BOOLEAN ALGEBRAS WITH PATHOLOGICAL ORDER 1 OPOLOGIES

E. E. FLOYD

If L is a partially ordered set, there are a variety of known ways in which L may be given a topology compatible, in some sense, with its partial ordering (see [1, 6]). Examples, by Northam [3] and Floyd and Klee [2], have very recently appeared of complete lattices which are not Hausdorff in their order topologies. It appears, then, that the various topologies will not be central in the study of *all* complete lattices. The question remains as to whether or not there is some wide and natural class of lattices in which some compatible topology has nice properties. We give a very simple example of a complete Boolean algebra which is not Hausdorff in any topology compatible with the order. We also give an example of a conditionally complete vector lattice in which addition is not continuous in any compatible topology. This is a counterexample to a result of Birkhoff [1, p. 242], who overlooked the possibility that convergence in the order topology differs from order convergence.

DEFINITION. Suppose that (P, \geq) is a partially ordered set, and suppose that T is a topology for the set P (that is, T is a collection of subsets of P closed under arbitrary unions and finite intersections, and with $\phi \in T$, $P \in T$). We say that T is σ -compatible with \geq if and only if whenever (x_i) is a sequence in P with

$$x_1 \ge x_2 \ge \cdots$$
 and $\bigwedge x_i = x_i$

or

$$x_1 \leq x_2 \leq \cdots$$
 and $\bigvee_i x_i = x$,

then the sequence (x_i) T-converges to x.

THEOREM 1. Let L denote the complete Boolean algebra of all regular open subsets of the unit interval I, partially ordered by inclusion >. Suppose that T is a topology for L which is σ -compatible with >. Then the topology T is not Hausdorff.

Proof. Recall that a subset b of I is a regular open set if and only if b is the interior of its closure. L is known to be a complete

Received January 11, 1954. This research was supported by National Science Foundation Grant, NSF-G358.

Boolean algebra [1]. Let \mathcal{U} be a *T*-neighbourhood of the empty set $\phi \in L$. We show that $I \in \overline{\mathcal{U}}$. Suppose that U_1, U_2, \cdots , is a basis for the open sets of *I*, with each U_i nonempty. There exists for each *i* a sequence $(A_i^i | j=1, 2, \cdots)$ in *L* with

$$A_j^i \subset U_i, A_j^i \rightarrow \phi,$$

so that $A_1^i > A_2^i > \cdots$ and

$$\wedge (A^i_j|j=1, 2, \cdots) = \phi.$$

Since (A_i^1) converges to ϕ , there exists $A_i^1 \in \mathcal{U}$. Define $B_1 = A_i^1$. Since the sequence $(B_1 \setminus A_j^2)$ converges to B_1 , there exists j with $B_1 \setminus A_j^2 \in \mathcal{U}$. Define $B_2 = B_1 \setminus A_j^2$. Similarly there exists $B_3 = B_2 \setminus A_k^3 \in \mathcal{U}, \cdots$. Now (B_i) is a sequence in \mathcal{U} with $B_1 \leq B_2 \leq \cdots$. Moreover, since the only regular open set containing $\bigcup B_i$ is I, we have $\bigvee_i B_i = I$. Hence $I \in \overline{\mathcal{U}}$ and the theorem follows.

The following remark answers Problem 77 of Birkhoff [1, p. 167].

THEOREM 2. If L is the complete Boolean algebra of Theorem 1, then there exist, for $i=1, 2 \cdots$, sequences $(X_{i,j}|j=1, 2, \cdots)$ with $(X_{i,j})$ order-converging to ϕ for each i but such that for no function j(i) is it true that $(X_{i,j(i)})$ order-converges to ϕ .

Proof. Let $(X_{i,j})$ denote the sequence (A_j^i) of the proof of Theorem 1. Consider any function j(i), then

$$\bigvee_{i\geq k} A^i_{j(i)} = I$$
 .

Hence

$$\bigwedge_k \bigvee_{i\geq k} A^i_{j(i)} = I$$
.

Hence the sequence $(X_{i,j(i)})$ does not order-converge to ϕ .

THEOREM 3. Let L be the complete Boolean algebra of Theorem 1, and let M be a Stone representation space for L. Let N denote the lattice of all continuous real-valued functions on M. Then N is a conditionally complete vector lattice in which the function x-y is not T-continuous simultaneously in x and y for any T_1 -topology T for N which is σ -compatible with >.

Proof. It is known [4, 7] that N is conditionally complete. We may consider L as identical with the algebra of all open and closed subsets of M. There is a function $t: L \to N$ which assigns to $u \in L$ the

688

characteristic function t(u) of the open and closed set u. We show that t is an embedding of L in N. It is seen that t is an isotone oneto-one map of L onto t(L), and t^{-1} is an isotone map of t(L) on L. We prove that if $K \subset L$ then

$$\bigvee t(K) = t(\bigvee K)$$
,

where $\bigvee t(K)$ denotes the least upper bound in N. Clearly

$$t(\backslash K) \geq \backslash t(K)$$
.

Now $\bigvee t(K)$ is a nonnegative continuous function whose value is ≥ 1 on the set $\bigcup K$, and hence ≥ 1 also on its closure. But the closure of $\bigcup K$ is $\bigvee K$ [7]. Hence

$$t(\backslash K) \leq \backslash t(K)$$

and equality holds. The dual also follows. So t embeds L in N. It follows that t(L) is not Hausdorff in the topology T restricted to t(L). Hence N is not Hausdorff in the topology T. But if x-y is T-continuous in x and y, it is known that N is then regular [5, p. 54] and hence Hausdorff.

COROLLARY. Suppose, in addition to the hypotheses of Theorem 3, that the function $y \rightarrow -y$ on N is T-continuous. Then x+y is not T-continuous in x and y simultaneously.

This answers, in the negative, a part of Problem 4 of Rennie [6, p. 51].

References

1. G. Birkhoff, Lattice theory, New York, 1948.

2. E. E. Floyd and V. L. Klee, A characterization of reflexivity by the lattice of closed subspaces, Proc. Amer. Math. Soc. 5 (1954), 655-661.

3. E. S. Northam, Topology in lattices, Bull. Amer. Math. Soc., 59 (1953), 387.

4. T. Ogasawara, *Theory of vector lattices*, I. J. Sci. Hirosima Univ. Ser. A **12** (1942), 37–100.

5. L. Pontrjagin, Topological groups, Princeton, 1946.

6. B. C. Rennie, The theory of lattices, Cambridge, 1951.

7. M. H. Stone, Boundedness properties in function lattices, Canadian J. Math., 1 (1949), 176-186.

UNIVERSITY OF VIRGINIA