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SOME REMARKS ON VARIETIES IN POLYDISCS
AND BOUNDED HOLOMORPHIC FUNCTIONS

E. L. STOUT

This note deals with certain questions which arise in con-
nection with the extension problem for bounded holomorphic
functions of several complex variables.

An analytic variety V in the unit polydisc

is said to have the H™-extension property if for every / e H°°(V), the
space of bounded holomorphic functions on F, there is Fe H°°(UN) such
that FI V = f. A related property which V may possess is that of
being defined as a set by bounded functions in the sense that

V = {g e UN: fd) = 0 for all / e H~(UN) which vanish on V) .

We will begin with an example of a remarkably well behaved variety
V c UN which fails to have the if°°-extension property, and after this
we give an example of a one dimensional disc D embedded as a sub-
manifold of UN which not only fails to be defined as a set by bounded
functions but is, in fact, a determining set for H°°(UN) in that if
/Giϊoo(i7JV) vanishes on D, then / is the zero function. Positive
results obtained include a geometric condition for a Uk embedded in
a UN to be defined as a set by bounded functions and a result to the
effect that if a variety V has the if°°-extension property and if it
satisfies another, possibly redundant, condition, then V is defined as
a set by bounded functions.

The general problem of determining which subvarieties of UN

possess the iJ°°-extension property seems to be difficult, but some results
in this direction are contained in the papers [1] and [9].

We begin with an example of a disc contained in U2 which does
not have the i?"-extension property.

EXAMPLE 1. Denote by C* the Riemann sphere and in C* let

The set A is conformally equivalent to U. If we define Φ: C*\{1, — 1}—>C2

by φ(ζ) = ((1 - ζ2)-1, e(l - ζ)-1), then for all choices of e > 0, the
mapping Φ carries C*\{1, —1} biholomorphically onto a closed, algebraic
submanifold M of C2, and if ε is small enough, then M Π U2 = Φ(A)
so that Φ{A) is a disc embedded in U2. Assume that Φ(A) has the

813



814 E. L. STOUT

./^-extension property so that if feH"(Δ), there is FeH2(U2) such
that / = F oφ. Let h: Δ-* U be a conf ormal homeomorphism chosen
so that lim1/_>0+ h(iy) — 1 and \imy^-h(iy) = — 1. Our assumption on Φ{Δ)
implies that if δ > 0 is small enough, then there exists F e if °°(£/2)
such that \\F\\u2 ^ 1 and F(Φ(Q) = ίλ(C) for all ζeJ. In particular

(1) lim F(Φ(±iy)) = ±δ .
y-»0+

If z and w are points of U, set

[z, w] =
1 —

By the invariant form of Schwarz's lemma, we know that if g lies
in the unit ball of H°°(U), then

(2) [g(z),9(w)]£[z,w].

If we apply (2) to the function hv given for fixed η e U by /^(ζ) =
JP()7, ζ), then for 77 = (1 - (iy)2)-1, z = ε/(l - i#), 11; = e/(l + iy), we are
led to

Km [F(Φ(iy))f F(Φ(-iy))] ^ lim Γ ε , , ε . ] - 0 .
0-0+ 2/->o+ L 1 — %y 1 + ^7/ J

However, (1) implies that

lim 2δ

1 + O2

This contradiction shows that the disc Φ(Δ) does not have the ff°°-
extension property.

The present example is not the first known instance of this phe-
nomenon; another, more involved example was given in [9, Example
II. 7]. It can be show, at least for certain choices of the Blaschke
product involved, that example has the additional property of being a
determining set for H^iU2). The variety Φ(A) of the present example
is not nearly so pathological, for it is the intersection of U2 with the
zero set of a certain polynomial in two variables. Alexander [1] has
also given an example of a variety in U2 which lacks the £Γ°°-extension
property. His example is the intersection of U2 with a certain algebraic
curve, but it is not irreducible. In [8] Rudin has also given an example.

In connection with Example 1, it is interesting to consider the
composition φoψ where ψ is a conf ormal homeomorphism from the
unit disc to Δ such that ψ(0) = 00. If we let φt(ζ) = (1 - ζ2)-1, then
φxoψ is a two-to-one map from the disc onto itself, and it can be
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verified without difficulty that φ1 o ψ(z) = az2 for some a of modulus
one. Also, if φ2(ζ) = ε(l — ζ)-1, then φ2oψ is one-to-one from the disc
into itself, and it is not hard to see that if z0 and zx are the two points
in the unit circle carried onto 0 by φ, then φz°ψ continues across the
two arcs of the unit circle determined by z0 and zγ. These two points
are certain algebraic singularities of the function φ2 o ψ. These remarks
should be compared with the extension theorems for bounded holomorphic
functions proved in [9] and [10]; they show that those extension theo-
rems are essentially the best of their kind.

EXAMPLE 2. In this example we will construct in UN, N ^ 2, a
disc which is a determining set for H~(UN).

Let Ω = Ϊ7\[O,1), and let h: U-+Ω be a conformal homeomorphism
which takes 1 to 1, i to 0 and which has the property that Imh(Q j 0
as ζ—*eiθ if 0e(O, ττ/2). The function h admits a unique extension to
a continuous function from U to U.

Let rk = 1 — kr1, and let sλ > 0 be very small so that {rk + isk}
does not satisfy the Blaschke condition, i.e., this sequence is not the
zero set of a function bounded and holomorphic in U. If {sk} is chosen
properly and if ak = h"x{rh + isk), the sequence {ak} will satisfy the
Blaschke condition. Let B be the Blaschke product with {ak} as its
zero set, and define Φ by Φ(ζ) = (h(ζ), B(ζ)). The sequence {ak} converges
to the point 1, so it follows that at every point of 3 £7, either | J51 or
I h I assumes continuously the value 1. Since h! is zero-free and h is
one-to-one, it follows that A — Φ(U) is an analytic submanifold of U2.

We will prove that if F e H°°(U2) and Fo Φ = 0, then F is the zero
function, i.e., that A is a determining set for H~(U2). If FeH~{U2)
vanishes on Φ(U), then F(rk + ίsfc, 0) = 0 for all k, so since {rk + isk}
does not satisfy the Blaschke condition, F must vanish identically on
the disc D — {(z, 0):\z\ < 1}. If F does not vanish identically, there
is a factorization F(z, w) = wpG(z, w) where p is a positive integer and
G a bounded holomorphic function which does not vanish identically on
D. As F vanishes on Φ(U), G must also. This implies, as we have
just seen, that G(rk + isk, 0) = 0 whence G vanishes on the disc D,
contrary to hypothesis.

Thus we have a disc in U2 which is a determining set for H°°(U2).
It is quite simple, using the existence of this disc, to find a disc in
UN,N^2, which is a determining set for H°°(UN). We proceed
inductively. Suppose that A c Uk is a disc which is a determining set
for H~(Uk). Then Uk+1 = Uk x U^A x U. The set A x U is bi-
holomorphically equivalent to U2 so there is a one dimensional disc Δr

which is a determining set for A x U. Suppose that F e H°°( Uk+1)
vanishes on A'. If we take on Uk+1 the coordinates (3, ζ), 5 6 Uk, ζ e U,
then since A' is a determining set for A x U, it follows that for each
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ζ G U, F( , ζ) vanishes identically. As this holds for every ζ e U, F
must be the zero function.

Our next example is a direct consequence of the construction given
in Example 2.

EXAMPLE 3. In UN, N ^ 3, there exist irreducible varieties V
which are at positive distance, in the sense of the usual metric on CN,
from the distinguished boundary, TN, of UN and yet which are not
defined, as sets, by bounded functions. To optain such an example,
let Δ be an irreducible variety, e.g., a disc, which is a determing set
for H°°(U2). The set Δ x {0} c U2 x UN~2 = UN is an example of a
variety of the desired kind.

This example is of interest because it contracts markedly with a
theorem of Rudin [7] according to which if V c UN is a variety of
codimension 1 which is at positive distance from TN, then not only
is V defined as a set by a single bounded function, but, in addition,
there is an F e H°°( UN) with the property that every function holomor-
phic in UN and vanishing on V admits a factorization G = FH, H
holomorphic in UN.1

Our next result gives a sufficient condition for a disc or polydisc
contained in UN to be defined, as a set, by bounded holomorphic
functions.

THEOREM 4. Let Φ: Uk —> UN be a proper, holomorphic map,
k ίg N, say Φ(g) = (^(j), , φN(ί)) If there is a d > 0 with the
property that for each 3 e Uk at least N — k of \ φ^) \, , | φN($) |
are no more than 1 — d, then the variety Φ(Uk) is defined as a set
by bounded holomorphic functions.

Let us remark that since Φ is proper, Φ(Uk) is a variety by [4,
Th. V.C. 5].

Proof. Consider first the case that k = 1. Let

K = {(zι, ^ . , z N ) e U N : \ z L \ , ., \ z N \ S 1 - §} .

The set Φ~ι{K) is compact, and by the maximum modulus theorem no
component of the set Σ = U\Φ~ι{K) can be bounded away from dU,
so Σ is connected. If ζ e Σ, then for some j , | ̂ (ζ) | > 1 — δ. Let

Σd = {ζeΣ:\φj(Q\>l-δ}.

1 Added in proof. Y.-T. Siu in his paper Sheaf cohomology with bounds and
bounded holomorphic functions, Proc. Amer. Math. Soc. 2 1 (1969), 226-229, has given
a cohomological proof of this and a related result.
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The sets Σ3 are all open, they are pairwise disjoint, and their union
is the connected set Σ. Thus one of them, say Σ19 is the whole of Σ
and all the other Σo are empty. The map Φ is proper so it follows
that I (pΛζ) I —> 1 as | ζ | —> 1. (Although we do not need this fact, it
follows that φx is a finite Blaschke product.)

Now consider the case of general k. By [8, Th. II. 3], we may
reindex the functions φ19 •••, φN, so that if g = (zιy •••, zN), then for
1 <^ j <L k, ψj{ι) depends only on z5 and so that if

φf(eίθ) = l i m ^ r e ^ ) ,

then |cp*(β^) i = 1 on a set of θ's of positive measure. It follows that
we can choose z\, « ,^L of modulus less than one so that for some
η, 1 > η > I φό{z)) I > 1 - δ. Define f: U-> Ϊ7* by

The map α/r is proper, so Φ o ^ is a proper map from U into EP. We
have that of the N coordinates of Φ(ψ(ζ)), k — 1, viz., φ2{zQ

2),
exceed 1 — δ, so by our hypothesis on Φ, at least N ~ k oί
[φ fc+1(ψ(ζ))|, •••, \φN(f(ζ))\ are less than 1 - δ. Thus the map Φ ° f
has the property that if Φoψ(ζ) = (^^ . . . , ^ ^ ) , then at least N — 1
of I wL I, , I wN I are less than η. By our consideration of the case
k — 1, it follows that one of | φ11, | <̂ »A.+1 o ψ |, . . . , | ^ o ^ |, tends to one
at the boundary of the unit disc while the others remain bounded
away from one. As | φf \ = 1 on a set of positive measure, we may
conclude that \φ1(z1)\-+l as \zι\—>1. In the same way we can show
that I φjizj) 1—1 as | z3- \ -> 1, 2 ^ j ^ k.

Let π: Z7̂ —> Uk be the natural projection onto the first k coordi-
nates, and set V = Φ(Uk). We know that V is a variety, and what
we have done implies that π carries V properly onto Uk. Thus the
triple (V,π\ V, Uk) is an analytic cover so our result is a consequence
of the following general fact.

LEMMA 5. Let flcCm and Ω'czCn be bounded domains, let 7 c
Ω x Ωr be a purely m dimensional variety, and let π: Ω x Ωr —• Ω be
the natural projection. If (V, π\V, Ωf) is an analytic cover, then V
is defined as a set by bounded holomorphic functions on Ω x Ω\

This lemma is contained in the proof of [4, III. B. 19].

We finish with a result which partially-only partially-answers an
obvious question: If the variety V c UN has the ίZ"°°-extension pro-
perty, does it necessarily follow that V is defined as a set by bounded
holomorphic functions? It seems probable that this question has an
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affirmative answer without qualification on the variety V, but we are
able to prove a result in this direction only by making an additional
assumption.

THEOREM 6. If Vcz UN is a variety with the Ή.™-extension pro-
perty and if V is open in the spectrum of H~(V), then V is defined
us a set by bounded holomorphie functions.

We understand by the spectrum of a commutative Banach algebra
A the space consisting of the nonzero complex homomorphisms of A
taken with the weak* topology. We denote the spectrum of A by Σ(A).

Proof. We define an ideal I^iV) and a variety V by

I-(V) = {/ e H"{UN): f vanishes on V]

and

V = {5 e UN: fd) = 0 for all / e I~(V)} .

The variety V evidently contains V and we will prove, under the
hypotheses of the theorem, that V = V. The restriction map p from
H~{UN) to H°°(V) is onto and consequently Σ(H°°(V)) can be identified
with the set

{φeΣ(H~(U")):φf = 0 if feI~(V)}.

This set contains V in a natural way and as V is assumed to be open
in Σ(H~(V)), it follows that V is an open subset of V. Plainly, V
is closed in V.

As V ZD V, the hypotheses of the theorem imply that the restriction
map pf from H°°(V) to H°°{V) is onto so we can identify Σ(H°°(V)) with

{φ e Σ(H~( V));φf = 0 if fe ker p'} .

The characteristic function χ of V\V lies in H~(V) since V is open
and closed in V. Since χekerp', it follows that Ϋ\V cannot meet
Σ(H~(V)). We know that VaΣ(H~(V]) so we conclude that V= V
as was to be proved.

Our formulation of Theorem 6 suggests another question: // V
is an analytic variety, is it open in ^(ίΓ^V))? This question does
not seem to have an obvious answer even for subvarieties of a polydisc
though it does seem likely that generally V is open in Σ{H°°(V)). The
following remarks are relevant.

REMARKS 7. (a) It is well known that the unit disc is open in
Σ(H~{U)). (See [5].) Similarly, UN is open in Σ{H~{UN)).
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(b) It is not hard to see that for many familiar open sets S in
CiV, e.g., balls, special analytic polyhedra [4], S is open in Σ(H°°(S)).

(c) For general one dimensional varieties V, we do not know that
V is open in ΣiH^iV)), but the following rather ad hoc argument
settles the question for certain Riemann surfaces. Let R be an open
connected Riemann surface of finite genus so that R ~ R\E, Rγ a
compact Riemann surface and E a closed subset thereof. // H°°(R)
contains a nonconstant function, then R is open in Σ(H°°(R)). Since
R is contained in a compact surface and H^iR) contains a nonconstant
function, it follows easily from the Riemann-Roch theorem that H°°(R)
separates points on R. (In the case that Rγ is of genus zero, this
sort of result is in papers of Rudin [6] and Wermer [11]; the case of
general, finite, genus follows in an analogous way.)

Let ζ0 e R. By the Riemann-Roch theorem there exists a function
h meromorphic on the ambient surface Rx which has only one pole,
that at ζ0 and of assigned order p if p is large enough. Thus, for a
suitable function h, e H°°(R), the function H = hht will have at ζ0 a
simple pole, it will be holomorphic on i?\{ζ0}, and it will be bounded
off a neighborhood of ζ0. Define an operator T: H°°(R) —> H°*(R) by

T(f) = (/ - f(Q)H .

The properties of the function H show that T is a bounded linear
operator on H°°{R) and that

T(fg) = gT(f) + f(ζQ)T(g) .

Thus in the terminology of Banaschewki [3], T is a bounded derivation
of type (I, ζ0). By Proposition 1 of [3], a result previously obtained by
Bishop [2], there is a homeomorphism Φ from the open unit disc U
onto an open set in Σ(H°°(R)) such that Φ(0) = ζ0 and such that if
/ G i?°°(i2), then foφ is holomorphic on U. Since there is a disc in
R through ζ0, it follows from the openness of Φ(U) in Σ(H°°(R)) that
some neighborhood of ζ0 in R is at the same time a neighborhood of
ζ0 in Σ(H~(R)). It follows that R is open in Σ(H°°(R)) as was to be
proved.

We are indebted to the referee whose suggestions have led to
material simplifications of several points in the paper.
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