M → ∂F for
i = 1, . . . , n.

Suppose that h ∈ M(D,P ). Then there is a permutation θ ∈ Σn

such that h(xi) = xθ(i) for i = 1, . . . , n. In the isotopy class h there is
a homeomorphism, which we also denote by h, such that h(Ui) = Uθ(i)

and h ◦αi = αθ(i) as functions, for i = 1, . . . , n. The restriction h|F may
be extended to a homeomorphism h′ : N → N by the identity between
each pair of copies of M glued to ∂F along αi and αθ(i).

Theorem 7. The map η : M(D,P ) → M(N) defined as η(h) = h′ is a
well defined injective homomorphism.

Proof: To prove that η is well defined, suppose that h and g are two
homeomorphisms of D representing the same element of M(D,P ) and
such that h ◦ αi = αθ(i) = g ◦ αi for i = 1, . . . , n. Then the restriction

to F of hg−1 yields an element of the kernel of i∗ : M(F ) → M(D,P )
induced by the inclusion of F in D. It follows from Theorem 4.1 of [9]



364 B. Szepietowski

that h and g differ by some product of Dehn twists about the curves αi.
Since a Dehn twist about a curve bounding a Möbius strip is trivial, the
extensions h′ and g′ are isotopic on N .

For injectivity, suppose that η(h) is isotopic to the identity on N .
Then h(xi) = xi and h may be represented by a homeomorphism equal
to the identity on Ui for i = 1, . . . , n. The restriction h|F yields an
element of the kernel of i∗ : M(F ) → M(N) induced by the inclusion
of F in N . By Theorem 3.6 of [10], this kernel is generated by Dehn
twists about the curves αi. It follows that h is trivial in M(D,P ).

In order to obtain an embedding α : Bn → M(N), we have to define
an isomorphism Bn → M(D,P ). This can be done as follows. For
i = 1, . . . , n− 1 let βi be an embedded arc in D joining xi and xi+1 such
that βi ∩ P = {xi, xi+1}. We assume that the interiors of βi and βj are
disjoint for i 6= j. Let Di be a closed regular neighborhood of βi, so that
Di is a disc with two punctures. There is a homeomorphism hβi

: D → D,
equal to the identity on the complement of the interior of Di, which
interchanges the punctures and such that h2

βi
is the Dehn twist about

∂Di right with respect to some fixed orientation of D (Figure 1). Such
homeomorphism is called half-twist about βi. It is a classical result that
the assignment σi 7→ hβi

, i = 1, . . . , n − 1 extends to an isomorphism
Bn → M(D,P ) (see [2]).

Di

βi hβi

Figure 1. The half-twist hβi
.

For i = 1, . . . , n− 1 we define ui ∈ M(N) as ui = η(hβi
). Each ui is

supported in a Klein bottle with a hole Ki in Figure 2, where the shaded
discs represent cross-caps, i.e. their interiors should be removed, and then
antipodal points in each resulting boundary component should be iden-
tified. Let µi and µi+1 be the cores of the Möbius strips glued to F along
αi and αi+1 respectively. Observe that αi is homotopic with the curve
going twice along µi. We have ui(αi) = αi+1 and ui(µi) = µi+1 (ui in-
terchanges the two cross-caps). Let tγi

denote the Dehn twist about
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the two-sided curve γi in Figure 2 in the direction indicated by the ar-
rows. The composition tγi

ui is isotopic to a cross-cap slide, or Y-home-
omorphism, defined by Lickorish, which is not a product of Dehn twists
(see [8]). It follows that ui is not a product of Dehn twists (cf. [11]).
From Theorem 7 we obtain the following corollary.

Corollary 8. The mapping ϕ(σi) = ui for i = 1, . . . , n−1 extends to an
injective homomorphism ϕ : Bn → M(N), where N is a non-orientable
surface of genus n with one boundary component. Moreover, ϕ is not
geometric in the sense of Definition 1.

Note that u2
i = tδi

, where tδi
is the right Dehn twist about δi = ∂Ki.

One can think of ϕ as a realization of the m = 2 case of the first faithful
Wada action described in [1, Historical Remarks 9.8]. The following
lemma will be used in the next section.

Lemma 9. Suppose that h ∈ M(Ki) preserves the isotopy class of the
curve αi, reverses its orientation, and h2 = tδi

. Then h = tγi
ui.

Proof: The group M(Ki) is generated by ui and tγi
. This follows from

Theorem 4.9 of [7], see also [11]. These generators satisfy uitγi
u−1

i =
t−1
γi

, thus h = tkγi
ue

i t
l
δi

, where k, l are integers and e is 1 or 0. Recall
that H1(Ki) is the free abelian group on generators [µi] and [µi+1], the
homology classes of the curves µi and µi+1. For appropriate choices of
orientation we have: ui[µi] = [µi+1], ui[µi+1] = [µi], tγi

[µi] = 2[µi] +
[µi+1], tγi

[µi+1] = −[µi]. Also [αi] = 2[µi] and it is easy to check that

h[αi] = −[αi] implies k = e = 1. Now h2 = t2l+1
δi

and since tδi
has

infinite order we have l = 0.

4. Orientable surface

µi
µi+1

γi

δi

δ′i δ′′iα′

i

γ′

i

γ′′

i

Figure 2. The surfaces Ki (left) and K̃i (right).

Let p : S → N be the orientation double cover, where N is a non-
orientable surface of genus n with one boundary component. Thus S is
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an orientable surface of genus n−1 with two boundary components. We
define ψ : Bn → M(S) to be the composition π ◦ ϕ, where ϕ : Bn →
M(N) is the embedding defined in the previous section. By Theorem 6
ψ is a non-geometric embedding. The aim of this section is to describe
the images ψ(σi) of the generators of Bn.

Recall that the pre-image by p of a one-sided curve in N is a single
curve in S, whereas the pre-image of a two-sided curve is a pair of dis-
joint curves. Let Ki ⊂ N be the Klein bottle with one hole supporting

the homeomorphism ui (Figure 2 left), and K̃i = p−1(Ki). Since Ki has

one boundary component and χ(Ki) = −1, K̃i has two boundary com-

ponents and χ(K̃i) = −2. In addition, K̃i is connected and orientable so
it is a torus with two holes. Define simple closed curves α′

i, γ
′
i, γ

′′
i , δ′i, δ

′′
i

on S such that p−1(µi) = α′
i, p

−1(γi) = γ′i ∪ γ
′′
i , p−1(δi) = δ′i ∪ δ

′′
i (Fig-

ure 2). We assume the convention that positive Dehn twists about the
curves in Figure 2 are to the right. We have τ(γ′i) = γ′′i and τ reverses
orientation of S, hence τtγ′

i
τ = t−1

γ′′

i

. Since γ′i and γ′′i are disjoint, so the

Dehn twists tγ′

i
and tγ′′

i
commute. It follows that tγ′

i
t−1
γ′′

i

is symmetric.

Its projection is clearly a Dehn twist about γi and upon interchang-
ing γ′i and γ′′i , we can assume that this projection is tγi

defined above.

Analogously tδ′

i
t−1
δ′′

i

is symmetric and we assume that it projects to tδi
.

Theorem 10. Let ψ : Bn → M(S) be the embedding defined as the
composition π ◦ ϕ, where ϕ : Bn → M(N) is defined on the generators
as ϕ(σi) = ui for i = 1, . . . , n− 1. Then

ψ(σi) = t−1
γ′

i

tγ′′

i
(tα′

i
tγ′

i
tγ′′

i
)2t−1

δ′′

i

for i = 1, . . . , n− 1.

Proof: Let ỹ = (tα′

i
tγ′

i
tγ′′

i
)2t−1

δ′′

i

. Such element appears in Lemma 1 of [3].

By repeating the calculations in [3] it can be checked that ỹ is symmetric
and ỹ2 = tδ′

i
t−1
δ′′

i

, so its projection y ∈ M(N ′) satisfies y2 = tδi
. It can be

checked that ỹ preserves the isotopy class of the curve α′
i and reverses its

orientation. Since p(α′
i) is homotopic to αi, it follows that y preserves αi

and reverses its orientation. By Lemma 9 we have y = tγi
ui and ψ(σi) =

π(ui) = π(t−1
γi
y) = t−1

γ′

i

tγ′′

i
ỹ as desired.
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γ′

3 γ′

1 γ′′

1 γ′′

3
γ′

2 α′

1 γ′′

2

α′

2

α′

3

α′

4

γ′

4

γ′′

4

δ′′2

δ′′1

δ′′4

δ′′3

Figure 3. The configuration of curves in S.

Figure 3 shows the configuration of the curves involved in ψ(σi) for
i = 1, . . . , 4. If xi = ψ(σi) = t−1

γ′

i

tγ′′

i
(tα′

i
tγ′

i
tγ′′

i
)2t−1

δ′′

i

, then it may be

checked that xi+1xi maps α′
i+1 to α′

i, γ
′
i+1 to γ′i, γ

′′
i+1 to γ′′i and δ′′i+1 to δ′′i .

The resulting relations between Dehn twists give xi+1xixi+1 = xixi+1xi.
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