ERRATA CORRECTION TO DIRECT SUMMANDS OF DIRECT PRODUCTS OF SLENDER MODULES

JOHN D. O'NEILL

Volume 117 (1985), 379-385

Two corrections are necessary.

LEMMA 4.2. Let I and T_1 be as given. Write $I = \bigcup_0^0 I_k$, $k \in K$ an ordinal, where, for each k < r, I_k is finite and equals $\{i \in I | t_i \text{ is maximal in } T_1 \setminus \{t_i | i \text{ is in some } I_j \text{ with } j < k\}$ and where $\{t_i | i \in I_r\}$ contains no maximal element or an infinite number of maximal elements. If I_r is not empty, it contains an infinite chain $i_1 < i_2 < \cdots$ such that, for each n, $t_i \neq t_i$ when every $i_1 \leq i \leq i_n$ and $i \in I_r$.

Proof of (4.3). In the first paragraph we change I_n to I_k . By factoring we may consider two cases. The case $I = I_r$ is like Case 1 in the paper. Consider the case where I_r is empty. For each k in K let $V_k = \prod_{j < k} (\prod_{I_j} R_i)$ and $V^k = \prod_{j \ge k} (\prod_{i_j} R_i)$. Now $V_k = A_k \oplus B_k$ with A_k in A and B_k in B. Also $A = A_k \oplus A^k$ where $A^k = A \cap (B_k \oplus V^k)$. Let $C_k = A_{k+1} \cap A^k$. For fixed $i \alpha_i(C_k) = 0$ for almost all k so $\prod_K C_k$ exists and is in A. If $a \in A$, we may find c_k in C_k for each k so that $a - \sum_{i < j} c_i \in A^j$ for each j. Now $a - \sum c_k \in \bigcap A^k \subseteq A \cap B$. So $a = \sum c_k$ and $A = \prod_K C_k$, a vector group.