## THE NUMERICAL RANGE OF AN OPERATOR

Mary R. Embry

Let $A$ be a continuous linear operator on a complex Hilbert space $X$ with inner product $<,>$ and associated norm \| \|. Let $W(A)=\{\langle A x, x\rangle \mid\|x\|=1\}$ be the numerical range of $A$ and for each complex number $z$ let $M_{z}=\left\{x \mid\langle A x, x\rangle=z\|x\|^{2}\right\}$. Let $\curlyvee M_{z}$ be the linear span of $M_{z}$ and $M_{z} \oplus M_{z}=\left\{x+y \mid x \in M_{z}\right.$ and $y \in M_{z}$ \}. An element $z$ of $W(A)$ is characterized in terms of the set $M_{z}$ as follows:

Theorem 1. If $z \in W(A)$, then $\gamma M_{z}=M_{z} \oplus M_{z}$ and
(i) $z$ is an extreme point of $W(A)$ if and only if $M_{z}$ is linear;
(ii) if $z$ is a nonextreme boundary point of $W(A)$, then $\bigvee M_{z}$ is a closed linear subspace of $X$ and $\bigvee M_{z}=\cup\left\{M_{w} \mid w \in L\right\}$, where $L$ is the line of support of $W(A)$, passing through $z$. In this case $\bigvee M_{z}=X$ if and only if $W(A) \subset L$.
(iii) if $W(A)$ is a convex body, then $x$ is an interior point of $W(A)$ if and only if $\gamma M_{z}=X$.

It is well-known that $W(A)$ is a convex subset of the complex plane. Thus if $z \in W(A)$, either $z$ is an extreme point (not in the interior of any line segment with endpoints in $W(A)$ ), a nonextreme boundary point, or an interior point (with respect to the usual plane topology) of $W(A)$. Thus Theorem 1 characterizes every point of $W(A)$.

The following additional notation and terminology are used. If $K \subset X$, then $K^{\perp}$ denotes the orthogonal complement of $K$. An operator $A$ is normal if and only if $A A^{*}=A^{*} A$ and hyponormal only if $A A^{*} \ll A^{*} A$. A line $L$ is a line of support for $W(A)$ if and only if $W(A)$ lies in one of the closed half-planes determined by $L$ and $L \cap \overline{W(A)} \neq \varnothing$.

In the last section of the paper consideration is given to $\bigcap$ \{maximal linear subspaces of $\left.M_{z}\right\}$. One result is that if $A$ is hyponormal and $z$ a boundary point of $W(A)$, then $\bigcap$ \{maximal linear subspaces of $\left.M_{z}\right\}=$ $\left\{x \mid A x=z x\right.$ and $\left.A^{*} x=z^{*} x\right\}$. This generalizes Stampfli's result in [3]: if $A$ is hyponormal and $z$ is an extreme point of $W(A)$, then $z$ is an eigenvalue of $A$. In [2] MacCluer proved this theorem for $A$ normal.
2. A proof of Theorem 1. Lemmas 1 and 2 provide the core of the proof of Theorem 1.

Lemma 1. Let $z$ be in the interior of a line segment with endpoints $a$ and $b$ in $W(A), x \in M_{a}, y \in M_{b},\|x\|=\|y\|=1$. There exist
real numbers $s$ and $t$ in $(0,1)$ and a complex number $\lambda,|\lambda|=1$, such that $t x+(1-t) \lambda y \in M_{z}$ and $s x-(1-s) \lambda y \in M_{z}$. Consequently,

$$
M_{a} \subset M_{z} \oplus M_{z}
$$

Proof. In proof of the convexity of $W(A)$ given in [1], pp. 317318, it is shown that $t x+(1-t) \lambda y \in M_{z}$ for some real number $t$ in $(0,1)$ and some complex $\lambda,|\lambda|=1$. A slight modification of the argument shows that $s x-(1-s) \lambda y \in M_{z}$ for some real number $s$ in $(0,1)$. Therefore, since $M_{z}$ is homogeneous and $s, t \in(0,1), x \in M_{z} \oplus M_{z}$, proving the last assertion.

Lemma 2. Let $L$ be a line of support of $W(A)$ and $N=$ $\bigcup\left\{M_{w} \mid w \in L\right\}$.
(i) There exists a real number $\theta$ such that $N=\left\{x \mid e^{i \theta}(A-z) x=\right.$ $\left.e^{-i \theta}\left(A^{*}-z^{*}\right) x\right\}$ for all $z$ in $L$.
(ii) $N$ is a closed linear subspace of $X$.
(iii) $N=X$ if and only if $W(A) \subset L$.

Proof. (i) Let $\theta$ be such that $e^{i \theta}(w-z)$ is real for all $w$ and $z$ in $L$. Then $N=\left\{x \mid<e^{i \theta}(A-z) x, x>\right.$ is real $\}$. Therefore since $L$ is a line of support of $W(A), \operatorname{Im} e^{i 0}(A-z) 》 0$ or $\ll 0$ and thus $N=$ $\left\{x \mid e^{i \theta}(A-z) x=e^{-i \theta}\left(A^{*}-z^{*}\right) x\right\}$. Conclusion (ii) follows immediately from (i), and (iii) follows from the definition of $N$.

Proof of Theorem 1. Let $z \in W(A)$. (i) In Lemma 2 of [3] it is proven that $M_{z}$ is linear if $z$ is an extreme point of $W(A)$. If $z$ is not an extreme point of $W(A), z$ is in the interior of a line segment with end points $a$ and $b$ in $W(A)$. By Lemma $1, M_{a} \subset M_{z} \oplus M_{z}$. Since $a \neq z, M_{a} \cap M_{z}=\{0\}$. Therefore $M_{z}$ cannot be linear. (ii) Assume now that $z$ is a nonextreme boundary point of $W(A)$. Let $L$ be the line of support of $W(A)$, passing through $z$, and let $N=\bigcup\left\{M_{w} \mid w \in L\right\}$. Lemma 1 implies that $M_{w} \subset M_{z} \oplus M_{z}$ whenever $w \in L$; consequently, $N \subset M_{z} \oplus M_{z}$. Lemma 2 (ii) implies that $\gamma M_{z} \subset N$. Therefore, $M_{z} \oplus M_{z}=\curlyvee M_{z}=N$ and thus by Lemma 2 (iii) $\vee M_{z}=X$ if and only if $W(A) \subset L$. (iii) Assume now that $W(A)$ is a convex body. If $z$ is an interior point of $W(A)$, Lemma 1 implies that $M_{a} \subset M_{z} \oplus M_{z}$ for each $a$ in $W(A)$. Therefore

$$
X=\bigcup\left\{M_{a} \mid a \in W(A)\right\} \subset M_{z} \oplus M_{z} \subset \bigvee M_{z}=X
$$

On the other hand if $z$ is a boundary point of $W(A)$ either $\vee M_{z}=M_{z}$ or $\curlyvee M_{z}=N$ and in either case $\curlyvee M_{z} \neq X$ since $W(A)$ is a convex body.
3. $\bigcap\left\{\right.$ Maximal linear subspaces of $\left.M_{z}\right\}$. Although $M_{z}$ may
not be linear, it is homogeneous and closed. Therfore if $M_{z} \neq\{0\}$ and $x \in M_{z}$, there exists a nonzero maximal linear subspace of $M_{z}$, containing $x$. Consideration of the intersection of these maximal linear subspaces yields information about eigenvalues and eigenvectors of $A$.

Theorem 2. Let $z \in W(A)$ and $K_{z}=\bigcap$ \{maximal linear subspaces of $\left.M_{z}\right\}$. If $z$ is a boundary point of $W(A)$, let $N=\bigcup\left\{M_{w} \mid w \in L\right\}$, where $L$ is a line of support for $W(A)$, passing through $z$.
(i) If $z$ is a boundary point of $W(A), x \in K_{z}$, and $A x \in N$, then $A x=z x$ and $A^{*} x=z^{*} x$. Conversely, if $A x=z x$ and $A^{*} x=z^{*} x$, then $x \in K_{z}$.
(ii) If $W(A)$ is a convex body and $z$ is in the interior of $W(A)$, $K_{z}=\left\{x \mid A x=z x\right.$ and $\left.A^{*} x=z^{*} x\right\}$.

Proof. By elementary techniques it can be shown that for each complex $z$
(1) $K_{z}=M_{z} \bigcap\left[(A-z)\left(\bigvee M_{z}\right)\right]^{\perp} \bigcap\left[\left(A^{*}-z^{*}\right)\left(\curlyvee M_{z}\right)\right]^{\perp}$ and that if $z$ is extreme,
(2) $\quad M_{z} \subset[(A-z) N]^{\perp} \bigcap\left[\left(A^{*}-z^{*}\right) N\right]^{\perp}$.
(The proof of (2) depends upon the fact that $M_{z}$ is linear if $z$ is extreme.) (i) Let $z$ be a boundary point of $W(A)$. By Theorem 1, $K_{z}=$ $M_{z}$ if $z$ is extreme and $\gamma M_{z}=N$ if $z$ is nonextreme. Moreover, if $x \in K_{z}$ and $A x \in N$, Lemma 2 implies that

$$
(A-z) x \in N \quad \text { and } \quad\left(A^{*}-z^{*}\right) x \in N .
$$

It now follows from (1) and (2) that $A x=z x$ and $A^{*} x=z^{*} x$. The converse follows immediately from (1). (ii) If $W(A)$ is a convex body and $z$ is in the interior of $W(A), \curlyvee M_{z}=X$ by Theorem 1 and (1) implies that $K_{z}=\left\{x \mid A x=z x\right.$ and $\left.A^{*} x=z^{*} x\right\}$.

Corollary 1. If $A$ is hyponormal and $z$ is a boundary point of $W(A), \bigcap\left\{\right.$ maximal linear subspaces of $\left.M_{z}\right\}=\left\{x \mid A x=z x\right.$ and $A^{*} x=$ $\left.z^{*} x\right\}$. In particular, if $z$ is an extreme point of $W(A), z$ is an eigenvalue of $A$.

Proof. Again let $N=\bigcup\left\{M_{w} \mid w \in L\right\}$, where $L$ is a line of support for $W(A)$, passing through $z$. In Lemma 3 of [3] Stampfli proves that $A(N) \subset N$. Thus by Theorem 2, (i) $K_{z}=\left\{x \mid A x=z x\right.$ and $A^{*} x=$ $\left.z^{*} x\right\}$. Moreover, if $z$ is extreme, $K_{z}=M_{z} \neq\{0\}$.

One last remark about potential eigenvalues and eigenvectors: it is immediate from Lemma 2 (i) that if $z$ is a boundary point of $W(A)$, $A x=z x$ if and only if $A^{*} x=z^{*} x$.

## References

1. P. R. Halmos, A Hilbert Space problem book, Van Nostrand, 1967.
2. C. R. MacCluer, On extreme points of the numerical range of normal operators, Proc. Amer. Math. Soc. 16 (1965), 1183-1184.
3. J. G. Stampfli, Extreme points of the numerical range of hyponormal operators, Michigan Math. J. 13 (1966), 87-89.

Received May 14, 1969. Presented to the American Mathematical Society on January 26, 1969.

University of North Carolina at Charlotte

