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ON THE NUMBER OF POLYNOMIALS OF
AN IDEMPOTENT ALGEBRA I

G. GRATZER AND J. PLONKA

This paper deals with the number p»(2ϊ) of essentially n-
ary polynomials of an idempotent universal algebra 5ί. Under
the condition that there is a commutative binary polynomial it
is proved that j>w+i(8ί) ^ pn(%) + (n- 1), provided pn($L) Φl. If
• is also associative this inequality is improved to

p»+i(«) ^ p*(«) + 1 + max {pn(%), n + 1} .

A sequence p = <j)0, ply •)> is called representable (see [6]) if for
some algebra St, pΛ = pn{%) for all π ^ 0. The basic problem is the
characterization of representable sequences. Earlier results on repre-
sentability (see [5] and [6]) were of the type that sequences satisfy-
ing some very mild condition (e.g., p0 > 0) are all representable, and
so the Pi are independent.

In this paper we make a first attack on the idempotent case
(Po = Pi — 0, in other words, f(x, , x) = x for every operation / ) .
We conjecture that for idempotent algebras the pn{%) are not indepen-
dent. In fact, we think that with one exception the sequence <(p»(2ί)>
is increasing from some m. Our general conjecture is the following:

Conjecture. Let §1 be an idempotent algebra different from the
idempotent reduct of a Boolean group.1 Then there exists an integer
m such that 1 < pn{%) < y$0 implies that pn{%) < p»+i(3ί) for every
n > m.

To verify this conjecture one should make use of K. Urbanik's
[9] classification of idempotent algebras using the set

Zm = {n\n^2fPM) = 0} .

The structure of Sί is quite well determined by Z(%) except if Z{%) —
0 , or Z{%) = {2}. In this paper we take up part of the case Z{%) —
0 . If Z(%) — 0 , then p2{%) Φ 0, hence there exist binary polynomials;
we shall discuss the case when there exist commutative binary poly-
nomials.

THEOREM 1. Let 21 be an idempotent algebra having a commuta-
tive binary polynomial. Then pn(W) Φ 1 implies that

1 Let <G; +> be an abelian group; it is called Boolean if 2x — 0 for all xθG. The
algebra <G; gr>, where g is a ternary operation defined by g(x, y, z) = x + y + z is
called the idempotent reduct of <G; +>.
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( 1 ) Pn+i(2t) ^ VM) + (n - 1) .

The commutative binary polynomial that is assumed to exist is
either associative or nonassociative. Accordingly, the proof of Theorem 1
splits into two completely different cases. In the nonassociative case
one observes that for n > 2 the assumption pn(Ά) Φ 1 is superfluous
(since p3(2ϊ) ^ 3 ) . In the associative case we can prove a result that
is much sharper:

THEOREM 2. Let 21 be an ίdempotent algebra having a commuta-
tive and associative binary polynomial. Then pn(%) Φ l(n ^ 2) im-
plies that

( 2 ) pn+1(SSL) ^ pM) + 1 + max {pn(3t), n + 1} .

The example given in § 2 will show that the two inequalities making
up (2) are sharp.

Many conclusion can be drawn from Theorems 1 and 2.
Let us call a sequence <(̂ )> conditionally strictly increasing if

1 < Pi < Wo implies p{ < pi+1.

COROLLARY 1. Let 21 be an idempotent algebra having a com-
mutative and associative binary polynomial. If the sequence

is not conditionally strictly increasing for any n ^ 2, then SI is
equivalent to a semilattice.

COROLLARY 2. The only representable sequence <Ό, 0, p2, p3, •)>
satisfying p2 — 1, pz ^ 2 for which ζpn, pn+ίJ •)> is not conditionally
strictly increasing for any n ^ 2 is <(0, 0,1, , 1, •••)>.

The last condition of Corollary 2 is satisfied if the sequence <pΛ>
is assumed to be bounded. Under this assumption the conclusion of
Corollary 2 is the same as the conclusion of the Theorem in [4] (however,
the other assumptions in [4] are weaker than those in Corollary 2).

COROLLARY 3. Let 31 be a commutative idempotent groupoid (i.e.,
an algebra with a single binary operation). If 21 is not equivalent
to a semilattice, then for n ^ 3

( 3 ) pM) ^ { n ~ ^ ~ 2 )

Δ

Since 21 is not equivalent to a semilattice the binary polynomial
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is not associative. Hence ί?3(2ί) ^ 3. Thus by (1):

3>.(St) ^ Pn-M) + (n - 2) ^ . . ^ (n - 2) + . . . + 2 + 3

_ (n- !)(» - 2) o
+ 2 .

A weaker result, namely pΛ(2l) > w was proved by J. Dudek [1].
A stronger result, namely

is proved in [3].
A rather unexpected application of Theorem 2 is given in [3].
For the notation and basic concepts used in this paper see [2].
In §2 we present some facts concerning binary operations. Con-

structions of (n + l)~ary polynomials from w-ary ones are given in § 3.
The inequality pn+1 ^ 2pn + 1 is proved in § 4, while pn+1 >̂ pn + n + 2
is proved in § 5, concluding the proof of Theorem 2. Finally, Theorem
1 is verified in §6.

2* Binary operations. Let us consider an algebra 2ί = ζA; , o>
with two binary operations and o satisfying the following set of
identities:

(4) x-x = x9 x-y = y-x, x (y-z) = (x-y) z

( 5 ) X o x — x, x o (y o z) — (x o y) o z, X o (y o z) = X o (z o y)

( 6 ) (x-y)°Z = (α o ^ ) . ^ oίg), Xo(y.Z) = (χoy).(χoz)

( 7 ) (a? i/)oaj = α>?/ ,

that is <(A; •> is a semilattice and o is a partition function in the
sense of J. Plonka [8]. It follows from the identities (4) — (7) (and
more directly from Theorem 1 of [8]) that for n ^ 2 this algebra has
exactly 2* — 1 essentially w-ary polynomials. These can be described
as follows: Let {xiQ, , xi/c}> {xik+ι, , #;W_J be a partitioning of
{x0, •••, xn^} into two nondisjoίnt sets; then

(8) (χio-χh xh) o (xik+ί xinj

is an essentially w-ary polynomial, and every essentially w-ary poly-
nomial excepting xQ xn_t has a unique representation in this form,
yielding p.(SC) = 2 - 1.

Since 2%+1 - 1 = 2(2" - 1) + 1, the inequality pn+1 ^ 2pn + 1 cannot
be improved. Also, for w = 2 we get p2 = 3, p3 = 7, that is p3 = p2 +
2 + 2. Hence pn+1 ^ pn -r n -h 2 cannot be sharpened to pn+ι ^pn +
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n + k for any k > 2.
All polynomials of the form (8) can be proved distinct under

rather mild conditions:

LEMMA 1. Let ζA; •)> be a semilattice and let o be an idempotent
essentially binary operation which is noncommutative, and satisfies

( 9 ) (x-y)°z = x (y°z) .

Then all the polynomials given in (8) are distinct, essentially n-ary,
and different from x0 a?w-1.

Proof. If (8) does not depend on x4. then by symmetry, (8) does
not depend on any variable in the same group. By identifying the
variables in the same group we get that x o y is not essentially binary.
The first group of variables can be distinguished from the second by
the fact that by (9) they can be brought outside. This cannot be
done by any variable in the second group because it would imply the
commutativity of o. This also shows that (8) is distinct from x0- •••
•»«-!, completing the proof of Lemma 1.

Another lemma we need deals with commutative binary operations.

LEMMA 2. Let and + be distinct idempotent binary commuta-
tive operations, and let be associative. Then the polynomials

(x + y) + z, (y + z) + x, (z + x) + y, (x + y)-z, (y + z) x,

(z + x) y, (x y) + z, (y z) + x, (z-x) + y

are all essentially ternary and at least seven of them are distinct.
The polynomial x y z cannot equal any one of these.

The proof is a straightforward combination of Lemmas 1-4 of [7],
including the statements made in the proofs of the same.

3* Constructions of polynomials* In this section we deal with
an idempotent algebra having a fixed binary commutative and associa-
tive polynomial •; for brevity, we sometimes write xy for x y. Let
p be an w-ary polynomial. We define n + 1 constructions: Mo, ,
Mn^ and S:

(11) pMi = p(xQ, , xt_19 xcxn, , xn^)

(12) pS - p-xn .

Let Pn denote the set of all essentially w-ary polynomials.
The next six lemmas describe the behaviour of the M{ and of S.
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LEMMA 3. Mi is a one-to-one map of Pn into P Λ + 1 .

Proof. We prove the statement for i = 0. Let p e Pn. Then
pM0 — p(xoxnJ xίf , %„-!) — #. Since the substitution xQ = xn in q
yields p we get immediately that (i) Mo is one-to-one; (ii) pM0 depends
on x19 , xn_^ and on at least one of x0 and xn. Since xQ and a?Λ are
symmetric in q, q depends on both, completing the proof.

LEMMA 4. S is a one-to-one map of Pn into Pn+ί.

Proof. Let pePn. Substituting x0 — = xn_λ in pS = pxn we
get xoxn depending on x0 and xn; thus £>£„ depends on xn. If pα?Λ does
not depend on xL (0 ̂  i < ^) , then p(α;0, , x^ pίv^ , l/»_i) depends
neither on #,- nor on ̂  by the commutativity of , contradicting the fact
that after the substitution xs = ys, 0 ^ j < n, the polynomial depends
on Xi. Now let p, q e P n , ^S = qS, that is p^% = qxn. Substituting
xn = p, then xn = g we get

p = p . p = g.p = p.g = g.g = q ,

completing the proof.

REMARK. Note that Lemmas 3 and 4 do not use the associativity
of . These lemmas are applied in these more general forms in [3].

LEMMA 5. Let i Φ j , p, qePn. Then pM{ = qMs implies p = q.

Proof. To simplify the notation let i = 0, j = 1. Then

(13) p(x0

Compute:

J>(αw,, XM, x»

Hence

(14)

Similarly,

(15)

Substituting x0, xx

rf\ί/y* /y* /y* /γ
//I e*/QιΛ/1 , iλSQtl/

(16)

(14)-(16) give p =

xΛ, x,, •", «„_!> = q(x0, xγxn, •",

• , xn—ι) ==z q(Xoi XiVίVoi *'') : = : '

P(χί>,χ1, ' ) = p(xί>χ1,χoχ1, )

/y//y /y» _ _ \ ——- /*V| /Ύ* A* /\* /Ύ 1

and α?Λ by xQx1 (13) yields

ι> '''}llt2',xχZZί .'.'.')=
g, as required.

•) •
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LEMMA 6. Let p, q e Pn. Then pM{ = qS implies p = q.

Proof. To simplify the notation let i = 0. Then

(17) P(%QXn, Vu , β*-l) = 9(^0, ' , %n-l)Xn

Therefore,

q(xoy, xlf -)xn = p(xoxny, x19 •) = 9θ»o, )%ny

= 9(1/, •)#<>&* = ^ ^ n , )2/

Now compute (applying (18) in every step):

qMQ = g(a?oα«, a?lt •) = 9 ^ * ,

Hence
= qS = qM0 ,

and so by Lemma 5 we conclude that p = g.

LEMMA 7. Le£ p,g e Pw, αwc? i Φj. Then pMi = pM5 if and only if

— PV^O) " " > ̂ i ^ j > * * j %i%jj * * * > %n—l)

Proof. Let i = 0, j = 1, and assume (19), that is,

(20)

Then

Conversely, if pMQ — pMu then

(21) p(xQxn, %ι, •) = 2>(ί»o, ^iί»», •) ,

a n d so

p(x0, x19 . . . ) = p(xoxo, x l y •) = ( 2 0 ) p ( ^ 0 , ^o^i, •)

= p(xQ, (XoX^Xy, •) = pfaoff!, ajo^i, •) ,

completing the proof.
Finally, we introduce some notations that will be useful in the

sequel, and using these we characterize semilattice polynomials.
For pePn let G(p) denote the group of all permutations a of
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{0, , n — 1} satisfying

(22)

G(p) is the symmetry group of p, and it is a subgroup of S(%), the
symmetric group on n letters. Then

LEMMA 8. The index of G(p) in S(n) is the same as the number
of polynomials arising from p by permuting the variables.

Proof is obvious.
For a G S(n), pePn define pa e Pn by

Note that a e G(p) if and only if p = pα .
Let PΛ+1(i) denote the set of all (n + l)-ary polynomials p which

can be represented in the form

(23) p = q(x0, , Xi_u xi+1J , xn)Xi

for some q e Pn. It follows from Lemma 4 that PΛ+1(i) c P Λ + 1 , and
that q is uniquely determined by p. If j>ePΛ+1(£) the variable xt is
said to split in p.

LEMMA 9. // xt splits in pePn+11 and aeG{p), then xia also
splits in p.

Proof. Obvious from (22) and (23).

LEMMA 10. Let p e Pn. Then p = x0 xn_λ if and only if all
Xi split in p.

Proof. It is obvious that if p = xQ xn_19 then all xt split in
p. Conversely, assume that all x{ split in p. Then, for some q

q(x0, , #;_!, xi+1, , a?n-i)ί»i = P, and so

(24)

Now compute using (24):

, »«-i)l/o 2/»-i

= P(Vo, ••*, 2/«-i)»o «»

Setting 2/0 = = 2/n-i = 2/ we get

(26)
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And so

, Xn^) = P(

which was to be proved.

4* The inequality pn+1 ^ 2pn + 1* In this and the next section
let SI be an algebra satisfying the conditions of Theorem 2, and let
n be a fixed integer with pw(3t) =£ 1. Now we proceed to proving the
inequality given in the title of the section.

For pePn let R{p) denote the set of all polynomials of the form
pMif or pS. By Lemmas 3 and 4, R(p)c:Pn+1. If p = x0 xn_ly

then \R(p)\ = 1, in fact, R(p) - {x0 xn-ι-xn).

LEMMA 11. If p Φ X0 xn_19 then \R(p)\ ^ 2.

Proof. Let \R(p) | = 1. Then pMQ = pMx = . . = pMn^. Thus
by Lemma 7 any pair of variables can be replaced by their products.
Applying this a number of times we get

as claimed.

LEMMA 12. Lβί ί), g e Pw, p Φ q. Then R{p) and R{q) are disjoint.

Proof. By Lemmas 3, 4, 5, and 6.
By Lemmas 11 and 12,

(27) pn+ι ^ | U (R(P) \pePn)\ ^ 2pn - 1 .

LEMMA 13. If pn+ί < 2pn + 1, then \R(p) \ = 2 for all pePn,pΦ

Proof. It follows from (27) that pn+1 = 2pn or p w + 1 = 2^w - 1,
and so \R(p) \ = 2 for all p e Pn, p Φ x0- xn-u with at most one ex-
ception. Let p be this exception; then \R(p)\ = 3.

Partition {0, , n — 1} into (at most) three classes, Xo, X19 X2 as.
follows:

i,jeXa for some a, if pM{ = pMά; furthermore, if ieX2, then

pMi = pS .
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Since | R(p) | = 3, | Xo | Φ 0, | Xx \ Φ 0, but X2 could be empty. Note
that by Lemma 7 ΐ, j eXa, if and only if $< and x3- can be substituted
by XiXj) hence if i e Xα, i e X&, a Φ b, then this cannot hold for ̂  and %.

Now we distinguish some cases:

Case 1. For some a \ Xa \ ̂ >2. Then choose i, j" e Xα, i Φ j> ke Xb,
a Φ b. To simplify the computation let 0, 1 e Xa, 2 e Xb. Let τ be the
transposition (0, 2). We claim that p Φ pτ. Indeed, if p = pτ, then

P(XO9 Xί9 X2, •) = p(x0Xi, XoXu X2, •)

- p(χ2, XQXI, χ&19 . . . )

Similarly,

PKXQXZI Xii ί̂ 0 ̂ 2) * * * / ~~ P\^Q^1^21 $0» l̂»^2> ^0*^1*^2? * * */ 1

a n d so p(x0, x l f x i 9 •) = p(xo%2, %i, ^o^ •)> c o n t r a d i c t i n g 0 e X α , 2 e

Thus p Φ p\ Since |i?(^)| = \R{pτ)\, we get a contradiction with
the uniqueness of p.

Case 2. \Xa\ ̂  1 for a = 0, 1, 2, and X2 ^ 0 . Since \X2\ = ̂  is
impossible, let |X0 | ^ 0, and take i e Xo, i e l 2 ) r = (i, i). Then p = pτ

would imply pMj = p*S; since pMό — pS, we obtain pM{ = pMά, contra-
dicting the definition of X2, and i £ X2. Hence pφp\\R(pτ) \ = |ί2(p) | =
3, a contradiction.

Case 3. |X0| = |-XΊ| = 1, and X2 = 0 . Thus in this case n = 2,
and pM0, pMly pS are all distinct. Take τ = (0, 1). If p ̂  pτ, then
\R(p)\ = \R{pτ)\ = 3, a contradiction. Hence, p(aj0, ^) = ̂ (^, a?0). Let
us denote p(x0, xx) by x0 + x^ Then and + satisfy the requirements
of Lemma 2. Since p3 ̂  2p2, all essentially ternany with at most one
exception are accounted for by (J (R(t) \teP2). But the seven poly-
nomials listed in (10) can belong to no R(t) excepting i2( + ). (The
verification of this statement is tedious but straightforward.) Hence
either \R( + )\ > 3, or there are at least five essentially ternary poly-
nomials outside of \J{R(t)\teP2), contradicting the assumptions.

Cases 1-3 exhaust all possibilities, thus completing the proof of
Lemma 13.

LEMMA 14. // \R(p)\ ̂  2 for all p e Pn, then all pePn, pφxQ-
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#*-i> have a unique representation in the form (8), where © is an
essentially binary noncommutative polynomial satisfying (9); this
polynomial © is uniquely determined by p.

Proof. Let p e Pn, p Φ x0 xn_λ, and so \R{p)\ — 2. Thus
{0, , n — 1} splits into two nonvoid sets Xo, Xλ such that for ΐ, j e Xo>
pil^ = pilίy, and for i e Xx, pM{ — pS. Thus by Lemma 7, for i e Xo,
Xi can be replaced by the product of all x3 , j e XQ, for i e Xlf x{ can be
replaced by the product of all xd, j e Xu and all these variables split
in pxn. Define o by

χoy = p(zQ, . . . , Zn_,) ,

where zi = x for ieXlf z{ = y for ie Xo. Setting Xλ = {iQ, , ίk},
(8) gives p. The uniquness of o, and (9) follow from the fact that
the xiy ieX0 do not split, while the xif ieXλ do in pxn.

Now we are ready to complete the proof of the inequality. If
pn+1 ^ 2pn + 1 does not hold, then pn+1 5g 2pn, hence by Lemma 13,
\R(p)) ^ 2 for all pePn. By Lemma 14, (8) gives a unique represen-
tation for every pePn, p Φ xQ #Λ~i, and Lemma 1 stated that
every such polynomial is essentially w-ary. Let k denote the number
of essentially binary polynomials satisfying the requirements of Lemma
1. Then it follows from what has been stated above that

pn - k(2n - 2) + 1 .

Again applying Lemma 1, we obtain the inequality

pn+1 :> k(2^ - 2) + 1 .

Hence

k(2n+ί - 2) + 1 ^ pn+ί ^ 2pn = 2k(2n - 2) + 2 ,

yielding 2k ^ 1, that is k = 0. Therefore pι — 1, contrary to assump-
tion. This completes the proof of the inequality.

5. The inequality pn+ί ^ pn + n + 2. Recall that Pn+1(i) is the
set of all polynomials with representation (23). By Lemma 4, | Pn+1(i) \ =
pn. By Lemma 10, f) (Pn+JS) \0 ^i ^n) = {x0 xn}, hence we
can choose

p(x0, , xn^)xn e Pn+1{n) - Pn+1(n - 1) ,

that is, pePn can be chosen such that a;Λ_1 does not split in pxn.
Define:

(28) q = p(x0, --^αV-iO
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LEMMA 15. Neither xn_γ nor xn splits in q.

Proof. xn_x and xn are symmetric in q, therefore it suffices to
prove that xn does not split in q. Let us assume that xn splits in g,
that is

(29) q = r(xQ, •••, xn^)xn .

Now substitute xn = xn^ in (28) and (29); we obtain

(30) p(x0, , xn^) = r(x0, , xn^)xn^ .

Substituting xn_λxn for xn_19 and comparing the result with (28) and
(29) we obtain

<31) r(X0, , Xn-lXn)Xn-lXn = Φo, ' ' ' , »n-l)«»

Thus

This formula shows that jt%^ is symmetric in xn_x and a?n, contradict-
ing the assumption that a?Λ-1 does not split in pxn.

Now we start proving the inequality. Let s denote the number
of variables that split in q.

Case 1. s >̂ 2. Let Q denote the set of all polynomials arising
from q by permuting x0, , xn__x. Note that Pn+1(n) Π Q = 0 . Of
the n\ permutations (by Lemma 9) at most (n — s)! s! belong to G{q),
lience by Lemma 8,

for t2, ̂  4, and s < n — 1 .

Thus, if w ^ 4, and s < n — 1, then

U Q| ^ \PΛ+ί(n)\ + \Q\^Pn + n + 2.

Let w- = 3; s ^ 2, hence s = 2 (s = 3 implies t h a t j> = ^o ^ ^ ) .
T h u s α;0 and ^ split in q(x0, x19 x2y x3) — p(x0, xί9 x2x^), and so q = 3>(a?oi»i,
αJoO?!, αj2α58). Set x<>y =z p(χ9χ,y)m Then o satisfies (9) and so (8) will
produce seven essentially 4-ary polynomials in which # 3 does not split.
Thus p4 ^ p3 + 7 ;> p3 + 3 + 2. Finally, if w ^ 4, and s = ^ — 1, then
as in t h e previous case we set χoy = p(χ, ..., χ9 y) and apply (8) to

pn+1 ^pn + 2*-1 ^ pn + n + 2.

Case 2. s = 1. Let a?0 be the variable that splits in q. Let Q
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be defined as in Case 1. Since by Lemma 9 one variable (the one that
splits) has to be kept fixed by any aeG(q) we get that at most
(n — 1)1 permutations of {0, , n — 1} belong to G(q), and therefore
we get at least n polynomials from q by permuting xQ, , χn_lm We
get exactly n, if every permutation not moving 0 belongs to G(q).
Thus if we get exactly n, all transpositions (i, n) e G(p), i Φ 0. But
then

Q(%oi Xif * , Xn)

= p(x0, x19 . , xn^xn)

(32) = p(x0, xn^xn9 , x&n^Xn)

Also, since xQ splits in g:

(33) q(x0, •••,«?«

From (32) and (33) we obtain,

Thus p = ί̂o #Λ_i, contrary to assumption. Thus we cannot get
exactly n, hence we get at least 2n, and so

because n ^ 2.

Case 3. Cases 1 and 2 do not apply to any

pxn 6 PΛ+1(w) - Pn+i(n - 1) .

Firstly we claim that p ^ = 1. Indeed, if p%_x Φ 1, then let r be an
essentially (n — l)-ary polynomial different from #0 #»-2 Then
some ^ , say α;0 does not split in r αv-i #n» hence by permuting the
variables we get a pa;% 6 Pn+1(n) — Pn+ί(n — 1) such that some xt splits
i n p(xQ, •••, a J n - ^ n ) .

Now choose an arbitrary pxn e Pn+1(n) — Pn+1(n — 1) and take q =
p(x0, •••,»»-!«»). Note that in q the pair {»»«!,«»} is the only one
which can be substituted by their product, because if {x{, xό) is any
other such pair then by setting xn^ — xn, x{ = x5 we would get an
(n — l)-ary polynomial different from xQ xn__2, in contradiction with

pn_t = l . Hence for every a e G(q), (n — l)a = n — 1 and na = n, or

(n — T)a = n, na = n — 1. Thus \G(q)\ ^ (n — 1)121, and so we get

at least (^ o" ) ^ ^ + 2 polynomials by permuting the variables of q,
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none of them in Pn+I(n)f provided n Ξ> 3.
If n — 2, then p(x0, xxx2) yields three polynomials in which no

variable splits; |P3(2) | = p2 and we can choose ate P8(l) — Ps(2), obtain-
ing p2 + 4 polynomials. This completes the proof of the inequality.

6* T h e nonassociative case* In this section let SI be an idem-
potent algebra, and a binary commutative and nonassociative poly-
nomial. The following lemma is due to J. Dudek [1]:

LEMMA 16. Let n > 2 and let fn denote the polynomial

( \{XQXI)XZ) * * ' / %n—1

τ be the transposition (i, i + 1), where i Φ 0, cmd ίβί σ denote
the cyclic permutation (0,1, • ••,% — 1). T%e% /w ^ /^, and the poly-
nomials fn,fn,ff, * >fn%~1 are all distinct.

Now we prove the inequality pn+ί ^ pn + (n — 1). Observe that
Lemma 3 applies, hence | PnMn_x \ = pn and PnMn^ c P Λ + 1 . We claim
that / Λ + ι , fi+ι, , Λσ::2 g P A - i . Indeed, let ff e PnMn_t. Then

(•••(((••• (XkXk+i) •) ^ K ) •) Xk-x = Pfao, , »»-iί»»)

Since xn_t and α;w are symmetric in the right hand side, we get that
fn+1 is invariant under some τ — (ί, ί + 1), i Φ 0, contrary to Lemma
16. Thus we have found pn + (n — 1) essentially (w + l)-ary poly-
nomials, completing the proof.
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