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ENERGY INEQUALITIES FOR A MODEL OF WAVE

PROPAGATION IN COLD PLASMA

Thomas H. Otway

Abstract

Energy inequalities are derived for an elliptic-hyperbolic operator
arising in plasma physics. These inequalities imply the existence of
distribution and weak solutions to various closed boundary-value
problems. An existence theorem is proven for a related class of
Keldysh equations, and the failure of expected methods for ob-
taining uniqueness is discussed. The proofs use ideas recently in-
troduced by Lupo, Morawetz, and Payne for a generalized Tricomi
operator. The existence of strong solutions under open boundary
conditions is also proven.

1. Introduction

The equation

(1)
(
x− y2

)
uxx + uyy = 0

arises in models of wave propagation through a linear dielectric medium
(“cold plasma”) at frequencies lying below the geometrical optics range;
for the physical context, see [24]. Here u(x, y), (x, y) ∈ R

2, is a scalar
function. A subscripted variable denotes partial differentiation in the
direction of the variable.

The significant property of equation (1) is that it changes from elliptic
to hyperbolic type along the parabola

x− y2 = 0.

By analogy with the equations of steady flow, which change from elliptic
to hyperbolic type at the speed of sound, it has become conventional
to call this parabola the sonic curve; in the context of the cold plasma
model it is also called a resonance curve. Except for a point at the origin,
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equation (1) can be mapped into an equation having the same general
form as the Tricomi equation

(2) yuxx + uyy = 0,

an equation which is somewhat more accessible than (1). However, both
the physical and mathematical interest of equation (1) arise from the
tangency of the sonic curve to the line x = 0 at the origin. This is the
point at which plasma heating might occur in the physical model, and
a point which appears to be singular in numerical studies of solutions;
see [17], [22], and [23].

A variety of lower-order terms have been affixed to equation (1) in the
literature; see, e.g., [17], [22], and [25]. The variants reflect different
toy models for the equation satisfied by the field potential; compare
equations (2) and (9) of [22]. The variants tend to have the general
form

(3)
(
x− y2

)
uxx + uyy + κux = 0,

where the constant κ lies in a specified interval. Note that if κ = 1, then
the associated differential operator is formally self-adjoint.

The formulation of boundary-value problems for equation (3) is of
considerable interest, as the boundary conditions which are physically
natural do not appear to be mathematically natural. In particular, it is
shown in [17] that the closed Dirichlet problem, in which the solution is
prescribed on the entire boundary, is over-determined for C2 solutions
of (3) with κ = 1/2. However, the physical properties of electromagnetic
waves in the cold plasma model suggest that closed boundary-value prob-
lems are natural and should be correctly posed for equation (3).

In Sections 2 and 3 we prove that solutions to closed boundary-value
problems for (3) do in fact exist. Although we do not expect classical
solutions, we show in Section 2 the existence of distribution solutions
to a homogeneous Dirichlet problem, under minimal hypotheses on the
domain boundary. In fact these solutions are somewhat smoother than
conventional distribution solutions, as they lie in the function space L2.
An even smoother distribution solution, which lies in a weighted Sobolev
space, is derived in Section 4 under stronger hypotheses on the boundary.
We prove the existence of conventional weak solutions to a class of closed
boundary-value problems, under strong hypotheses on the boundary, in
Section 3.

In Section 4 we also consider a simpler case in which equation (1) is
replaced by a generalized Cinquini-Cibrario equation [4]

(4) x2k+1uxx + uyy + lower order = 0,
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where k is a non-negative integer. (In fact we do not treat the case k = 0,
which is the case initially studied by Cinquini-Cibrario.) Equation (4)
has independent mathematical interest as one of two classes of normal
forms to which linear, second-order elliptic-hyperbolic equations can be
reduced near a point [2]. In terms of the physical model, equation (4)
would correspond roughly to a resonance surface which coincides with
a flux surface. In this case the plasma behaves like a perpendicular
stratified medium and energy absorption occurs along the entire surface,
a situation more amenable to standard physical arguments than the case
in which the two surfaces are tangent at a single point; see p. 42 of [23]
for a discussion.

Equation (4) is an example of an equation of so-called Keldysh type
—that is, an equation of the form

(5) K(x)uxx + uyy + lower order = 0,

where K(x) is a continuously differentiable function such that K(0) = 0
and xK(x) > 0 for x 6= 0. Equations of this kind, with various lower-
order terms, arise in transonic fluid dynamics and singular optics (see,
e.g., Section 3 of [3], and [14]). The arguments of Section 4 apply, with
only notational alterations, to the slightly more general case of a type-
change operator having the form K(x) = x|x|n−1 for n ∈ R, n > 3.
(The proofs require n to be large enough for K to have three continuous
derivatives.)

In Section 5 we obtain the existence of unique solutions to equa-
tion (3), but under open boundary conditions, in which the solution is
prescribed on a proper subset of the boundary. In Subsection 5.1 we
briefly discuss the failure of the preceding methods to provide unique-
ness in an obvious way. Conditions for the existence of a unique, strong
solution are introduced in Subsection 5.2. The existence of weak L2 so-
lutions to a large class of open boundary-value problems is proven in
Section 6 by extending the arguments of [18].

The approach taken in Sections 2–4 is modeled on recent work by
Lupo, Morawetz, and Payne [11], [20] on the class of equations

(6) K(y)uxx + uyy = 0,

where K(y) is a continuously differentiable function for which K(0) = 0
and yK(y) > 0 for y 6= 0. In the special case K(y) = y, (6) reduces to
the Tricomi equation. For this reason, equations of the form (6) are said
to be of Tricomi type.
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We adapt the ideas of [11] to the cold plasma context by proving
inequalities for (3) having the form

(7) ||L∗v||U ≥ C||v||V ,

where C is a positive constant, U and V are function spaces, and L is
the differential operator of (3) with adjoint L∗. These energy inequal-
ities are used to show the existence of a solution to boundary-value
problems in an appropriate function space (see, e.g., [1, Chapter 2]).
However, we state the inequalities as theorems, rather than as lemmas,
and derive the existence theorems as corollaries. We do this because
in their exploitation of inequality (7), the arguments for equations (3)
and (6) are essentially the same. (While differential operators of Tricomi
type are formally self-adjoint, the extension of the existence arguments
in [11] to the non-self-adjoint case is standard; see, e.g., the existence
proof in [18] for weak solutions to a Dirichlet problem for (3) under
open boundary conditions.) The arguments for the two equations dif-
fer, however, in their derivations of the energy inequality itself, which
depend on the form of the type-change function K. One of the main
problems of this paper is to find multipliers which allow the Friedrichs
abc method to be applied in the right way, either in its original form
or in the more recent integral variant introduced by Dı̄denko [5]. An-
other is to establish a priori restrictions on the domain which allow the
method of energy inequalities to be applied. (In Subsection 5.2 we adopt
a third approach, also due to Friedrichs, in order to establish sufficient
conditions for uniqueness.)

In addition to its physical interest, the existence of solutions to closed
boundary-value problems for equations of the form (3) and (4) has purely
mathematical interest as an extension of the methods introduced in [11]
to equations which are not of Tricomi type. The existence of solutions to
closed boundary-value problems for certain elliptic-hyperbolic systems
which are not of Tricomi type is shown in [7] and [14] under special
conditions on the boundary that do not require the methods of [11]. Our
results suggest that the existence —but not necessarily uniqueness— of
distribution and weak solutions for equations of Keldysh type can be
shown by arguments closely modeled on those of [11].

The following hypotheses on the domain Ω are assumed throughout: It
is a bounded, connected domain of R

2 having piecewise smooth bound-
ary ∂Ω, oriented in a counterclockwise direction; the domain includes
both an arc of the sonic curve and the origin of coordinates in R

2 (so
that, for example, equation (3) is elliptic-hyperbolic but not equivalent
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to an equation of Tricomi type). We neither require nor exclude the ex-
istence of characteristic arcs on the boundary. We use the term elliptic
boundary to refer to points (x, y) of the domain boundary on which the
type-change function K (x, y) is positive. Similarly, by the hyperbolic
boundary we mean boundary points for which the type-change function
is negative.

2. Inequalities leading to distribution solutions

The function spaces introduced in [5] and [11] reappear in this paper
with |K(y)| replaced by a different weight function, also denoted by K.
In particular, we define the space H1

0 (Ω;K) to be the closure of C∞
0 (Ω)

with respect to the norm

||u||H1(Ω;K) =

[∫∫

Ω

(
|K|u2

x + u2
y + u2

)
dx dy

]1/2

,

where |K| =
∣∣x− y2

∣∣. We can write the H1
0 (Ω;K)-norm in the form

||u||H1
0
(Ω;K) =

[∫∫

Ω

(
|K|u2

x + u2
y

)
dx dy

]1/2

as a consequence of the weighted Poincaré inequality

(8) ||u||2L2(Ω) ≤ C

∫∫

Ω

(
|K|u2

x + u2
y

)
dx dy.

Here and below we denote by C generic positive constants, the value of
which may change from line to line.

The complexity of the existence arguments is not increased if we re-
place (3) by the inhomogeneous equation

(9) Lu = f,

where f is a given, sufficiently smooth function of (x, y) and

(10) L =
(
x− y2

) ∂2

∂x2
+

∂2

∂y2
+ κ

∂

∂x
.

By a distribution solution of equations (9), (10) with the boundary con-
dition

(11) u(x, y) = 0 ∀ (x, y) ∈ ∂Ω

we mean a function u ∈ L2(Ω) such that ∀ ξ ∈ H1
0 (Ω;K) for which

L∗ξ ∈ L2(Ω), we have

(12) (u, L∗ξ) = 〈f, ξ〉.
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Here ( , ) denotes the L2 inner product on Ω and 〈 , 〉 is the duality
bracket associated to the H−1 norm [9]

||w||H−1(Ω;K) = sup
06=ξ∈C∞

0
(Ω)

|〈w, ξ〉|
||ξ||H1

0
(Ω;K)

.

Such a solution is a little smoother than the usual notion of distribution
solution, in which the solution fails to lie in a true function space.

Theorem 1. Every u ∈ C2
0 (Ω) satisfies the inequality

||u||H1
0
(Ω;K) ≤ C||Lu||L2(Ω),

where L is defined by (10) with κ ∈ [0, 2] , and K = x− y2.

Proof: We consider two cases.

Case 1: 1 ≤ κ ≤ 2. Let δ be a small, positive constant. Define an
operator M by the identity

Mu = au+ bux + cuy

for a = −1, c = 2 (2δ − 1) y, and

b =

{
exp (2δK/Q1) if (x, y) ∈ Ω+

exp (6δK/Q2) if (x, y) ∈ Ω−
,

where

Ω+ = {(x, y) ∈ Ω | K > 0}
and Ω− = Ω\Ω+. Choose Q1 = exp (2δµ1) , where

µ1 = max
(x,y)∈Ω+

K.

Then ∀ (x, y) ∈ Ω+, we have

2δK ≤ 2δµ1 ≤ 2δµ1e
2δµ1 = Q1 logQ1.

Dividing by Q1 and exponentiating both sides, we conclude that b ≤ Q1

on Ω+. Define the negative number µ2 by

µ2 = min
(x,y)∈Ω−

K

and let Q2 = exp (µ2). Then 0 < Q2 < 1 and, for given Ω, we can
choose δ to be so small that 6δ < Q2. In that case, ∀ (x, y) ∈ Ω−,

6δK ≥ 6δµ2 = 6δ logQ2 > Q2 logQ2.

We conclude that b > Q2 on Ω−.
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We will estimate the quantity (Mu,Lu) from above and below. Inte-
grating by parts, we have

(Mu,Lu) =

∫∫

Ω

9∑

i=1

τi dx dy,

where

τ1 = (auKux)x − axKuux − 1

2

(
au2

)
x

+
ax

2
u2 − aKu2

x;

τ2 = (auuy)y − ayuuy − au2
y;

τ3 =
1

2

(
bKu2

x

)
x
− 1

2
(bxK + b)u2

x;

τ4 = (buxuy)y − byuxuy − 1

2

(
bu2

y

)
x

+
bx
2
u2

y;

τ5 = (cuyKux)x − cxKuxuy − 1

2

(
cKu2

x

)
y
− cuxuy +

(cy
2
K − cy

)
u2

x;

τ6 =
1

2

[(
cu2

y

)
y
− cyu

2
y

]
;

the lower-order terms are:

τ7 =
κ

2

[(
au2

)
x
− κaxu

2
]
;

τ8 = κbu2
x;

τ9 = κcuyux.

As in the Tricomi case considered in [11], one of the coefficients in Mu
fails to be continuously differentiable on all of Ω. When integrating this
quantity, a cut should be introduced along the line K = 0 separating Ω+

from Ω−. The boundary integrals involving a, b, and c on either side of
this line will cancel by continuity.

We find that the boundary terms vanish by the compact support of u,
and

(Mu,Lu) =

∫∫

Ω+∪Ω−

ωu2 + αu2
x + 2βuxuy + γu2

y dx dy,

where ω = 0;

α =

(
cy
2

− a− bx
2

)
K +

(
κ− 1

2

)
b− cy,



202 T. H. Otway

for

α|Ω+ =

(
2 − b

Q1

)
δK + 2 (1 − 2δ) y2 +

(
κ− 1

2

)
b

and

α|Ω− =

(
3
b

Q2
− 2

)
δ|K| + 2 (1 − 2δ) y2 +

(
κ− 1

2

)
b;

β=
1

2
[c (κ−1)−by]=

{
y [2δ (b/Q1)+(κ− 1) (2δ − 1)]≤|y| in Ω+

y [6δ (b/Q2)+(κ− 1) (2δ − 1)]≤κ|y| in Ω−
;

γ=
1

2
(bx − cy) − a =

{
2 (1 − δ) + δ (b/Q1) in Ω+

2 (1 − δ) + 3δ (b/Q2) in Ω−
.

On Ω+, for any scalars ξ and η, we have by Cauchy’s inequality

2βξη ≤ y2ξ2 + η2,

so

αξ2 + 2βξη + γη2 ≥ αξ2 −
(
y2ξ2 + η2

)
+ γη2

=

[(
2 − b

Q1

)
δK + (1 − 4δ) y2+

(
κ− 1

2

)
b

]
ξ2+

[
(1 − 2δ) +

6b

Q1

]
η2

≥ δ
(
Kξ2 + η2

)
,

provided δ is sufficiently small. On Ω−,

2βξη ≤ 2 |κyξη| ≤ 2
(
y2ξ2 + η2

)
,

so

αξ2 + 2βξη + γη2 ≥ α2ξ2 − 2
(
y2ξ2 + η2

)
+ γη2

=

[(
3
b

Q2
− 2

)
δ|K| − 4δy2 +

(
κ− 1

2

)
b

]
ξ2 + δ

(
3
b

Q2
− 2

)
η2

≥ δ
(
|K|ξ2 + η2

)
.

In estimating the coefficient of η2, we used the fact that b > Q2 on Ω−.
In estimating the coefficient of ξ2, we used the fact that

(
κ− 1

2

)
b− 4δy2 ≥ b

2
− 4δy2 ≥ 1

2
eµ2 − 4δy2,

which exceeds zero for δ sufficiently small with respect to exp (−|µ2|)
and maxΩ y

2.
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Integrating over each subdomain, we obtain

(13) (Mu,Lu) ≥ δ

∫∫

Ω

(
|K|u2

x + u2
y

)
dx dy = δ||u||2H1

0
(Ω;K).

We want to obtain an upper bound for (Mu,Lu) in terms of the
L2-norm of Lu. First we recall that max(x,y)∈Ω b ≤ Q1 and estimate

(14) (Mu,Lu) ≤
∫∫

Ω

|u||Lu| dx dy

+ C

∫∫

Ω

(Q1|ux| + |y||uy|) |Lu| dx dy = i1 + i2.

The Schwarz inequality and inequality (8) imply that

i1 ≤ ||u||L2(Ω)||Lu||L2(Ω) ≤ C||u||H1
0
(Ω;K)||Lu||L2(Ω).

Similarly,

i2 ≤ C

[∫∫

Ω

(|ux| + |uy|)2 dx dy
]1/2

||Lu||L2(Ω)

≤ C′||u||H1
0
(Ω)||Lu||L2(Ω).

We claim that we can choose δ to be so small that b/2 ≥ δ on Ω.
On Ω+ this is obvious, as b ≥ 1 there. On Ω− it is almost as obvious, as
b > Q2 > 6δ > 2δ. Thus we have the additional estimate

α ≥ δ|K| + b

2
≥ δ,

implying that

(15) (Mu,Lu) ≥ δ||u||2H1
0
(Ω).

Substituting the estimates for i1 and i2 into inequality (14) and combin-
ing this with (15), we obtain

δ||u||2H1
0
(Ω) ≤ (Mu,Lu)

≤ C
(
||u||H1

0
(Ω;K) + ||u||H1

0
(Ω)

)
||Lu||L2(Ω)

≤ C′||u||H1
0
(Ω)||Lu||L2(Ω).

(16)

Dividing equation (16) by the H1
0 -norm of u, we find that

||u||H1
0
(Ω) ≤ C||Lu||L2(Ω).

This completes the proof for the case κ ∈ [1, 2], as the norm on the left
can be replaced by the corresponding weighted norm. (Alternatively,
substitute this estimate into the extreme right-hand side of (16) and
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replace the extreme left-hand side of (16) by the extreme right-hand
side of (13), to obtain

||u||2H1
0
(Ω;K) ≤ C||Lu||2L2(Ω);

then take the square root of each side.)

Case 2: 0 ≤ κ < 1. Again subdivide the domain into Ω+ and Ω− by
introducing a cut along the curve K = 0. Integrate by parts as in Case 1,
choosing a = −1;

b =

{
−NK in Ω+

NK in Ω−
,

where N is a constant satisfying

(17)
1 + δ̃

3 − κ
< N <

1 − δ̃

κ+ 1

for a sufficiently small positive constant δ̃, and

c = −4Ny.

The boundary integrals involving a and c on either side of the curve will
cancel and the boundary integrals involving b will be zero on the curve.

On Ω+,

α = [1 − (1 + κ)N ]K + 4Ny2;

β = N (1 − 2κ) y;

γ = 1 +
3

2
N.

Also,

2βξη ≥ −2N |yξη| ≥ −N
(
y2ξ2 + η2

)

as κ ∈ [0, 1), so

αξ2 + 2βξη + γη2 ≥ αξ2 −N
(
y2ξ2 + η2

)
+ γη2

=
{
[1 − (1 + κ)N ]K + 3Ny2

}
ξ2 +

(
1 +

N

2

)
η2

≥ δ̃
(
Kξ2 + η2

)
,

by condition (17).
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On Ω−,

α = − [1 − (3 − κ)N ] |K| + 4Ny2;

β = N (3 − 2κ) y;

γ = 1 +
5

2
N.

Because

2βξη ≥ −6N |yξη| ,
we have

αξ2 + 2βξη + γη2

≥
{
− [1 − (3 − κ)N ] |K| + 4Ny2

}
ξ2−3N

(
y2ξ2+η2

)
+

(
1 +

5

2
N

)
η2

=
{
− [1 − (3 − κ)N ] |K| +Ny2

}
ξ2 +

(
1 − N

2

)
η2

≥ δ̃
(
|K|ξ2 + η2

)
,

again using (17).
We conclude that

(18) (Mu,Lu) ≥ δ̃||u||2H1
0
(Ω;K).

In order to obtain an upper bound for (Mu,Lu) in terms of the
L2-norm of Lu, we estimate

(Mu,Lu) ≤
∫∫

Ω

{|u| +N [|K||ux| + 4|y||uy|]} |Lu| dx dy

=

∫∫

Ω

|u||Lu| dx dy+N

∫∫

Ω

[|K||ux|+4|y||uy|] |Lu| dx dy

≡ i1 + i2.

(19)

As in Case 1, the Schwarz inequality and (8) imply that

i1 ≤ ||u||L2(Ω)||Lu||L2(Ω) ≤ C||u||H1
0
(Ω;K)||Lu||L2(Ω).

Because Ω is bounded, we can fit it inside a rectangle of the form

(20) R = {(x, y)|γR ≤ x ≤ δR, βR ≤ y ≤ αR}
for sufficiently large values of |αR|, |βR|, |γR|, and |δR|. Define

T = max
{
|δR| + α2

R, 1
}
.
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Then

i2 ≤ N

∫∫

Ω

[√
T

√
|K||ux| + 4|y||uy|

]
|Lu| dx dy

≤ N

[∫∫

Ω

Υ dx dy

]1/2

||Lu||L2(Ω),

where

Υ = T |K||ux|2 + 8
√
T |αR|

√
|K||ux||uy| + 16α2

R|uy|2.
Applying Cauchy’s inequality to Υ, we obtain

i2 ≤ C||u||H1
0
(Ω;K)||Lu||L2(Ω),

where C depends on N and R.
Substituting the estimates for i1 and i2 into inequality (19), we ob-

tain the desired upper bound for (Mu,Lu). Combining this with the
lower bound (18) and dividing through by the H1

0 (Ω;K)-norm of u, we
complete the proof of Theorem 1.

Corollary 2. The Dirichlet problem (9), (10), (11) with κ ∈ [0, 2] pos-
sesses a distribution solution u ∈ L2(Ω) for every f ∈ H−1(Ω;K).

Proof: The proof for the case κ = 1 is identical to the proof of Theo-
rem 2.2 of [11], with Lemma 2.1 of [11] replaced by Theorem 1 of the
present communication. Briefly, we define for ξ ∈ C∞

0 a linear functional

Jf (Lξ) = 〈f, ξ〉.
This functional is bounded on a subspace of L2 by the inequality

(21) |〈f, ξ〉| ≤ ||f ||H−1(Ω;K)||ξ||H1
0
(Ω;K)

and by Theorem 1 (applied to the second term on the right). Now
standard Hahn-Banach arguments extend the functional to one defined
on all of L2. The Riesz Representation Theorem then guarantees the
existence of the distribution solution.

If κ 6= 1, then L is not self-adjoint. Because the operator adjoint to L
has the form

(22) L∗ =
(
x− y2

) ∂2

∂x2
+

∂2

∂y2
+ (2 − κ)

∂

∂x
,

estimating L for κ in [0, 2] will also yield estimates for L∗. Applying
the preceding argument to the adjoint operator completes the proof of
Corollary 2.
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3. Inequalities leading to weak solutions

Applications to plasma physics of mixed boundary-value problems are
discussed in [8]. But we adopt mixed boundary conditions in this section
mostly in the interest of mathematical generality. The main interest
for these equations is in closed Dirichlet and Neumann problems. The
arguments of this section will extend the results of [18], for an open
weak Dirichlet problem for equation (1), to a class of generalized, closed
Neumann problems.

If u = (u1, u2) and w = (w1, w2) are measurable vector-valued func-
tions on Ω, then the inner product for the space L2

(
Ω; R2

)
will be written

(u,w)L2(Ω;R2) =

∫∫

Ω

(u1w1 + u2w2) dx dy.

Analogously, we define HK to be the Hilbert space of measurable func-
tions on Ω for which the weighted L2-norm

||u||HK
=

[∫∫

Ω

(
|K|u2

1 + u2
2

)
dx dy

]1/2

is finite; this norm is induced by the the weighted L2 inner product

(u,w)K =

∫∫

Ω

(|K|u1w1 + u2w2) dx dy.

In the notation for these spaces, K denotes a diagonal matrix having
entries |K| and 1.

By a weak solution of a mixed boundary-value problem in this context
we mean an element u ∈ HK(Ω) such that

(23) − (u,L∗w)L2(Ω;R2) = (f ,w)L2(Ω;R2)

for every function w ∈ C1
(
Ω; R2

)
for which K−1L∗w ∈ L2

(
Ω; R2

)
and

for which

(24) w1 = 0 ∀ (x, y) ∈ G

and

(25) w2 = 0 ∀ (x, y) ∈ ∂Ω\G,
where G is a (possibly empty) subset of ∂Ω. With a view toward provid-
ing a first-order generalization of equation (3), we choose the differential
operator L to have the form

(26)

(
K∂x ∂y

∂y −∂x

)
+

(
κ 0
0 0

)
.
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Theorem 3. Let G be a subset of ∂Ω and let K = x − y2. Define the
functions b (x, y) = mK + s and c(y) = µy − t, where µ is a positive
constant,

m =

{
(µ+ δ) /2 in Ω+

(µ− δ) /2 in Ω−

for a small positive number δ, and t is a positive constant such that
µy − t < 0 ∀ y ∈ Ω. Let s be a sufficiently large positive constant. In
particular, choose s to be so large that the quantities mK + s, 2cy + s,
and b2 +Kc2 are all positive. Let

(27) b dy − c dx ≤ 0

on G and

(28) K (b dy − c dx) ≥ 0

on ∂Ω\G. Then there exists a positive constant C such that

(Ψ,L∗MΨ) ≥ C

∫∫

Ω

(
|K|Ψ2

1 + Ψ2
2

)
dx dy

for any sufficiently smooth 2-vector Ψ, provided conditions (24), (25)
are satisfied on the boundary for w = MΨ, where L∗ is given by (26)
with κ = 1 and

M =

(
b c

−Kc b

)
.

Proof: Again the proof closely follows [11] (Lemmas 4.2 and 4.3, and
Theorem 4.4). After integration by parts and an application of the
Divergence Theorem, we find that

(Ψ,L∗M)L2(Ω;R2) =

∫∫

Ω

(
αΨ2

1 + 2βΨ1Ψ2 + γΨ2
2

)
dx dy

+

∫

∂Ω

(
1

2
KcΨ2

1 − bΨ1Ψ2 −
c

2
Ψ2

2

)
dx

+

(
1

2
KbΨ2

1 +KcΨ1Ψ2 −
1

2
bΨ2

2

)
dy.

(29)

Because b is not continuously differentiable on Ω, it is again necessary
to introduce a cut along the resonance curve x = y2. Evaluating the line
integral in (29) for our choices of b and c, using the fact that c is con-
tinuous and that the discontinuous term in b vanishes on the resonance
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curve, we find that the boundary integrals sum to zero along the cut.
Applying the boundary conditions, we obtain

∫

∂Ω

(
1

2
KcΨ2

1 − bΨ1Ψ2 −
c

2
Ψ2

2

)
dx

+

(
1

2
KbΨ2

1 +KcΨ1Ψ2 −
1

2
bΨ2

2

)
dy

=
1

2

∫

G

−1

c2
Ψ2

1

(
b2 +Kc2

)
(b dy − c dx)

+
1

2

∫

∂Ω\G

1

b2
Ψ2

1

(
b2 +Kc2

)
K (b dy − c dx) .

(30)

The hypotheses insure that the line integrals in (30) are finite and
nonnegative. We have

α =
1

2

[
Kbx −Kxb − (Kc)y

]
+ b = (δ/2)

∣∣x− y2
∣∣ + y (µy − t) + s/2;

β =
1

2
(by + c) =

{
− (1/2) (δy + t) in Ω+

(1/2) (δy − t) in Ω−
;

γ =
1

2
(cy − bx) =

{
(µ− δ) /4 in Ω+

(µ+ δ) /4 in Ω−
.

Because ∀ ε > 0

2βΨ1Ψ2 ≥ − (|δy| + |t|)2
ε

Ψ2
1 − εΨ2

2,

it follows that∫∫

Ω

(
αΨ2

1 + 2βΨ1Ψ2 + γΨ2
2

)
dx dy

≥
∫∫

Ω

{[
δ

2
|K| + y (µy − t) +

s

2
− (|δy| + |t|)2

ε

]
Ψ2

1

+

[
(µ− δ)

4
− ε

]
Ψ2

2

}
dx dy

≥ C

∫∫

Ω

(
|K|Ψ2

1 + Ψ2
2

)
dx dy

for s sufficiently large, ε sufficiently small, and δ < µ. This completes
the proof.
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Define the space HK−1(Ω) to consist of measurable functions f =
(f1, f2) on Ω for which K−1f lies in the space L2

(
Ω; R2

)
, where

K−1 =

(
|K|−1 0

0 1

)
.

Then HK−1(Ω) is a Hilbert space having inner product

(31) (v,w)H
K−1 (Ω) =

(
K−2v,w

)
L2(Ω;R2)

.

Corollary 4. Under the hypotheses of Theorem 3, there exists for ev-
ery f such that K−1MT f ∈ L2(Ω) a weak solution to the mixed boundary-
value problem (23)–(25) with L given by equation (26) with κ = 0. (The
superscripted T denotes matrix transpose.)

Proof: Apply the proof of Theorem 3 in [16] (c.f. [11, Lemmas 4.2 and
4.3], and [21]), taking into account that in our case, L 6= L∗. Use Theo-
rem 3 of this paper to estimate the formal adjoint of L, which is obtained
by taking κ = 1 in (26). Because MΨ = w, we have

∫∫

Ω

(
|K|Ψ2

1 + Ψ2
2

)
dx dy = ||Ψ||HK(Ω)

= ||M−1w||HK(Ω) = ||KM−1w||L2(Ω;R2)

for

K =

(
|K| 0
0 1

)

and

M−1w =
1

b2 +Kc2

(
bw1 − cw2

cKw1 + bw2

)
.

These norms are finite because of the hypotheses on w and on b2 +Kc2.
Using Theorem 3, we obtain

δ

2
||KM−1w||2L2(Ω;R2) ≤ (Ψ,L∗MΨ)L2(Ω;R2)

=
(
M−1w,L∗w

)
L2(Ω;R2)

=
(
KM−1w,K−1L∗w

)
L2(Ω;R2)

≤ ||KM−1w||L2(Ω;R2)||K−1L∗w||L2(Ω;R2),

in which the right-hand side is finite by our definition of w. Dividing
both sides of this inequality by the quantity ||KM−1w||L2(Ω;R2), we find
that

||KM−1w||L2(Ω;R2) ≤
2

δ
||K−1L∗w||L2(Ω;R2).
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Define the linear functional

Jf (L∗w) = (f ,w)L2(Ω;R2) .

Then

|Jf (L∗w) | = |
(
K−1Mf ,KM−1w

)
|L2(Ω;R2) ≤ C||K−1L∗w||L2(Ω;R2).

We conclude that Jf is bounded on the subspace of HK−1(Ω) consisting
of elements having the form L∗w. Extending the operator to a bounded
linear functional on the entire space, the Riesz Representation Theorem
guarantees the existence of an element v ∈ HK−1(Ω) for which

(f ,w)L2(Ω;R2) = (v,L∗w)H
K−1(Ω) .

The proof is completed by taking u = −K−2v and applying (31).

Remark. If the vector u is sufficiently differentiable, then we can re-
place u1 by ux and u2 by uy for a scalar function u (x, y) . Formally,
we then obtain from Corollary 4 the existence of a weak solution to
equation (1), under mixed boundary conditions consisting of Dirichlet
conditions

(32) ux dx+ uy dy = 0

on G and co-normal conditions

(33) Kux dy − uy dx = 0

on the complement of G.

However, the existence of a suitable domain Ω remains to be demon-
strated.

It is apparent that the conditions on Ω are non-vacuous if we consider
one of the simplest kinds of piecewise smooth domains, a box with a
vertex at the origin. Let y0 be a positive number, let x0 = y2

0 , and let
Ω be the rectangle formed by the line segments

I: 0 ≤ x ≤ x0, y = y0;

II: x = 0, 0 ≤ y ≤ y0;

III: 0 ≤ x ≤ x0, y = 0;

IV : x = x0, 0 ≤ y ≤ y0.

On the line segments I and II, both (27) and (28) are satisfied. On
the line segments III and IV , (28) is satisfied. So we can take G to be
a nonempty subset of I ∪ II. Or we can take G to be the empty set,
in which case Theorem 3 guarantees a weak solution to the conormal
problem on Ω. This problem is hard to solve for equations of Tricomi
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type; see [21] and the comments in Section 4 of [11]. In the cold plasma
case, it is the weak Dirichlet problem which is hard to solve, as it is not
obvious that there is a domain on which G can be taken to be the entire
boundary.

While the restriction of the boundary arcs to vertical and horizontal
lines obviously simplifies the analysis, it is also clear that the existence
argument for the mixed or co-normal problem extends to domains more
general than a rectangle. On the elliptic region, all that is required in
order for (28) to hold with our choices of b and c is that dx/ds and
dy/ds both be nonnegative, where ds is the element of arc length on the
boundary. On the hyperbolic region, all that is required for either (27)
or (28) to hold is that dx/ds and dy/ds both be non-positive. Thus a
suitable domain might have the form of a lens about that segment of the
sonic curve x = y2 which lies in the first quadrant of the xy-plane. It is
required that the upper boundary of the lens remain in the hyperbolic
region of the equations without violating the condition dy/ds ≤ 0. For
example, let the hyperbolic boundary be given by the curve y = xq over
the interval x ∈ [0, 1] , for q ∈ (0, 1/2) ; let the elliptic boundary be given
by the curve y = xr over the interval x ∈ [0, 1] , for r > 1; and let G be
a subset of the hyperbolic boundary.

4. A somewhat smoother class of distribution solutions

It is also possible to strengthen the result of Section 2 in a different
direction, by placing hypotheses on Ω which imply more smoothness on
the part of the distribution solution than mere square-integrability.

Following Section 2 of [13] we consider a one-parameter family ψλ(x, y)
of inhomogeneous dilations given by

ψλ (x, y) =
(
λ−αx, λ−βy

)
,

where α, β, λ ∈ R
+. These determine an associated family of operators

Ψλu = u ◦ ψλ ≡ uλ.

Denote by D the vector field

(34) Du =

[
d

dλ
uλ

]

|λ=1

= −αx∂x − βy∂y.

An open set Ω ⊆ R
2 is said to be star-shaped with respect to the flow

of D if ∀ (x0, y0) ∈ Ω and each t ∈ [0,∞] we have Ft (x0, y0) ⊂ Ω, where

Ft (x0, y0) = (x(t), y(t)) =
(
x0e

−αt, y0e
−βt

)
.
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If k is a given function on Ω, we define the space L2 (Ω; |k|) and its
dual, consisting, respectively, of functions u for which the norms

||u||L2(Ω;|k|) =

(∫

Ω

|k|u2 dx dy

)1/2

and

||u||L2(Ω;|k|−1) =

(∫

Ω

|k|−1u2 dx dy

)1/2

are finite; see [11, Section 3] for details.
Denote by v a C1 solution of the Cauchy problem

(35) Hv = u in Ω

with v vanishing on ∂Ω\{0, 0},
(36) lim

(x,y)→(0,0)
v (x, y) = 0,

and

(37) Hv = av + bvx + cvy.

We assume in the sequel that v exists. This assumption is justified when-
ever the following conditions are met: Ω is star-shaped with respect to
the flow of the vector field V = − (b, c) ; b = mx and c = µy; µ is a posi-
tive constant; m is a step function in x, taking only positive values, with
a single jump at the point x = 0; a is a negative constant having suffi-
ciently large magnitude. A proof of the sufficiency of these assumptions
can be found in step 1 of the proof of Lemma 3.3, [11].

Theorem 5. Suppose that x ≥ 0 on Ω and that Ω is star-shaped with
respect to the flow of the vector field V = − (b, c) for b = mx and c =
µy, where µ is a positive constant and m exceeds 3µ. Then for every
u ∈ C∞

0 (Ω) there exists a positive constant C for which

(38) ||u||L2(Ω;|k|) ≤ C||Lu||H−1(Ω;k),

where k(y) = y2 and L satisfies (10) with κ = 1.

Proof: Let v satisfy equations (35)–(37) on Ω for a = −M , where M is
a positive number satisfying

M =
m− 3µ

2
− δ

for some sufficiently small positive number δ. We have the integral iden-
tities

(39) (Iu, Lu) ≡ (v, Lu) = (v, LHv) .
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Our choice of the coefficients a, b, and c are such that ax = ay = by =
cx = 0 and all second derivatives also vanish. Substitute into Proposi-
tion 12 of the Appendix the quantities K = x − y2, κ1 = 1, κ2 = 0,
b = b(x), c = c(y). We have ω = 0,

α = K

(
cy − bx

2
− a

)
+

1

2
b+

1

2
Kyc =

(m
2

− µ− δ
)
x+ δy2,

β = 0,

and

γ = −a− cy
2

+
bx
2

= M − µ−m

2
= m− 2µ− δ.

The boundary integral of Proposition 12 vanishes by the compact sup-
port of u. We find that if δ is sufficiently small relative to m and µ,
then

(v, LHv) ≥ δ

∫∫

Ω

(
y2v2

x + v2
y

)
dx dy.

The upper estimate is immediate. One applies inequality (21) to
obtain

(v, Lu) ≤ ‖v‖H1
0
(Ω;k) ‖Lu‖H−1(Ω;k) ,

from which the desired inequality follows by the continuity ofH as a map
from H1

0 (Ω; k) into L2 (Ω; |k|) . This completes the proof of Theorem 5.

Corollary 6. Let Ω be star-shaped with respect to the flow of the vector
field −V = (mx, µy) , where m and µ are defined as in Theorem 5.
Suppose that x is nonnegative on Ω and that the origin of coordinates lies
on ∂Ω. Then for every f ∈ L2

(
Ω; |k|−1

)
there is a distribution solution

u ∈ H1
0 (Ω; k) to the Dirichlet problem (3), (11) where k = y2 and κ = 1.

Proof: The proof mirrors the arguments for the existence of a distribu-
tion solution in the proof of Theorem 3.2 in [11], so we will again be
brief. Define a linear functional Jf by the formula

Jf (Lξ) = (f, ξ) .

Using the fact that L is self-adjoint for κ = 1, we estimate

|Jf (Lξ) | ≤ C|f ||L2(Ω;|k|−1)||Lξ||H−1(Ω;k).
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Thus Jf is a bounded linear functional on the subspace ofH−1 (Ω; k) con-
sisting of elements having the form Lξ with ξ ∈ C∞

0 (Ω) . Extending Jf

to the entire space, the Riesz Representation Theorem guarantees the
existence of an element u ∈ H1

0 (Ω; k) for which

(u, Lξ) = (f, ξ) ,

where ξ ∈ H1
0 (Ω; k) . This completes the proof.

Remarks. i) While the solution guaranteed by Corollary 2 is only in L2,
the solution guaranteed by Corollary 6 has a derivative in a weighted
L2-space. Thus the solution of Corollary 6 is closer to a conventional
weak solution than is the solution of Corollary 2.

ii) The estimates used to obtain inequality (38) extend in a formal
way to the weight function x − y2 if, in equation (10), we take κ < 0
with |κ| sufficiently large. Choose

a =
2δ

1 − κ

(
5

2
− 2κ

)
+ δκ,

b =
4δ

1 − κ
x+mK,

and

c =
2δ

1 − κ
y,

for

m =

{
δ in Ω+

−δ in Ω−
,

K = x− y2, and δ > 0. In that case, ω = 0;

α =

{
[δ (1 + 2|κ|)]K + 4δy2 in Ω+

−δK + 4δy2 in Ω−
;

β =
1

2
[(1 − κ) c− by] =

{
2δy in Ω+

0 in Ω−
;

and

γ = −a− cy
2

+
bx
2

= δ

(
|κ| − 4 ± 1

2

)
.
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The cross terms satisfy

2βξη ≥ −2δ
(
y2ξ2 + η2

)
,

so ∫∫

Ω

(
αξ2 + 2βξη + γη2

)
dx dy ≥ C

∫∫

Ω

(
|K|ξ2 + η2

)
dx dy

provided |κ| is sufficiently large. On the boundary between Ω+ and Ω−,
K = 0, so along the cut b is a smooth function of x only. If Ω is star-
shaped with respect to the vector field V = − (b, c), then

(b, c) · n̂ = 0,

where n̂ = (−dy, dx) is the unit normal to ∂Ω±. Thus we can obtain the
integral identity of Proposition 12 in this case as well. It is not obvious
that the extension is more than formal, as it is not obvious that the
vector field V produces a smooth solution of the system (35)–(37).

4.1. An equation of Keldysh type. As we remarked in Section 1,
if we allow the resonance curve to be tangent to a flux surface along
an entire interval rather than at an isolated point, equation (1) can be
replaced by an equation of the form (4). We add lower-order terms to
this equation to obtain

(40) Lu = x2k+1uxx + uyy + c1x
2kux + c2u = 0,

where we take k ∈ Z
+ and require that the constants c1 and c2 satisfy

c1 < k + 1 and c2 < 0 with |c2| sufficiently large. Hypotheses on the
magnitudes of lower-order terms are quite common for elliptic-hyperbolic
equations, such as (40), which are not of real principle type; see the
remarks in [19] and compare the conditions on the lower-order terms in
Theorem 4 of [7].

Theorem 7. Let a portion of the line x = 0 lie in Ω and let the
point (0, 0) lie on ∂Ω. Assume that Ω is star-shaped with respect to the
vector field V = − (b, c) , where b = mx, and c = µy. Let µ be a positive
constant and let

m =

{
−a/ℓ+ µ/2ℓ− δ/ℓ in Ω+

−a/ℓ+ µ/2ℓ+ δ/ℓ in Ω−

for a positive constant δ, where ℓ = k+1−c1. Let a be a negative constant
of sufficiently large magnitude. In particular, let a have sufficiently large
magnitude that m is positive. Then for every w ∈ C∞

0 (Ω) there exists a
positive constant C for which

||w||L2(Ω;|K|) ≤ C||L∗w||H−1(Ω;K),
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where K = x2k+1 and

(41) L∗w = x2k+1wxx + wyy

+ (4k + 2 − c1) x
2kwx +

[
2k (2k + 1 − c1)x

2k−1 + c2
]
w

is the formal adjoint of the differential operator L of equation (40) acting
on w.

Proof: The proof is only different in its details from that of Theorem 5.
In Proposition 12 of the Appendix, takeK=x2k+1, κ1 =(4k + 2 − c1)x

2k

and κ2 = 2k (2k + 1 − c1)x
2k−1 + c2. Initially we perform all operations

over Ω+ and Ω− individually. On the interior of these sub-domains the
coefficients are all smooth. We find that

ω = Mx2k−1 + c2 (a−m/2 − µ/2) ,

where M is a constant that depends on k, a, m, and c1 but not on c2.
Because a is negative and both m and µ are positive, ω is positive pro-
vided c2 is a negative number having sufficiently large magnitude relative
to the quantity M/ |a−m/2 − µ/2|. In addition, Proposition 12 implies
that

α = −K (a+ 2bx) +
3

2
(Kxb+Kbx) +

1

2
Kcy − κ1b

= x2k+1
[µ
2
− a− (k + 1 − c1)m

]
= δ|x|x2k;

β =
1

2
(Kx − κ1) c =

1

2
(c1 − 2k − 1)µyx2k;

and

γ = −a− cy
2

+
bx
2

=

{
− (1 + 1/2ℓ)a+ (1/4ℓ− 1/2)µ− δ/2ℓ in Ω+

− (1 + 1/2ℓ)a+ (1/4ℓ− 1/2)µ+ δ/2ℓ in Ω−
.

Then γ ≥ δ by the hypotheses on the sign and magnitude of a. We can
write β in the form

2β = (c1 − 2k − 1)µyxk+1/2xk−1/2.

Then ∀ ε > 0,

2βξη ≥ − |c1 − 2k − 1|µ|y|
(
ε|x|x2kξ2 +

1

ε
|x|2k−1η2

)
.
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Choose ε so small that

|c1 − 2k − 1|µmax
Ω

|y|ε < δ

and |a| so large that

1

ε
max

Ω
|x|2k−1 < −

(
1 +

1

2ℓ

)
a+

(
1

4ℓ
− 1

2

)
µ− δ

2ℓ
.

We can do this, as |Ω| is bounded and k ≥ 1. Then, arguing as in the
proofs of Theorems 1 and 3, we find that

∫∫

Ω

(
αξ2 + 2βξη + γη2

)
dx dy ≥ C

∫∫

Ω

(
|K|ξ2 + η2

)
dx dy.

The function b(x) fails to be differentiable on the boundary between Ω+

and Ω−. But the coefficients of the boundary terms involving bx either
vanish on the line K = 0 or cancel out, and the remaining boundary
terms are smooth. Thus we can integrate over Ω+ and Ω−, using the
support of v and the Divergence Theorem, and obtain

(v, LHv) ≥ C

∫∫

Ω

(
|K|v2

x + v2
y

)
dx dy.

The remainder of the proof is the same as that of Theorem 5. In par-
ticular, the existence of a suitable function v still follows from Lemma 3.3
of [11]: the roles of x and y in that argument are symmetric in the sense
that the proof is not affected if the gap in differentiability is shifted
from c(y) to b(x).

Corollary 8. Let Ω and V be defined as in Theorem 7. Then for ev-
ery f ∈ L2

(
Ω; |K|−1

)
there is a distribution solution u to the Dirichlet

problem (40), (11) lying in H1
0 (Ω;K) for K = x2k+1.

Proof: The proof is obtained by arguing exactly as in the proof of Corol-
lary 6, substituting the different weight class.

Remark. The weight class of Theorem 7 is more natural than that of
Theorem 5, as we expect any singularities that occur to be localized on
the sonic curve K. However, we do not obtain uniqueness in any obvious
way from either theorem, because we cannot express weak solutions to
either equation (3) or equation (40) as the limit of an appropriately
defined sequence of approximations, as in Section 3 of [11]. We discuss
this problem further in Subsection 5.1.
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5. Inequalities leading to unique solutions

In the case of equations of Tricomi type, one can say much more. In
fact, Lupo, Morawetz, and Payne are able to show the existence, with
a certain degree of regularity, of unique weak solutions to the Dirichlet
problem for equations of Tricomi type ([11, Sections 3 and 5]). One
problem with adapting that approach to the present case is the geometry
of the sonic curve. The simplest approach is to introduce a coordinate
transformation which straightens out the sonic curve. One then obtains
a problem of Tricomi type, but the coordinate transformation is singular
at the origin, which is precisely the point of interest in the problem. In
fact, research suggests that the singularity at the origin is an intrinsic
property of the model [22], [17], which is not the case, for example, for
the Tricomi equation. This leads us to expect that solutions to boundary-
value problems for equation (1) will live in a rougher space than solutions
to corresponding problems for equation (2). In this section we discuss
obstructions to obtaining a theorem on the unique existence of solutions
to closed boundary-value problems for equations of Keldysh type. We
then impose rather harsh conditions in order to obtain the existence of
a unique solution to a Dirichlet problem for the cold plasma model.

5.1. On the difficulty of obtaining uniqueness. A simple but
generic example will illustrate the difficulty of extending, to equations
of Keldysh type, methods developed for proving the weak existence
of a unique solution to closed boundary-value problems for equations
of Tricomi type. In our example the energy estimates used to obtain
H1

0 (Ω;K)-existence fail for a self-adjoint operator, whereas the conver-
gence arguments used to obtain uniqueness seem to require a self-adjoint
operator. Obviously, our example says nothing about whether a unique
solution exists, even for this example, but only about the failure of a
direct application of methods developed for equations of Tricomi type.

Consider an equation of the form

(42) [K(x)ux]x + uyy = 0,

where the smooth function K(x) changes type on the line x = 0; purely
notational alterations —e.g., replacing x by (x− x0) in the definition of
b(x)— will extend the argument to change of type on any vertical “flux
line” x = x0.

In order to guarantee the existence of a smooth solution to the sys-
tem (35)–(37), we choose b = mx and c = µy in that system, where µ
is positive constant and m is a step function which jumps at the line
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x = 0 and has the same sign as µ. We take a to be a constant of suffi-
ciently large magnitude having the sign opposite to that of µ andm. The
difficulties will not arise from the choices of µ and a, as the argument
would be the same for any constants. Moreover, the same difficulties
that appear for our choice of vector field will appear if b = mx is re-
placed by b = mf(x), where f is any analytic function vanishing on the
flux line (on which m has a jump discontinuity).

The definition of weak solution introduced in [11] for closed elliptic-
hyperbolic boundary-value problems is intermediate between the distri-
bution solutions studied in the preceding sections and the strong solu-
tions which we will study in Subsection 5.2. In accordance with that
definition, a weak solution to the Dirichlet problem (42), (11) will be a
function u ∈ H1

0 (Ω;K) for which

〈Lu, ξ〉 = 〈f, ξ〉
for every ξ ∈ H1

0 (Ω;K) , where L is the differential operator of (42).
Integrating by parts,

〈Lu, ξ〉 ≡
∫∫

Ω

([K(x)ux]x + uyy) ξ dx dy=−
∫∫

Ω

(Kuxξx + uyξy) dx dy.

In this case the existence of a weak solution is equivalent to the existence
of a sequence un ∈ C∞

0 (Ω) such that

||un − u||H1
0
(Ω;K) → 0 and ||Lun − f ||H−1(Ω;K) → 0

as n tends to infinity. We can thus obtain uniqueness from weak exis-
tence by assuming the existence of two solutions and subtracting their
approximating sequences.

Arguing as in the proof of Theorem 7 in order to establish the exis-
tence of a solution, we estimate the coefficients ω, β, α, and γ. We find
that ω = β = 0, and that

α = K(x)

{
−a+

µ

2
+

[
xK ′(x)

K(x)
− 1

]
m

2

}
.

Notice that

(43) lim
x→0

xK ′(x)

K(x)
= lim

x→0

xK ′(x)

[K(x) −K(0)]
= 1,

as K(0) = 0.
In order for equation (42) to change type, K(x) must be monotonic

in at least a small interval about x = 0. Initially, suppose that K ′(x) is
positive near x = 0. The sum −a+ µ/2 cannot be zero, as a and µ have
been given opposite sign in order to insure the existence of a solution
to (35)–(37). If −a + µ/2 is positive, then for small negative values
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of x, K(x) will be negative. The contribution of [(xK ′/K) − 1]m will
be small by (43), so α will be negative. If −a + µ/2 is negative, then
α will be negative for small positive values of x for the same reason.
An analogous argument pertains to the case in which K ′(x) is negative
near x = 0.

This example suggests that proving the uniqueness of weak solutions
to equations of Keldysh type —and to more complicated non-Tricomi
equations— along the lines of [11] will require, at the very least, a quite
different choice of vector field (b, c), which will significantly affect the
method.

For these reasons we will derive uniqueness from the existence of
strong solutions rather than from the linearity of the differential op-
erator on weak solutions. In order to do this, we change the boundary
conditions from closed conditions to open conditions.

5.2. Strong solutions. In the sequel we consider a generalization of
the cold plasma model:

(44) Lu = f

for an unknown vector

u = (u1 (x, y) , u2 (x, y))

and a given vector

f = (f1 (x, y) , f2 (x, y)) ,

where (x, y) ∈ Ω ⊂ R
2. Here

(Lu)1 = [x− σ(y)] u1x + κ1u1 + κ2u2y,(45)

(Lu)2 = u1y − u2x,(46)

where κ1 and κ2 are constants; σ(y) ≥ 0 is a continuously differentiable
function of its argument satisfying

σ(0) = σ′(0) = 0,(47)

σ′(y) > 0 ∀ y > 0,(48)

and

σ′(y) < 0 ∀ y < 0.(49)

In the special case in which σ(y) = y2, κ2 = 0, (f1, f2) = (f, 0) , the
components of the vector u are continuously differentiable, and u1 = ux,
u2 = uy for some twice-differentiable function u(x, y), the first-order
system (44)–(46) reduces to equation (3).
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We say that a vector u = (u1, u2) ∈ L2(Ω) is a strong solution of an
operator equation of the form (44), with given boundary conditions, if
there exists a sequence uν of continuously differentiable vectors, satis-
fying the boundary conditions, for which uν converges to u in L2 and
Luν converges to f in L2.

A sufficient condition for a vector to be a strong solution was formu-
lated by Friedrichs [6] (see also [10]). An operator L associated to an
equation of the form

(50) Lu = A1ux +A2uy +Bu,

where A1, A2, and B are matrices, is said to be symmetric-positive if
the matrices A1 and A2 are symmetric and the matrix

Q ≡ 2B∗ −A1
x −A2

y

is positive-definite, where B∗ is the symmetrization of the matrix B:

B∗ =
1

2

(
B +BT

)
.

If L is not symmetric-positive, then we may consider the equation

(51) ELu = Ef

for a non-singular matrix E chosen so that EL is symmetric-positive.
Define the matrix

(52) β = n1A
1
|∂Ω + n2A

2
|∂Ω,

where n = (n1, n2) is the outward-pointing normal vector on ∂Ω. Let
N (x, y), (x, y) ∈ ∂Ω, be a linear subspace of the vector space V, where
u : Ω ∪ ∂Ω → V . Suppose that N (x, y) depends smoothly on x and y.
The boundary condition that u lie in N is admissible if N is a maximal
subspace of V and if the quadratic form (u, βu) is non-negative on ∂Ω.

It is sufficient for admissibility that there exist a decomposition

β = β+ + β−,

for which the following three conditions hold:

i) The direct sum of the null spaces for β+ and β− spans the restric-
tion of V to the boundary;

ii) the intersection of the ranges of β+ and β− have only the vector u =
0 in common;

iii) the matrix µ = β+ − β− satisfies

µ∗ =
µ+ µT

2
≥ 0.
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If these conditions are satisfied, then the boundary condition

β−u = 0 on ∂Ω

is admissible for equation (44) and the boundary condition

wTβT
+ = 0 on ∂Ω

is admissible for the adjoint problem

L∗w = g in Ω.

Moreover, both problems can be shown to possess unique, strong solu-
tions.

Write the system (44)–(49) in the matrix form

(53) Lu=

(
x− σ(y) 0

0 −1

) (
u1

u2

)

x

+

(
0 1
1 0

)(
u1

u2

)

y

+

(
κ1 κ2

0 0

) (
u1

u2

)
.

We will show the existence of strong solutions to a subclass of equations
for the operator L.

Theorem 9. Assume that on the elliptic boundary of Ω

(54) bn1 + cn2 ≥ 0,

where n1 and n2 are components of the outward-pointing normal vector
at each point of ∂Ω, and where b and c satisfy, for K = x − σ(y), the
inequalities

2bκ1 − bxK − b+ cyK − cσ′(y) > 0 in Ω;(55)

(2bκ1 − bxK − b+ cyK − cσ′(y)) (2cκ2 + bx − cy)(56)

− (bκ2 + cκ1 − cxK − c− by)
2
> 0 in Ω;

2cκ2 + bx − cy > 0 in Ω;(57)

bn1 − cn2 ≤ 0 on (∂Ω)− ;(58)

and

cKn1 + bn2 ≥ 0 on (∂Ω)
−
,(59)

where (∂Ω)
−

is the hyperbolic boundary. Then equation (44), with L given
by (53) and the Dirichlet condition

(60) −u1n2 + u2n1 = 0

imposed on the elliptic portion of ∂Ω, has a unique, strong solution on Ω
for every f ∈ L2.
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Proof: Define the matrix

E =

(
b −cK
c b

)
.

Then the operator EL is symmetric-positive by conditions (55)–(57). In
order to show the existence of strong solutions on Ω it is convenient to
produce a decomposition of the matrix

(61) β =

(
K (bn1 − cn2) cKn1 + bn2

cKn1 + bn2 − (bn1 − cn2)

)
.

On the elliptic boundary, choose

β+ =

(
Kbn1 bn2

Kcn1 cn2

)

and

β− =

(
−Kcn2 Kcn1

bn2 −bn1

)
.

Then β−u = 0 under the boundary condition (60). Moreover, the inter-
section and range of the two matrices satisfy the conditions for admissi-
bility. We have

µ∗ = (bn1 + cn2)

(
K 0
0 1

)
,

so condition (54) implies that Dirichlet conditions (60) are admissible on
the elliptic part of the boundary.

On the hyperbolic boundary we choose β = β+ and choose β− to be

the zero matrix. Then the matrix µ∗ is nonnegative on (∂Ω)
−

by as-
sumptions (58) and (59). Because the other conditions for admissibility

are satisfied trivially on (∂Ω)
−
, the proof of Theorem 9 is complete.

Remarks. i) In order to show that inequalities (55)–(59) are non-vacuous,
we let σ(y) = y2, κ1 = κ2 = 0, b = M + NK/2, and c = Ny,
where M and N are negative constants, |M | is sufficiently large, and
Ω ⊂ R × R\R

−. Then (55)–(57) are satisfied. Moreover, inequali-
ties (58), (59) will be satisfied in a canonical basis (n1, n2) = (−dy, dx)
provided dy/ds and dx/ds are both nonpositive. This suggests that, un-
der the canonical choice of basis, the hyperbolic boundary in Theorem 9
could be a sufficiently thin lens in the first quadrant, the lower boundary
of the lens lying along the sonic curve. As a particularly simple example,
let the hyperbolic boundary be the arc of the circle

(x− 1)
2

+ y2 = 1
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connecting the points (0, 0) and (1, 1) . If |M | is sufficiently large, then
(54) requires only that dy/ds be bounded below away from zero on the
elliptic boundary.

ii) Under the same choice of basis, in the special case u1 = ux, u2 = uy,
we recover condition (32) from condition (60) and condition (33) from
the adjoint condition Ku1n1 + u2n2 = 0.

iii) A hidden smoothness assumption is contained in the choice of the
component f2 to be zero in equation (44), as that would imply, in the
case u1 = ux, u2 = uy, the equivalence of mixed partial derivatives of the
solution. Presumably such a condition would be violated at the origin,
at which point the difference of the mixed partial derivatives might be
a delta function. If the difference were somewhat smoother than a delta
function —that is, an L2 function, then the methods of this section could
be applied.

iv) There is a geometric analogy for condition (54): Consider a domain
which is star-shaped with respect to the flow of a given vector field D
satisfying (34). Then the boundary will be starlike with respect to D in
the sense that αn1 +βn2 ≥ 0, or, in terms of the basis used in remarks i)
and ii), β dx − αdy ≥ 0, on the boundary (c.f. [13]). We have avoided
imposing the hypothesis that Ω is D-star-shaped in Theorems 3 and 9,
although it would have been possible to do so formally. The reason is
that equations of the form (3) are only interesting if the origin is included
in the domain, whereas condition b2 +Kc2 > 0 of Theorem 3 and (55) of
Theorem 9 are problematic if b and c are homogeneous functions passing
through the origin.

6. Weak solutions in L
2

The fact that solutions to the closed boundary-value problems in Sec-
tions 3 and 4 lie in spaces in which a weight function vanishes at the
origin is a strong restriction on their generality. Theorem 9, with the
examples given in the remarks following it, demonstrates the existence
of strong solutions which lie in L2, even at the origin; but unfortunately,
the boundary conditions in that theorem are open. In this section we
show that the existence in L2 of weak solutions to open boundary-value
problems is easy to obtain for a wide class of boundaries by arguments
which are similar to those of [18].

Define G to be a subset of the non-characteristic portion of the bound-
ary, ∂Ω\Γ, where Γ denotes the part of the boundary consisting of char-
acteristic lines. Denote by W (Ω) the linear space of continuously dif-
ferentiable functions (w1, w2) on Ω, satisfying w1 = 0 on G, w2 = 0 on



226 T. H. Otway

∂Ω\{Γ ∪G},
(62) w1 dx+ w2 dy = 0 ∀ (x, y) ∈ Γ,

and

(L∗w)1 = [x− σ (y)]w1x + (1 − κ1)w1 + w2y,

(L∗w)2 = w1y − w2x

in Ω.
We define a weak solution to equations (44)–(46) with κ2 = 0, under

the mixed boundary conditions

u1 dx + u2 dy = 0 ∀ (x, y) ∈ G,(63)

[x− σ (y)]u1 dy − u2 dx = 0 ∀ (x, y) ∈ ∂Ω\{Γ ∪G}(64)

to be any u ∈ L2(Ω) such that ∀ w ∈W (Ω),

(w, f) = − (L∗w,u)

under the L2 inner product ( , ).

Theorem 10. Let the noncharacteristic boundary of Ω satisfy the dif-
ferential inequality

(65)
dy

dx
≥ −ty
m+ x

for a sufficiently large positive constant m and a constant t exceeding 1.
Take the curve G to be the elliptic boundary of Ω. Let the constant κ1 in
equation (45) exceed 1/2 and let κ2 = 0. Then ∀ w ∈ W (Ω) there exists
a positive constant C for which

(66) ‖w‖L2(Ω) ≤ C ‖L∗w‖L2(Ω) .

Proof: Define the functions b = −(m + x) and c = −ty. We will place
various conditions onm, all of which require that it be sufficiently large in
comparison with other parameters —κ1, t, |Ω|, |σ|max(Ω) and |σ′|max(Ω)—
as well as with certain explicit combinations of these parameters. By the
continuity of σ, we can choose m so large that the matrix

M =

[
b c

−Kc b

]

is non-singular on Ω, where K = x− σ(y). We have

(L∗w,Mw) =

∫∫

Ω

Qdxdy +

∫∫

Ω

S dxdy,

where
Q = αw2

1 + 2βw1w2 + γw2
2.
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In particular,

α =
1

2
K (cy − bx) +

(
1

2
− κ1

)
b− 1

2
σ′(y)c

=

(
κ1 −

t

2

)
x+

t− 1

2
σ(y) +m

(
κ1 −

1

2

)
+
ty

2
σ′(y).

We can choose m so large that α is bounded below away from zero on Ω.
Also,

γ = −1

2
(cy − bx) =

t− 1

2
,

β = −1

2
(Kcx + by + κ1c) =

κ1ty

2
,

and ∀ ε > 0,

2βω1ω2 ≥ − |κ1ty|
(
ω2

1

ε
+ εω2

2

)
.

Choose ε to be so small that |κ1ty| ε < (t− 1) /2 and m so large that
m [κ1 − (1/2)] > |κ1ty| /ε. Then there is a positive constant C for which

∫∫

Ω

Qdxdy ≥ C

∫∫

Ω

(
ω2

1 + ω2
2

)
dx dy.

Applying the Divergence Theorem, we obtain

∫∫

Ω

S dxdy =

∫∫

Ω

[
(−K)

(
tyw1w2 +

m+ x

2
w2

1

)
+
m+ x

2
w2

2

]

x

dx dy

−
∫∫

Ω

[
1

2
(−K) tyw2

1 + (m+ x)w1w2 +
ty

2
w2

2

]

y

dx dy

=

∫

∂Ω

[
(−K)

(
tyw1w2 +

m+ x

2
w2

1

)
+
m+ x

2
w2

2

]
dy

+

∫

∂Ω

[
1

2
(−K) tyw2

1 + (m+ x)w1w2 +
ty

2
w2

2

]
dx.
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It is not excluded that the hyperbolic boundary may include one
or more characteristic lines Γ. Repeatedly applying (62) to the terms
in w1w2 on the boundary integral over Γ, we obtain

1

2

∫

Γ

(
Kw2

1 + w2
2

)
[ty dx − (m+ x) dy] = 0,

where on the right we have again used (62), and also the characteristic
equations

dx

dy
= ±

√
−K;

c.f. [18, (3.24)–(3.26)].
On G, w1 = 0 and the boundary integral reduces to

1

2

∫

G

w2
2 [ty dx+ (m+ x) dy] .

On ∂Ω\{G ∪ Γ}, w2 = 0 and the boundary integral reduces to

1

2

∫

∂Ω\{G∪Γ}

w2
1 (−K) [ty dx+ (m+ x) dy] .

Both integrals are nonnegative by (65).
We have shown that

(L∗w,Mw) ≥ C||w||2L2

for some positive number C. Because the elements of M are bounded
on Ω, applying the Schwarz inequality to the inner product (L∗w,Mw)
yields for all w ∈ W and some new constant C > 0 inequality (66).

Corollary 11. Under the hypotheses of Theorem 10, for every f ∈ L2(Ω)
there exists on Ω a weak solution to the mixed boundary-value prob-
lem (44)–(46), (63), (64).

Proof: Apply the Riesz Representation Theorem as in [15] (c.f. [18]).

Remarks. i) This class of boundaries suggests the ice-cream cone-shaped
Tricomi domains (see, e.g., Section 2 of [12]), rotated by 90◦ in the
clockwise direction (so that the ice-cream cone is lying on its side, with
the cone formed by the intersecting characteristic lines in the second
and third quadrants). This rotation is expected, given the similarity
of equation (1) to the Cinquini-Cibrario equation, in which the sonic
curve is rotated 90◦ with respect to the sonic curve for the Tricomi
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equation (2). In fact, the sonic curve of (1) is approximated near the
origin by the sonic curve of the Cinquini-Cibrario equation.

ii) More generally, Theorem 10 and Corollary 11 remain true for any
choice of M for which

dy

dx
≥ −c

b

on the characteristic boundary, α and γ are bounded below by a positive
constant, and αγ − β2 is nonnegative.

iii) In the corresponding theorem of [18], the origin of coordinates was
forced to lie on the boundary of the domain. The question of whether
weak solutions to boundary-value problems for equations (44)–(46) can
be shown to exist for cases in which the origin is allowed to be an interior
point was raised in Chapter 3 of [25]. In allowing the origin to lie at
either a boundary point or an interior point, we have shown the answer
to that question to be “yes.”

7. Appendix. A multiplier identity

The proofs of Theorems 5 and 7 are based on a fundamental multiplier
identity for the composition of a second-order operator and a first-order
operator. The proof of the identity is elementary, as it is based on inte-
gration by parts followed by an application of the Divergence Theorem.
But due to its importance, we provide a full derivation (in slightly greater
generality than we need).

Define the operator L on functions v ∈ C3 (Ω) with v ≡ 0 on ∂Ω, by

Lv = K (x, y) vxx + vyy + κ1vx + κ2v,

where the type-change function K and the lower-order coefficients κ1 =
κ1(x, y), κ2 = κ2 (x, y) are all C3 functions. Define

Hv = av + bvx + cvy,

where a is a constant; c is a linear function of x and y; b is linear in x but
possibly nonlinear in y; b and c have vanishing mixed partial derivatives.
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Proposition 12.

∫∫

Ω

v · LHv dxdy =
1

2

∮

∂Ω

(
Kv2

x + v2
y

)
(c dx− b dy)

+

∫∫

Ω

ωv2 + αv2
x + 2βvxvy + γv2

y dx dy,

where

2ω = (Kxx−κ1x+2κ2) a−[(Kxx−κ1x + κ2) b]x − [(Kxx − κ1x + κ2) c]y ;

α =

(
cy − bx

2
− a

)
K +

(
3

2
Kx − κ1

)
b+

c

2
Ky;

2β = (Kx − κ1) c− (cxK + by) ;

γ =
bx − cy

2
− a.

Proof: Writing

LHv = K [(a+ 2bx) vxx + bvxxx + 2cxvyx + cvyxx]

+ (a+ 2cy) vyy + byyvx + 2byvxy + bvxyy + cvyyy

+ κ1 [(a+ bx) vx + bvxx + cxvy + cvyx] + κ2 (av + bvx + cvy) ,

we have

v · LHv =
16∑

i=1

τi,

where

τ1 = vK (a+ 2bx) vxx =

{[
(a+ 2bx)

(
Kvx − 1

2
Kxv

)]
v

}

x

−K (a+ 2bx) v2
x +

1

2
Kxx (a+ 2bx) v2;

τ2 = vKbvxxx

=

{
−1

2
Kbv2

x+

[
b

(
Kvxx−Kxvx +

1

2
Kxxv

)
+ bx (Kxv −Kvx)

]
v

}

x

− 1

2
(Kxxxb+ 3Kxxbx) v2 +

3

2
(Kb)x v

2
x;
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τ3 = 2vKcxvyx = 2 (vKcxvy)x −
(
Kxcxv

2
)
y
− 2Kcxvxvy +Kxycxv

2;

τ4 = vKcvyxx = {v [c (Kvyx −Kxvy) −Kcxvy ]}x

−
{

1

2
Kcv2

x −
(

1

2
Kxxc+Kxcx

)
v2

}

y

− 1

2

{
[Kxxyc+Kxxcy + 2Kxycx] v2 − (Kc)y v

2
x

}
+ (Kc)x vxvy;

τ5 = v (a+ 2cy) vyy = [v (a+ 2cy) vy]y − (a+ 2cy) v
2
y;

τ6 = vbyyvx =
1

2

(
byyv

2
)
x

;

τ7 = 2vbyvxy = (2vbyvx)y − 2byvxvy −
(
byyv

2
)
x

;

τ8 = vbvxyy

= −
(

1

2
bv2

y

)

x

+ [(bvxy − byvx) v]y +
1

2

[
bxv

2
y +

(
byyv

2
)
x

]
+ byvxvy ;

τ9 = vcvyyy = −1

2

(
cv2

y

)
y

+ [(cvyy − cyvy) v]y +
3

2
cyv

2
y;

τ10 = vκ1 (a+ bx) vx =
1

2

[
(a+ bx)κ1v

2
]
x
− 1

2
κ1x (a+ bx) v2;

τ11 = vκ1bvxx =

{[
κ1bvx−

1

2
(κ1b)x v

]
v

}

x

+
1

2
(κ1xxb+2κ1xbx) v2−κ1bv

2
x;

τ12 = vκ1cxvy =
1

2

[(
κ1cxv

2
)
y
− κ1ycx

]
v2;

τ13 = vκ1cvyx = (vκ1cvy)x − 1

2

[
(κ1c)x v

2
]
y

− κ1cvxvy +
1

2

[
κ1ycx + (κ1xc)y

]
v2;

τ14 = κ2av
2;

τ15 = vκ2bvx =
1

2

(
κ2bv

2
)
x
− 1

2
(κ2b)x v

2;

τ16 = vκ2cvy =
1

2

(
cκ2v

2
)
y
− 1

2
(cκ2)y v

2.
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Collect terms and integrate over Ω. Applying the Divergence Theo-
rem, taking into account that v (but not necessarily vx or vy) vanishes
on ∂Ω, completes the proof.

Similar estimates are applied, in the proof of Theorem 1, to a product
having the simpler form (Hv,Lv). The matrix identities which underlie
the proofs of Theorems 3 and 10 are analogous but also simpler, as the
differential operators in those cases are first-order and the equations are
in reduced form. In Proposition 12 the operator is effectively third-order
and there are zeroth-order terms in the equations.
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