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POSITIVE HOLOMORPHIC DIFFERENTIALS
ON KLEIN SURFACES

NEWCOMB GREENLEAF AND WALTER READ

Let 36 be a compact Klein surface with boundary dX, and
let έ? be an orientation of dX. We conjecture that there is
a holomorphic differential which is positive on έ? if and only
if & is not induced by an orientation of X, and we prove
this when 36 is elliptic or hyperelliptic.

Let 26 be a Klein surface, with underlying topological space X,
and let η be a meromorphic differential on X (for basic definitions
and results see [1], [2]). If geJ£(X) is a nonconstant meromorphic
function, then there is a unique f eE(£) such that rj = f cZg.

Let B be an oriented component of 3X, and let - β be the same
component with the opposite orientation. For xeB choose a local
parameter g e E(£) such that g is increasing on B near x. We say-
that 7] is positive on B at x if η = f dg with 0 < f(&) < <χ>, and that
rj is positive on B if it is positive at all xeB. It is easily checked
that this definition does not depend on the choice of local parameters.
Further η is positive on ΰ or — B if and only if it has no zeros or
poles on B, and if η is positive on B, then —η is positive on —B.

By an orientation #> of dX we mean an orientation of each com-
ponent of dX. If dX has r components, then it has 2 r orientations.
If X is orientable, then two of these are induced by the two possible
orientations of X. If ~η is positive on each component of ^ , we will
say that it is positive on ^ , and that & has a positive differential.

In this note we investigate the following question: if X is a
compact Klein surface and & is an orientation of dX, does & have
a positive holomorphic differential. Our first result is in the negative
direction.

THEOREM 1. Let 3c be a compact orientable Klein surface, and
let & be an orientation of dX induced by an orientation of X. Then
& has no positive holomorphic differentials.

Proof. Let %t be the analytic structure which is contained in the
dianalytic structure 36 and which corresponds to the orientation of £
which induces ^ . If rj is a holomorphic differential on X, we can
as well regard it as a differential on 3EX, and we can then apply the

Cauchy integral theorem to obtain \ η = 0. If η were positive on

<^, this integral would be strictly positive. Note that this proof
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extends to meromorphic differentials of the second kind which have
no poles on dX.

We conjecture that if an orientation & is not induced by an
orientation of X, then it has a positive holomorphic differential, but
we can so far prove this only in the cases 3c elliptic or £ hyperelliptic
(i.e., when X can be represented as a double cover of the compactified
upper half plane S).

THEOREM 2. Let 36 be an elliptic or hyper elliptic Klein surface
and let & be an orientation of dX not induced by any orientation
of X. Then έ? has a positive holomorphic differential.

Proof. Let X be an elliptic or hyperelliptic with r ^ 1 boundary
components. We can find meromorphic functions f, g which generate
E(H) over the reals, with f2 = H(Q), where H is a real polynomial of
degree n without multiple factors. Then the mapping associated with
g represents 36 as a double cover of ®, which is ramified at the zeros
of H, and also at oo if n is odd. If H has no real zeros, then r = 1
or r = 2, depending on whether n/2, the number of ramified points
in the interior of 2), is odd or even. If H has m ^ 1 real zeros, then

The genus of X is 7 = [(n — 1)/1], and the differentials {dg/f,
• , g7""1 dg/f} form a basis over R for the space of holomorphic differ-
entials on H (see [3], p. 293). X may have two real points, one real
point, or one complex point at infinity. The differential c£g/f has all
of its zeros at infinity. In the first case it has zeros of order 7 — 1
at each such point, in the second a zero of order 27 — 2, and in the
third a zero of order 7 — 1.

Assume now that H has no real zeros. Then X is orientable. If
r = 1, then every orientation of dX comes from an orientation of X,
so there is nothing to prove. If r = 2, then 7 — 1 = n/2 — 2 is even.
The differential (g7"1 + 1) dg/f has no zeros on dX and hence is positive
with respect to some orientation έ?, and its negative is positive on

Now assume that H has m 2> 1 real zeros. By choosing, if neces-
sary, a new generator for JB(g), we may assume that X has a single
complex point at infinity. Then H has 2r real zeros, and n = 2(r + s),
where s is the number of irreducible quadratic factors of H. Let
the real zeros of H, in increasing order, be alf blf , ar, br, and pick
Cj between bj and α i+1, j = 1, , r — 1. Then the components of dX
lie over the intervals [ajy b5], j = 1, , r. Let J c {1, , r — 1} be
any set of cardinality at most 7 — 1, and set
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VJ= Π ( 9 - cά)-dQl\ .
j e j

Each of the differentials ±ηΊ is positive with respect to a different

orientation of dX. Hence for 7 ^ r we obtain positive differentials

for all 2 r possible orientations of dX, and the theorem is proved. So

assume that 7 < r. Since r + 1 — n/2 = r + s, we must have s = 0

and 7 = r — 1. Because s = 0, X is orientable, and because 7 = r — 1

we can use all subsets J except J— {1, « , r —1}. We have thus

obtained positive differentials for 2 r — 2 different orientations of dX,

and have completed the proof of the theorem.
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