PACIFIC JOURNAL OF MATHEMATICS
Vol. 32, No. 3, 1970

SOME INCLUSIONS IN MULTIPLIERS

RaAour Doss

G is a compact abelian group, The main result of this
paper is that if 7 is a (p, 1) multiplier, 1 < p < 2, then T is
a (p, s) multiplier for all s in the range 1 < s < p and also
an (v, r) multiplier for p < r < p’ (p’ conjugate of p).

An operator T defined on L?(G), whose range lies in the set of
measurable functions on G is said to be of weak type (v, q) if there
is a number A such that

m({x e G: | Tf(x)| > t}) < (A”tfﬂp)"

for all feL® and all ¢> 0. (m is Haar measure.) T need not be

linear.
A linear operator, defined on L*(G) is said to be of strong type
(p, q) if there exists a number A such that

NTrlle = Al Sl -

If T is of strong type (p, ¢) and commutes with translations (or
equivalently with convolutions), then T is called a (p, q) multiplier.
In this case we write T'e M?. The Banach space of (p, p) multipliers
is denoted M,.

If Te M3, then there is a function ¢ on the dual of G such that
(TFY" = @f, for all fe L?, where ~ denotes the Fourier transformation.
T and @ are in one-to-one correspondence and we shall often write

T, for T.
Using a deep theorem of E. M. Stein [3] on limits of sequences
of operators we prove the following theorems:

THEOREM 1. If TeM, 1< p <2 then T is of weak type (p, p).

THEOREM 2. (converse.) Let T be a linear map of LP, 1< p=<2
which commutes with translation and is of weak type (p, p). Then
T is of strong type (p, s) for all s in the range 1 < s < p.

These theorems imply the following corollaries.

COROLLARY 1. If TeM,1<p<2, then TeM; for all s in
the range 1 < s < p.

COROLLARY 2. If TeM: 1< p <2, then Te M, for all r in the
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range p < r < p (p' conjugate of p).

LEmMMA 1. Let T=T.eM,,1 <p=2and let geL'. Then T
1s of weak type (p, D)

Proof. The operator T4,: L? — L' is defined by (T).f)" = Jof =
J(Tf)". Let g, be the function g cut off at » and put T, =
T;.:L*— L' If felL? then T,f = g,xTf and since g, is bounded,
then T,feL>c L*. Thus T, is of strong type (p, p), by the closed
graph theorem.

We shall show that for any f e L? we have

(1) limsup | T, f(x)] < = for almost every x .
In fact, by Fubini’s theorem
lgl*| Tf|(g) < e on a set E of measure 1.
By dominated convergence
T.f(@) = g.xTf(x) —> gxTf(x) xeFE which proves (1).

A theorem of Stein [3] states that (1) implies that the operator
T* defined by

T*f(x) = sup | T,.f(2) |

is of weak type (p, p). A fortiori the operator T3, is of weak type
(p, p) and the lemma is proved.

LEMMA 2. (Varopoulos-Johnson-Rieffel.) Let f,€ L, f,—0in L*.
Then there are ge L' and g, e L? such that f, = g*g, and g, — 0 in
L».

For a proof see Rieffel [2].

THEOREM 1. If T,eM:1<p <2 then T is of weak type (p, D).

Proof. Assume T, is not of weak type (p, p). Then, to every
positive integer n there corresponds a real number ¢, and f,c L?
such that

(1) m(lw: | Tofu(o)| > 1)) > (MLl

Multiplying ¢, and f, by an appropriate constant we may suppose
that || f.ll, = »~**. We now apply Lemma 2, writing
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fn = G%Gn » gc Lt
(2) g, —0 in L7,
By Lemma 1, there is a constant A = 4, such that
Ty b < (Allgall, Y
* eI n 7 é —_— .
m({@: | Theg.(@)] > t,}) ( .z )
This is
m((w: | T, £o(0)| > ) < (Al ”tgn”w ).

n

Hence, by (1)

nen”” _ nl[full, ~ Allgall,
t, t. i,

' < Allgall, -

This contradicts (2). Therefore T, is of weak type (», ») and the
theorem is proved

THEOREM 2. (converse.) Let T be a linear map of L, 1 < p < 2,
which s of weak type (v, p) and which commutes with translation.
Then T is of strong type (p, s) i.e., Te My for all s in the interval
1<s<op.

Proof. We first show that if fe L?, then Tfe L°’. For, there is
a constant A such that for every fe L? and every positive ¢ we have

(1) me: | Trw)| > 4) = (ALY

Now it is well known (see, e.g., [1] 13.7.3) that for any nonnegative
measurable function g we have

SGgs = Sjsts—lm({x eG:g(x) > thdt .
Then, by (1), for 1 s <p

S"' Tr| < S:sm(G)dt + stts—1<:‘%ﬂz>pdt <o

This means Tfe L°. By the closed graph theorem we deduce easily
TeM;.

COROLLARY 1. If1<p=2,1<s<p, then M; = M;.



646 RAOUF DOSS

This is an immediate consequence of Theorems 1 and 2 and of the
trivial inclusion M; c M.

COROLLARY 2. If 1< p <2 then M;C Np<res M,

Proof. Let TeM,. By Theorem 1, T isof weak type (p, »). T
if also strong type (2,2). The Marcinkiewicz interpolation theorem
shows that 7' is of strong type (r, ) for each » satisfying p < » < 2.
Since T commutes with translation, then Te M,, for p < r < 2.

COROLLARY 3. If 1< p =2 then Ny<rcs M, = Npares M2

Proof. One part of the inclusion is due to M,c M!:. The other
part is a consequence of Corollary 2.
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