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SOME INCLUSIONS IN MULTIPLIERS

RAOUF DOSS

G is a compact abelian group. The main result of this
paper is that if T is a (p, 1) multiplier, 1 < p ^ 2, then T is
a (p, s) multiplier for all s in the range 1 ^ s < p and also
an (r, r) multiplier for p < r < p' (pf conjugate of p).

An operator T defined on LP(G), whose range lies in the set of
measurable functions on G is said to be of weak type (p, q) if there
is a number A such that

m({x e G: \ Tf(x) \ > t}) ̂  (AHA.

for all feLp and all £ > 0. (m is Haar measure.) Γ need not be
linear.

A linear operator, defined on LP(G) is said to be of strong type
(p, q) if there exists a number A such that

If T is of strong type (p, q) and commutes with translations (or
•equivalently with convolutions), then T is called a (p, q) multiplier.
In this case we write TeM%. The Banach space of (p, p) multipliers
is denoted Mp.

If TeMq

p, then there is a function φ on the dual of G such that
(Tf)~ = φf, for all fe Lp, where ^ denotes the Fourier transformation.
T and φ are in one-to-one correspondence and we shall often write
Tψ for T.

Using a deep theorem of E. M. Stein [3] on limits of sequences
of operators we prove the following theorems:

THEOREM 1. If TeMϊ, 1 ^ p ^ 2 then T is of weak type (p, p).

THEOREM 2. (converse.) Let T be a linear map of Lp, 1 < p <£ 2
which commutes with translation and is of weak type (p, p). Then
T is of strong type (p, s) for all s in the range 1 ^ s < p.

These theorems imply the following corollaries.

COROLLARY 1. If TeMι

p, 1 < p ^ 2, then TeM; for all s in
the range 1 ^ s < p.

COROLLARY 2. If TeMϊ, 1 <; p ^ 2, ί&ew Teikfr /or αZZ r m
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range p < r < p' {pr conjugate of p).

LEMMA 1. Let T = Tφ e Mι

v11 < p ^ 2 αwd Zê  # e ZΛ ΪT&βw

is o/ weak type (p9 p)

Proof. The operator T*gφ\ L*-+Iϊ is defined by
g(Tf)~. Let 0Λ be the function g cut off at n and put ΓΛ =
Tin9: LP->L\ If / G L P , then TJ = gn*Tf and since gn is bounded,
then ΓΛ/ eL^cz ZΛ Thus Γn is of strong type (p, p), by the closed
graph theorem.

We shall show that for any f e Lp we have

( 1 ) lim sup I Tnf(x) \ < co for almost every x .

In fact, by Fubini's theorem

I#|*| Tf\(g) < co on a set E of measure 1 .

By dominated convergence

Tnf(x) = gn*Tf(x) • g*Tf(x) xeE which proves (1) .

A theorem of Stein [3] states that (1) implies that the operator
T* defined by

T*/(a?) = sup I Γn/(a?) I

is of weak type (p, p). A fortiori the operator T*gψ is of weak type
(p, p) and the lemma is proved.

LEMMA 2. (Varopoulos-Johnson-Rieffel.) Let fn e Lp, fn —> 0 in ZΛ
Then there are g e L1 and gn e Lp such that fn — g*gn and gn—*0 in
2Λ

For a proof see Rieffel [2].

THEOREM 1. If T9 e M^ 1 ^ p ^ 2 then T is of weak type (p, p).

Proof. Assume Tφ is not of weak type (p, p). Then, to every
positive integer n there corresponds a real number tn and fn e Lp

such that

( 1 ) m({x: I Tφfn(x)\ > Q)

Multiplying tn and fn by an appropriate constant we may suppose
that ||ΛUp = n~lβ. We now apply Lemma 2, writing



SOME INCLUSIONS IN MULTIPLIERS 645

( 2 ) gn > 0 in L p .

By Lemma 1, there is a constant A — Ag such that

/r6^Λ. j i gψynK^) I -•> c%// ̂  ( r

V

This is

m({x: I Γ^Λία;)! > ίn}) ^ ( ^ 4 | l ^ l l j 3

Hence, by (1)

n n-ll2_n\\fn\\p<A\\gn\\p

This contradicts (2). Therefore Tφ is of weak type (p, p) and the
theorem is proved

THEOREM 2. (converse.) Let T be a linear map of Lp, 1 < p ^ 2,
which is of weak type (p, p) and which commutes with translation.
Then T is of strong type (p, s) i.e., TeMs

p for all s in the interval
1 ^ s < p.

Proof. We first show that if feLp, then TfeLs. For, there is
a constant A such that for every feLp and every positive t we have

{ 1) m({x: I Tf(x) \>t})

Now it is well known (see, e.g., [1] 13.7.3) that for any nonnegative
measurable function g we have

\G9S = ^st-'mdx G G: g(x) > t})dt .

Then, by (1), for 1 ^ s < p

\G\ Tf\s ^ i\sm(G)dt + Γsί - ^

This means TfeLs. By the closed graph theorem we deduce easily

TeM;.

COROLLARY 1. If 1 < p ^ 2,1 ^ s < p, then M\ = M;.



646 RAOUF DOSS

This is an immediate consequence of Theorems 1 and 2 and of the
trivial inclusion Ms

p c Mι

v.

COROLLARY 2. If 1 £ p < 2, then M\ c ϊ\v<r<2Mr.

Proof. Let TeM^. By Theorem 1, Γ is of weak type (p, p). T
if also strong type (2, 2). The Marcinkiewicz interpolation theorem
shows that T is of strong type (r, r) for each r satisfying p < r ^ 2.
Since T commutes with translation, then T e Mr, for p < r ^ 2.

COROLLARY 3. // 1 ̂  p ^ 2 ί/̂ β̂  f |p<r^^r = Π D < ^ * ; .

Proof. One part of the inclusion is due to Mr c Λfί. The other
part is a consequence of Corollary 2.
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