ADDITIONAL NOTE ON SOME TAUBERIAN
 THEOREMS OF O. SZÁSZ

C. T. Rajagopal

1. An additional theorem. In the note [3] to which this is an addition, Theorem II is exhibited as a generalization of Theorem I and an appeal is made to Szász [6] to indicate the transition from Theorem II to the final result stated as Corollary III'. However, in view of the formal simplicity of Corollary III' $^{\prime}$ and the wide generality (reflected in its apparent complexity) of Theorem II, it seems worth while to adopt the opposite point of view and record a method, based on the following result, of deducing Theorem II and all related theorems (which cover Szász's) from Corollary III' [3, p. 384].

Theorem IV. If a (real) series $\sum_{n=1}^{\infty} a_{n}$ is (Φ, λ)-summable to s, where λ denotes the strictly positive increasing divergent sequence $\left\{\lambda_{n}\right\}$ subject to the additional condition $\lambda_{n+1} / \lambda_{n} \rightarrow 1$, and if the series satisfies the Tauberian condition:

$$
\begin{equation*}
\liminf _{n \rightarrow \infty} \frac{1}{\lambda_{n}} \sum_{\nu=n+1}^{m} \lambda_{\nu} a_{\nu} \geq 0, \quad m>n, \frac{\lambda_{m}}{\lambda_{n}} \rightarrow 1, \tag{1}
\end{equation*}
$$

then $\sum_{n=1}^{\infty} a_{n}$ is convergent to s. (Amnon Jakimovski [1, Theorem 1] gives the case $\phi(u)=e^{-u}, \lambda_{n}=n$.)

Proof. We have, by Abel's partial-summation lemma,

$$
\sum_{\nu=n+1}^{m} a_{\nu}=\sum_{\nu=n+1}^{m} \frac{\lambda_{\nu} a_{\nu}}{\lambda_{\nu}} \geq \frac{\lambda_{n}}{\lambda_{n+1}} \cdot \frac{1}{\lambda_{n}} \min _{n+1 \leq k \leq m} \sum_{\nu=n+1}^{k} \lambda_{\nu} a_{\nu}
$$

Hence, by (1),

$$
\underset{n \rightarrow \infty}{\lim \inf } \sum_{\nu=n+1}^{m} a_{\nu} \geq 0, \quad m>n, \quad \begin{aligned}
& \lambda_{m} \rightarrow 1 \\
& \lambda_{n}
\end{aligned}
$$

It is well-known [2, p. 33] that the above Schmidt condition is equivalent to the second alternative of hypothesis (12) of Corollary III' [3, p. 384]. Therefore this corollary establishes that $\sum_{n=1}^{\infty} a_{n}=s$.

2. Deductions from Theorem IV.

Corollary IV.1. In Theorem IV, (1) is implied by, and so can be replaced by, ONE of the following conditions:

Received August 4, 1954.

$$
\left.\left.\begin{array}{l}
\lim _{n \rightarrow \infty}-\frac{1}{\lambda_{n}} \sum_{\nu=n+1}^{m} \lambda_{\nu}\left(\left|a_{\nu}\right|-a_{\nu}\right)=0, \tag{2}\\
\lim _{n \rightarrow \infty} \frac{1}{\lambda_{n}} \sum_{\nu=n+1}^{m} \lambda_{\nu}\left|a_{\nu}\right|=0,
\end{array}\right\} \quad \begin{array}{ll}
& \lambda_{m}, \\
& \\
\lambda_{n}
\end{array}\right\} 1
$$

(Szász [6, Theorem 3] gives the case $\phi(u)=e^{-u}, \lambda_{n}=n$.)

Corollary IV.2. In Corollary IV.1, (2) can be replaced by the condition:

$$
\begin{array}{cl}
U_{n} \equiv \sum_{\nu=1}^{n} \lambda_{\nu}\left(\left|a_{\nu}\right|-a_{\imath}\right)=O\left(\lambda_{n}\right), & n \rightarrow \infty \tag{4}\\
\lim _{n \rightarrow \infty}\left(\begin{array}{c}
U_{m} \\
\lambda_{m}
\end{array}-\frac{U_{n}}{\lambda_{n}}\right)=0 . & m>n, \begin{array}{l}
\lambda_{m} \rightarrow 1 \\
\lambda_{n}
\end{array}
\end{array}
$$

(Szász [6, Theorem 2] gives the case $\phi(u)=e^{-u}, \lambda_{n}=n$.)
The above corollary is the same as Theorem II of my note [3]. We can deduce it from the preceding corollary merely by noting that (4) implies (2) ${ }^{1}$ as a result of letting $n \rightarrow \infty, \lambda_{m} / \lambda_{n} \rightarrow 1$ in the identity:

$$
\frac{U_{m}-U_{n}}{\lambda_{n}}=\left(\begin{array}{cc}
U_{m} \\
\lambda_{m}
\end{array}-\begin{array}{c}
U_{n} \\
\lambda_{n}
\end{array}\right) \frac{\lambda_{m}}{\lambda_{n}}+\frac{U_{n}}{\lambda_{n}}\binom{\lambda_{m}}{\lambda_{n}}, \quad m>n
$$

Corollary IV.3. In Corollary IV.1, (3) can be replaced by the hypothesis:

$$
\begin{align*}
V_{n} \equiv \sum_{\nu=1}^{n} \lambda_{\nu}\left|a_{\nu}\right|=O\left(\lambda_{n}\right), & n \rightarrow \infty, \tag{5}\\
\lim _{n \rightarrow \infty}\left(\frac{V_{m}}{\lambda_{m}}-\frac{V_{n}}{\lambda_{n}}\right)=0, & m>n, \frac{\lambda_{m}}{\lambda_{n}} \rightarrow 1,
\end{align*}
$$

which implies (3) exactly as (4) implies (2).
Plainly the last hypothesis (5) can assume the special form:

$$
\lim _{n \rightarrow \infty} \frac{V_{n}}{\lambda_{n}}=l
$$

$$
l<\infty .
$$

(Szász and Rényi [6, Theorems 1 and B] give the particular case $\phi(u)=$ $e^{-u}, \lambda_{n}=n$.)
3. A second additional theorem. Theorem IV is a deduction from Corollary III^{\prime} [3] and so ultimately from Theorem A [3, p. 378]. The following is another deduction from Theorem A deserving of mention.

[^0]Theorem B. Let $\phi(u)$ fulfill the conditions $\mathrm{C}(\mathrm{i})-(\mathrm{v})$ of the Introduction [3, p. 377]." Suppose that $A(u)$ is a (real) function of bounded variation in every finite interval of $(0, \infty), A(0)=0$. If

$$
\begin{equation*}
\frac{1}{u} \int_{0}^{u} x d\{A(x)\} \tag{6}
\end{equation*}
$$

is slowly decreasing, that is,

$$
\liminf _{u \rightarrow \infty}\left(\frac{1}{v} \int_{0}^{v} x d\{A(x)\}-\frac{1}{u} \int_{0}^{u} x d\{A(x)\}\right) \geq 0, \quad v>u, \frac{v}{u} \rightarrow 1
$$

and if $A(u)$ is Φ-summable to s, that is, if

$$
\begin{equation*}
\Phi(t)=\int_{0}^{\infty} \phi(u t) d\{A(u)\} \tag{7}
\end{equation*}
$$

exists for $t>0$ and tends to s as $t \rightarrow+0$, then $A(u) \rightarrow s$ as $u \rightarrow \infty$.
Proof. We write as before [3, pp. 377-378]:

$$
A_{1}(u)=\int_{0}^{u} A(x) d x, \quad \phi(u)=\int_{u}^{\infty} \psi(x) d x
$$

Then (7) gives successively [4, pp. 346-347], as $t \rightarrow+0$,

$$
\begin{gathered}
\Phi(t)=t \int_{0}^{\infty} \psi(u t) A(u) d u \rightarrow s, \quad \Phi_{1}(t)=t \int_{0}^{\infty} \psi(u t) \underset{u}{A_{1}(u)} d u \rightarrow s . \\
\Phi(t)-\Phi_{1}(t)=t \int_{0}^{\infty} \psi(u t)\left\{A(u)-u^{-1} A_{1}(u)\right\} d u \rightarrow 0 .
\end{gathered}
$$

Thus $A(u)-u^{-1} A_{1}(u)$ is Φ-summable to 0 and satisfies the Tauberian condition in (6). Hence, by a known result [4, Corollary 2.2] following from Theorem A [3], $A(u)-u^{-1} A_{1}(u)$ tends to 0 as $u \rightarrow \infty$. Consequently, by Theorem A [3], $u^{-1} A_{1}(u)$, and hence also $A(u)$, tends to s as $u \rightarrow \infty$.
4. Remarks. (i) Amnon Jakimovski [1, Theorem 1] has dealt with the case of Theorem B in which $\phi(u)=e^{-u}$ and

$$
A(u)=\left\{\begin{array}{c}
a_{1}+a_{2}+\cdots+a_{n} \text { for } n \leq u<n+1, n \geq 1, \\
0 \text { for } 0 \leq u<1
\end{array}\right.
$$

showing, by a modification of the method used above to prove Theorem B, that we may in this case replace (6) by

$$
\liminf _{n \rightarrow \infty}\left(\begin{array}{c}
U_{m}^{*} \tag{*}\\
m
\end{array}-\frac{U_{n}^{*}}{n}\right) \geq 0, \quad m>n,{ }_{n}^{m} \rightarrow 1
$$

[^1]where $U_{n}^{*} \equiv \sum_{\nu=1}^{n} \nu a_{\nu}$, leaving the statement of Theorem B otherwise unaltered. He also observes that (6^{*}) includes (or generalizes) the second half of (4) with $\lambda_{n}=n$, implying that, in Szász's result cited under Corollary IV.2, the first half of (4) is superfluous. This observation is, however, incorrect as shown by the following example.

Example 1. Let a_{n} be defined so that

$$
\left.\begin{array}{l}
n a_{n}=\nu \quad \text { for } \quad 4^{\nu} \leq n<2 \cdot 4^{\nu}, \\
n a_{n}=-n^{-2} \text { for } 2 \cdot 4^{\nu} \leq n<4^{\nu+1},
\end{array}\right\} \nu=0,1,2, \cdots
$$

Then it is easily verified that (4) with $\lambda_{n}=n$ holds because

$$
\sum_{\nu=1}^{n} 2\left(\left|a_{\nu}\right|-a_{\nu}\right)=o(n), \quad n \rightarrow \infty
$$

but that (6^{*}) does not hold since

$$
\begin{aligned}
& \text { if } n=2 \cdot 4^{\nu}, \nu \rightarrow \infty, \text { then } \frac{U_{n}^{*}}{n}=\frac{\sum_{k=0}^{\nu} k \cdot 4^{k}+O(1)}{2 \cdot 4^{\nu}} \sim \frac{2 \nu}{3}, \\
& \text { if } \left.m=\text { the integral part of } 2 \cdot 4^{\nu} \nu \nu, ~ \text { then } U_{m}^{*}=\begin{array}{c}
U_{n}^{*}+o(1) n \\
m
\end{array}\right) \frac{n}{m}
\end{aligned}
$$

where $(n / m-1) \sim-\nu^{-1 / 2}$, so that

$$
\left.\liminf _{n \rightarrow \infty}\binom{U_{m}^{*}-U_{n}^{*}}{m}=-\infty, \quad m>n, \begin{array}{l}
m \\
n
\end{array}\right)
$$

While the above example shows that (4) with $\lambda_{n}=n$ does not in general imply $\left(6^{*}\right)$, the one which follows makes it clear that neither does $\left(6^{*}\right)$ necessarily imply (4) with $\lambda_{n}=n$.

Example 2. Let a_{n} be defined so that

Then (6^{*}) holds since $U_{n}^{*} / n \rightarrow 0$ as $n \rightarrow \infty$. However, (4) with $\lambda_{n}=n$ does not hold since now

$$
U_{n}=\sum_{\nu=1}^{n} \nu\left(\left|a_{\nu}\right|-a_{\nu}\right)
$$

and we have:

$$
\text { if } n=2 \cdot 4^{\nu}, \nu \rightarrow \infty, \text { then } \begin{aligned}
& U_{n}=\begin{array}{c}
\sum_{k=1}^{\nu} k \cdot 4^{k} / 2 \\
2 n \\
2 n
\end{array} \sim_{3}^{\nu}, ~
\end{aligned}
$$

where $(n / m-1) \sim-\nu^{-1 / 2}$, with the result that

$$
\liminf _{n \rightarrow \infty}\left(\frac{U_{m}}{m}-\frac{U_{n}}{n}\right)=-\infty, \quad m>n, \stackrel{m}{n} \rightarrow 1
$$

(ii) In the definition of Φ-summability of $A(u)$, set forth in (7) and assumed in both Theorem A [3] and Theorem B, the integral $\Phi(t)$ is to be interpreted as a Lebesgue-Stieltjes integral (absolutely) convergent for $t>0$ unless further considerations, as in the case $\phi(u)=e^{-u}$, permit us to view it as a (non-absolutely) convergent Riemann-Stieltjes integral (cf. [5, p. 103, Note]).
(iii) In Theorem III [3, p. 383] the condition $\lambda_{n+1} / \lambda_{n} \rightarrow \infty$ of hypothesis (11) is a misprint for $\lambda_{n+1} / \lambda_{n} \rightarrow 1$.

In conclusion I wish to thank Dr. T. Vijayaraghavan ${ }^{3}$ and the referee for helpful suggestions.

References

1. Amnon Jakimovski, On a Tauberian theorem by O. Szàsz, Proc. Amer. Math. Soc., 5 (1954), 67-70.
2. J. Karamata, Sur les théorèmes inverses des procédés de sommabilité, Actualités Sci. Ind., 450 (1937).
3. C. T. Rajagopal, A note on some Tauberian theorem of O. Suàsz, Pacific J. Math., 2 (1952), 377-384.
4. , A note on generalized Tauberian theorems, Proc. Amer. Math. Soc., 2 (1951), 335-349.
5. Theorems on the produce of two summability methods with applications, J. Indian Math. Soc. (New Series), 18 (1954), 89-105.
6. O. Szász, On a Tauberian theorem for Abel summability, Pacific J. Math., 1 (1951), 117-125.

Ramanujan Institute of Mathematics
Madras, India

[^2]
[^0]: ${ }^{1}$ In fact (4) is equivalent to (2) as (2) implies (4) by an argument exactly like Szász's in the case $\lambda_{n}=n$ [6, Lemma 2].

[^1]: 2 These conditions can be slightly relaxed (for example, [5, Theorem A]).

[^2]: ${ }^{3}$ Who passed into the beyond on April 20, 1955.

