THE NUMERICAL RANGE OF AN OPERATOR

MARY R. EMBRY

Let A be a continuous linear operator on a complex Hilbert space X with inner product \langle , \rangle and associated norm $|| \quad ||$. Let $W(A) = \{\langle Ax, x \rangle | \mid |x \mid| = 1\}$ be the numerical range of A and for each complex number z let $M_z = \{x \mid \langle Ax, x \rangle = z \mid |x \mid|^2\}$. Let $\forall M_z$ be the linear span of M_z and $M_z \oplus M_z = \{x + y \mid x \in M_z$ and $y \in M_z\}$. An element z of W(A) is characterized in terms of the set M_z as follows:

THEOREM 1. If $z \in W(A)$, then $\forall M_z = M_z \bigoplus M_z$ and (i) z is an extreme point of W(A) if and only if M_z is linear;

(ii) if z is a nonextreme boundary point of W(A), then $\forall M_z$ is a closed linear subspace of X and $\forall M_z = \bigcup \{M_w \mid w \in L\}$, where L is the line of support of W(A), passing through z. In this case $\forall M_z = X$ if and only if $W(A) \subset L$.

(iii) if W(A) is a convex body, then x is an interior point of W(A) if and only if $\gamma M_z = X$.

It is well-known that W(A) is a convex subset of the complex plane. Thus if $z \in W(A)$, either z is an *extreme point* (not in the interior of any line segment with endpoints in W(A)), a nonextreme boundary point, or an interior point (with respect to the usual plane topology) of W(A). Thus Theorem 1 characterizes every point of W(A).

The following additional notation and terminology are used. If $K \subset X$, then K^{\perp} denotes the orthogonal complement of K. An operator A is normal if and only if $AA^* = A^*A$ and hyponormal only if $AA^* \ll A^*A$. A line L is a line of support for W(A) if and only if W(A) lies in one of the closed half-planes determined by L and $L \cap \overline{W(A)} \neq \emptyset$.

In the last section of the paper consideration is given to $\bigcap \{\text{maximal linear subspaces of } M_z\}$. One result is that if A is hyponormal and z a boundary point of W(A), then $\bigcap \{\text{maximal linear subspaces of } M_z\} = \{x \mid Ax = zx \text{ and } A^*x = z^*x\}$. This generalizes Stampfli's result in [3]: if A is hyponormal and z is an extreme point of W(A), then z is an eigenvalue of A. In [2] MacCluer proved this theorem for A normal.

2. A proof of Theorem 1. Lemmas 1 and 2 provide the core of the proof of Theorem 1.

LEMMA 1. Let z be in the interior of a line segment with endpoints a and b in $W(A), x \in M_a, y \in M_b, ||x|| = ||y|| = 1$. There exist

MARY R. EMBRY

real numbers s and t in (0, 1) and a complex number λ , $|\lambda| = 1$, such that $tx + (1 - t)\lambda y \in M_z$ and $sx - (1 - s)\lambda y \in M_z$. Consequently,

$$M_a \subset M_z \oplus M_z$$
 .

Proof. In proof of the convexity of W(A) given in [1], pp. 317–318, it is shown that $tx + (1 - t)\lambda y \in M_z$ for some real number t in (0, 1) and some complex λ , $|\lambda| = 1$. A slight modification of the argument shows that $sx - (1 - s)\lambda y \in M_z$ for some real number s in (0, 1). Therefore, since M_z is homogeneous and $s, t \in (0, 1), x \in M_z \bigoplus M_z$, proving the last assertion.

LEMMA 2. Let L be a line of support of W(A) and $N = \bigcup \{M_w \mid w \in L\}.$

(i) There exists a real number θ such that $N = \{x \mid e^{i\theta}(A - z)x = e^{-i\theta}(A^* - z^*)x\}$ for all z in L.

(ii) N is a closed linear subspace of X.

(iii) N = X if and only if $W(A) \subset L$.

Proof. (i) Let θ be such that $e^{i\theta}(w-z)$ is real for all w and z in L. Then $N = \{x \mid \langle e^{i\theta}(A-z)x, x \rangle$ is real}. Therefore since L is a line of support of W(A), Im $e^{i\theta}(A-z) \gg 0$ or $\ll 0$ and thus $N = \{x \mid e^{i\theta}(A-z)x = e^{-i\theta}(A^*-z^*)x\}$. Conclusion (ii) follows immediately from (i), and (iii) follows from the definition of N.

Proof of Theorem 1. Let $z \in W(A)$. (i) In Lemma 2 of [3] it is proven that M_z is linear if z is an extreme point of W(A). If z is not an extreme point of W(A), z is in the interior of a line segment with end points a and b in W(A). By Lemma 1, $M_a \subset M_z \oplus M_z$. Since $a \neq z$, $M_a \cap M_z = \{0\}$. Therefore M_z cannot be linear. (ii) Assume now that z is a nonextreme boundary point of W(A). Let L be the line of support of W(A), passing through z, and let $N = \bigcup \{M_w \mid w \in L\}$. Lemma 1 implies that $M_w \subset M_z \oplus M_z$ whenever $w \in L$; consequently, $N \subset M_z \oplus M_z$. Lemma 2 (ii) implies that $\forall M_z \subset N$. Therefore, $M_z \oplus M_z = \forall M_z = N$ and thus by Lemma 2 (iii) $\forall M_z = X$ if and only if $W(A) \subset L$. (iii) Assume now that W(A) is a convex body. If z is an interior point of W(A), Lemma 1 implies that $M_a \subset M_z \oplus M_z$ for each a in W(A). Therefore

$$X = igcup \{M_a \, | \, a \in W(A)\} \, \subset \, M_z \bigoplus M_z \subset \, ee \, M_z = \; X \; .$$

On the other hand if z is a boundary point of W(A) either $\forall M_z = M_z$ or $\forall M_z = N$ and in either case $\forall M_z \neq X$ since W(A) is a convex body.

3. \bigcap {Maximal linear subspaces of M_z }. Although M_z may

648

not be linear, it is homogeneous and closed. Therfore if $M_z \neq \{0\}$ and $x \in M_z$, there exists a nonzero maximal linear subspace of M_z , containing x. Consideration of the intersection of these maximal linear subspaces yields information about eigenvalues and eigenvectors of A.

THEOREM 2. Let $z \in W(A)$ and $K_z = \bigcap \{maximal \ linear \ subspaces of M_z\}$. If z is a boundary point of W(A), let $N = \bigcup \{M_w \mid w \in L\}$, where L is a line of support for W(A), passing through z.

(i) If z is a boundary point of W(A), $x \in K_z$, and $Ax \in N$, then Ax = zx and $A^*x = z^*x$. Conversely, if Ax = zx and $A^*x = z^*x$, then $x \in K_z$.

(ii) If W(A) is a convex body and z is in the interior of W(A), $K_z = \{x \mid Ax = zx \text{ and } A^*x = z^*x\}.$

Proof. By elementary techniques it can be shown that for each complex z

(1) $K_z = M_z \bigcap [(A - z)(Y M_z)]^{\perp} \bigcap [(A^* - z^*)(Y M_z)]^{\perp}$ and that if z is extreme,

(2) $M_z \subset [(A-z)N]^{\perp} \bigcap [(A^*-z^*)N]^{\perp}$.

(The proof of (2) depends upon the fact that M_z is linear if z is extreme.) (i) Let z be a boundary point of W(A). By Theorem 1, $K_z = M_z$ if z is extreme and $\forall M_z = N$ if z is nonextreme. Moreover, if $x \in K_z$ and $Ax \in N$, Lemma 2 implies that

$$(A-z)x \in N$$
 and $(A^*-z^*)x \in N$.

It now follows from (1) and (2) that Ax = zx and $A^*x = z^*x$. The converse follows immediately from (1). (ii) If W(A) is a convex body and z is in the interior of W(A), $\forall M_z = X$ by Theorem 1 and (1) implies that $K_z = \{x \mid Ax = zx \text{ and } A^*x = z^*x\}$.

COROLLARY 1. If A is hyponormal and z is a boundary point of W(A), $\bigcap \{maximal \ linear \ subspaces \ of \ M_z\} = \{x \mid Ax = zx \ and \ A^*x = z^*x\}$. In particular, if z is an extreme point of W(A), z is an eigenvalue of A.

Proof. Again let $N = \bigcup \{M_w | w \in L\}$, where L is a line of support for W(A), passing through z. In Lemma 3 of [3] Stampfli proves that $A(N) \subset N$. Thus by Theorem 2, (i) $K_z = \{x | Ax = zx \text{ and } A^*x = z^*x\}$. Moreover, if z is extreme, $K_z = M_z \neq \{0\}$.

One last remark about potential eigenvalues and eigenvectors: it is immediate from Lemma 2 (i) that if z is a boundary point of W(A), Ax = zx if and only if $A^*x = z^*x$.

MARY R. EMBRY

References

1. P. R. Halmos, A Hilbert Space problem book, Van Nostrand, 1967.

2. C. R. MacCluer, On extreme points of the numerical range of normal operators, Proc. Amer. Math. Soc. 16 (1965), 1183-1184.

3. J. G. Stampfli, Extreme points of the numerical range of hyponormal operators, Michigan Math. J. 13 (1966), 87-89.

Received May 14, 1969. Presented to the American Mathematical Society on January 26, 1969.

UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE