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ON AUTOMORPHISMS OF SEPARABLE ALGEBRAS II

P. R. DEMEYER

A Galois theory for separable projective algebras over a
class of commutative rings more general than Yon Neumann
regular rings with includes the full group of algebra auto-
morphisms is presented. Fundamental facts concerning the
group of units and the automorphisms of these algebras are
also given.

A Galois theory for simple algebras over fields which included the
full group of automorphisms was presented by G. Hochschile [5]. After
the work of M. Auslander and 0. Goldman [1] and S. Chase, D. K.
Harrison, and A. Rosenberg [3] it was possible to generalize Hochschild's
theory to semi-local rings with no idempotents other than 0 and 1 [4].
More recent results of 0. Villamayor and D. Zelinsky [14], and H.
Kreimer [8] permit the extension of Hochschild's theory to a much
broader class of rings than in [4]. The context includes separable
projective algebras over commutative regular rings and is stated ex-
plicitly at the beginning of § 3. Theorem 3 and Theorem 5 of § 2
have also been obtained by A. Magid and will appear in the Illinois
Journal of Mathematics as part of an article entitled Pierce's repre-
sentation and separable algebras.

We first state some of the results of [14] without proof. The
Galois theory in [14] is then improved in a special case. Next, in
§2, several basic properties of separable algebras are developed. The
Galois theory which generalizes [4] is presented in § 3. Henceforth R
always is a commutative ring with identity. All rings have identity,
all subrings share the common identity, all modules are unitary, and
all algebra homomorphisms carry identity to identity. Also (g) will
mean (g)β. A familiarity with the basic properties of separable algebras
is assumed. In particular, we employ a result of Villamayor [10] in
the sequel which asserts that any separable projective i?-algebra is
finitely generated as an JS-module.

1. We first enumerate, with corresponding nomenclature, several
results in [14]. Let B(R) be the Boolean algebra of idempotents of
the commutative ring R. If ef f e B(R) the Boolean operations are
given b y e 0 / = e + / — ef and e*/' = ef. Let specB(R) be the space
of maximal (= prime) ideals in B(R) and call the subsets Ue of spec
B(R) defined for each e e B(R) by
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Ue = {pespecB(R) \eep}

a base for the open sets of specB(ϋ!). In this topology specJB(iϋ) is a
totally disconnected compact Hausdorίf space. If p e spec B(R) we let
Rp = R/p R, then Rp is a homomorphic image of R. If M" is an R-
module then Rp ® If = M/pM is denoted Λfp and the natural image
of α e l in Mp is denoted α,. In most of what follows we will use
the compactness of specB(R) to recover information true at Rp for
each p e spec B(R) to information about R.

The next seven results are proved in [14].

(2.7) If M and N are finitely generated projective i?-modules the
natural map from HomΛ (M, N) to KomBp (Mp, Np) denoted f—*fp is
an isomorphism.

(2.9) If a and b are elements of the finitely generated i?-module
M and ap = bp for one p e spec B(R) then αg = bq for all g in some
neighborhood Ue of p.

(2.11) If ΛΓ is a submodule of the finitely generated ϋί-module M
and Np = Λfp for all p e spec B(J?) (Rp is flat over JB SO NPCMP) then
i\Γ - M.

(2.12) If S is a finitely generated i?-algebra and u is an idempo-
tent in Sp for some p e spec JB(JR), then there is an idempotent v in S
such that 1;̂  = u.

(2.13) i2p has no idempotents other than 0 and 1 for each
B(R).

(2.14) Suppose S is an jβ-algebra that is finitely presented as an R-
module, let F be a finite subset of S and let g be an ^-algebra homo-
morphism of Sp which is the identity on Fp. Then there is an ϋJ-algebra
homomorphism h of S such that h is the identity on F and hp = flr.

(2.17) If S is an i2-algebra and J is a finite group of j?-algebra
automorphisms of S; then for all p e spec B(R), (SJ)P = (Sp)p where
SJ denotes the fixed ring under J.

Let if be a commutative ring containing R as a subring.

If K is a projective separable iϋ-algebra and if KG — R where G
is the group of all iϋ-automorphisms of K, then K is called a normal
separable extension of R with group G. If i ϊ is a subset of G, the
closure Jϊ of i ί is the set of all automorphisms g of K such that for
each p e spec B(R) and each minimal idempotent fp in KP1 fp-gp = fp*h'P
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for some he H. A closed subgroup of G is one equal to its own closure.
Another result from [14] is

LEMMA 1. Let K be a normal separable extension of R with
group G, then the following statements are equivalent.

(1) For each p e spec B(R), Kp is a normal separable extension
of Rp with group Gp.

( 2 ) Hom^ (K, K) is generated as a K-module by R-algebra auto-
morphism of K.

( 3) R is the fixed ring of some finite set (equivalently, finite
group) of automorphisms of S.

An example in [14] shows that when K is a normal separable R-
algebra the equivalent conditions of Lemma 1 need not always hold. It
is only in the situation where these conditions hold that the techniques
we employ are effective. As a consequence of Lemma 1 we can restate
Theorem 3.8 of [14].

THEOREM 3.8. Let K be a normal separable R extension of R
with group G, if there is a finite subset J of G with KJ = R then
there is a one to one correspondence between the set of all separable
subalgebras of K and the set of all subgroups H of G which are the
closure of some finite subgroup of G by H—>KH.

The result we require is in the situation where every idempotent
in K belongs to R. In this case Theorem 3.8 can be improved.

COROLLARY 2. Let K be a normal separable extension of R with
group G. Assume R is the fixed ring of a finite subset of G and
assume every idempotent in K belongs to R. Then there is a one-to-
one correspondence between the separable subalgebras of K containing
R and the closed subgroups H of G by H-+Kπ. The closed subgroup
H of G is a normal subgroup of G if and only if the corresponding
subalgebra is a normal extension of R with group G/H.

Proof. We apply Theorem 3.8 to give the subgroup-subring cor-
respondence. Assume H is a closed normal subgroup of G, then
G/H acts as a group of automorphisms of KH in the usual way and
{KH)GlH = R. Let σ be an i?-automorphism of KH. By hypothesis
on the idempotents in K and Theorem 3.5 of [3] we have for each
p e spec B(R) an automorphism τv of Kp which extends σp on Kp

p. Use
(2.14) to lift τp to an automorphism τ on K. Since KH is finitely
generated and projective over R (Proposition 1.5 of [4]), Ή.omR(KIT, K)
is finitely generated over R so there is by (2.9) and (2.7) a neighborhood
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U of p such that for each qe U,τq restricted to (NH)q is σq. Cover
spec i?(iϋ) with such neighborhoods and use compactness of specJ9(i?)
to obtain a decomposition R = ReL 0 0 Ren and automorphisms r<
of Kβi with τ< restricted to (KH)ei equal to σ on (KH)e€ (since e^ei?,
σ ^ ) = τfe) = ef ). The automorphism r on if constructed from the r<
extends cr and is in G so KH is a normal separable extension of R
with group G/H. Conversely, assume H is a closed subgroup of G
and KH is a normal separable extension of R. Then by Theorem 2.3
of [3] and (2.17) we know that for each pespecB(R) and each σeG

σp(KH)p = σp(K*>) = Kξp = (KH)P .

Since Kπ is finitely generated over R, (2.7) implies σ{KH) = JK^. This
is equivalent to the statement that H is a normal subgroup of G and
completely proves the corollary.

With the hypothesis of Corollary 2, if N is a normal separable
extension of R in K which corresponds to the closed normal subgroup
H of G observe that there is a finite subset of G/H on JV leaving
exactly R fixed. Therefore our Galois theory also applies to the
extension N of R with group G/H.

2. We now derive some properties of separable algebras. The
group of isomorphism classes of rank = 1 protective iϋ-modules forms
a group called the class group (Picard group) of R. Generalizing
Theorem 3.6 of [1] we have

THEOREM 3. Let A be a central separable R-algebra. Assume
the class group of Rp is trivial for each pespecB(R), then every
R-algebra automorphism of A is an inner automorphism.

Proof. Let σ be an algebra automorphism of A. By Theorem
3.6 of [1] we know σp induces an inner automorphism of Ap for each
p e spec B(R). Let σp = £- on Ap, then there exists a y eAp with
xy = 1. Lift x and y to elements xf and yr in A. By (2.9) there is a
neighborhood Ue of p so that for all qe Ue we have xqyq = 1. There-
fore (x'e)(y'e) = e and (α?'e)p = x, (y'e)p = y. Let x = (1 — β) + α'e and
3/ = (1 — e) + 2/'e. Then x,yeA and ## = 1. Moreover i x is an inner
automorphism of A with (ix)p = ij. Now Hom^ (A, A) is a finitely
generated protective JS-module so by (2.9) there is a neighborhood U
of p in spec B(R) with (ίβ)ff = σq for all # e U. Cover spec J5(i2) with
such neighborhoods, since specJ5(J?) is compact one can find a finite
subcover. Thus R — Ret 0 0 Ren with el — β{ e R and there are
elements x5 e Aeό{j = 1, n) such that ^ is a unit in Aβ5 and σ on
Aey is inner automorphism by xd. Let a? = x1 + + xn, then σ is
inner automorphism by x on A.
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A corollory of this result shows that we are in the context of [9].

COROLLARY 4. Let A be a separable projective R-algebra with
center K, and assume the class group of Kp is trivial for each
pe specB(i2)> then every R-algebra automorphism of A which is not
inner is represented nontrivially on K.

Proof. For p e spec B(R), Kp is a finitely generated projective
separable i?p-algebra and Rp has no idempotents other than 0 and 1.
Thus Cp is a finite direct sum of finitely generated projective separable
i?p-algebras whose only idempotents are 0 and 1. The class group of
Kp is the product of the class groups of the summands and the sum-
mands correspond to the elements of spec B(K) so Theorem 3 applies.

Our inability to extend the next result restricts the generality of
the Galois theory in § 3. See the examples following Theorem 1.1 and
Theorem 1.2 of [4].

THEOREM 5. Let R be a commutative ring, assume for each
pespecB(R) that Rp is a semi-local ring, (finite number of maximal
ideals). Let Abe a separable projective R-algebra with center K and
let B be a separable R-subalgebra of A with center C containing K.
Assume every idempotent in C belongs to R. Let σ be an R-algebra
monomorphism from B into A leaving K fixed, then σ can be extended
to an inner automorphism of A.

Proof. We know for any p e spec B(R) that Ap is a projective
separable Rp algebra with center Kp and Bp is a separable subalgebra
with center Cp containing Kp. By hypothesis on the idempotents in C
it follows that the only idempotents in Cp are 0 and 1. By the lemma on
page 25 of [4], B is projective over R so Hom^ (B, A) is a finitely generated
projective i?-module and (2.7) implies HomΛ (B, A)p = Horn^ (Bp, Ap).
With this identification, Theorem 1.2 of [4] gives an inner automorophism
i~ on Ap which extends σp on Bp. As in the proof of Theorem 3 lift
x to a unit x in A so that ix is an inner automorphism of A with
(iχ)P = %• Apply (2.9) to get a neighborhood Ue of p so that for all
qe Uβ, σq = (ix)q on Bq. Applying the same compactness argument as
used in Theorem 3 we construct an inner automorphism iy on A which
extends σ.

If R is a regular ring (in the sense of Von Neumann) then R
satisfies the hypothesis of Theorem 5 since every principal ideal in a
regular ring is generated by an idempotent. Thus if R is regular, Rp

is a field for each pe spec B(R). The next result improves Theorem
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1.5 of [4].

THEOREM 6. Let Abe a separable projectίve algebra over K and
let J be a finite group of ring automorphisms of A with the property
that J restricted to K is a group of automorphisms of K isomorphic
to J. Let R = KJ and assume K is a separable finitely generated
R-algebra with every idempotent in K belonging to R. If B — AJ,
then B is a separable protective R-algebra and A — B &) K.

Proof. The hypothesis of Theorem 1.5 in [4] is satisfied at each
p e spec B(R). Therefore the natural homomorphism from B (g) K to A
is an isomorphism at each pespec B(R). Applying (2.7) and (2.11) we
conclude B(£)K = A. Now K is a finitely generated, projective, separ-
able j?-algebra so ϋM is an iϋ-direct summand of K (see Proposition
A.4 of [1]). By ([2], IX, 9.1) B is separable over R. By the lemma
on page 2.5 of [4] B is projective over R.

The next result includes a correction of Lemma 1.8 in [4]. Let
Z be the ring of integers.

LEMMA 7. Let A be a separable projective R-algebra, then A is
generated as an algebra by its units if and only if Ap is generated
as an Rp algebra by its units for all pe spec B(R). Moreover, if Rp

is semi-local then Ap is not generated as an algebra by its units
if and only if RJRad (Rp) = Z/(2) 0 R' and the central component
of AJRad (Ap) over Z/(2) contains a direct factor isomorphic to
Z/(2) 0 Z/(2).

Proof. Assume that Ap is generated by its units for all
pespec B(R). As in the proof of Theorem 3, each unit in Ap lifts to
a unit in A. Thus if N is the iϋ-subalgebra of A generated by the
units of A we know Np — Ap for all pe spec B(R). By (2.11) this
implies N = A. The converse is clear.

For the last statement observe that the proof of Lemma 1.8 in [4]
implies Ap is generated by its units over Rp if and only if AJRad (Ap)
is generated by its units over i?p/Rad (Rp). Now ϋyRad (Rp) is a finite
direct sum of fields and AJRad (Ap) is a finite direct sum of sβmί-simple
algebras over fields. It is an elementary exercise to show that the
only semi-simple algebras over a field not generated by units occurs
when the algebra contains Z/(2) 0 Z/(2) as a direct summand over the
field Z/(2). This proves the lemma.

More information about automorphisms of separable algebras is
contained in
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LEMMA 8. Let Abe a projectίve separable R-algebra tυith center
K and assume every ίdempotent in K belongs to i?, then any R-
homomorphism σ from A to A is an automorphism of A.

Proof. Observe that σ is an .ft-homomorphism from K to K. Con-
sider the exact sequence

0 > ker (σ) >K-^->σ(K) > 0 .

Now σ(K) is a separable i?-subalgebra of K so by the lemma on page
25 of [4] o(K) is projective over R. Therefore ker (σ) is an ideal
direct summand and is generated by an idempotent in K. But every
idempotent in K belongs to R and σ is one-to-one on R so σ is one-
to-one on K. For each p e spec J3(i?) we know σp: Kp —>KP is one-to-
one. Kp has no idempotents other than 0 and 1 and Kp can be im-
bedded in a Galois (in the sense of [3]) extension of Rv by [6] so
Theorem 2.3 of [3] and the fact that Rank^ (Kp) = RankBp (σp(Kp))
implies σp is also onto Kp. By (2.11) and (2.7) this implies σ(K) = K.
Since there is a one-to-one correspondence between the two sided ideals
of A and those of K by a cK corresponds to Aa we know ker (σ) = 0
on A and σ is one to one on A.

Now σ{A) is a central separable iΓ-algebra (since σ(K) — K) and
Rank7f (A) — Rank7ί {o(A)) since σ(A) is one to one. By Theorem 3.3
of [1], A — σ(A) ®κA

r where A! is a central separable iΓ-algebra. By
a rank argument, A! = K and σ maps A onto A. This proves the
lemma.

LEMMA 9. Let K and L be commutative separable R-subalgebras
of the finitely generated protective R-algebra A, then K Π L and K L
are separable protective R-subalgebras of A.

Proof. First, K L is a homomorphic image of K®L and there-
fore is separable over R. By the lemma on page 25 of [4] K-L is
projective over R. To prove K Π L is separable over R we employ the
construction in § 3 of [12] to find a commutative projective separable
i2-algebra N containing K L such that there is a finite group J of
automorphisms of N with JV' = R. By Theorem 3.8 there are finite
sets H, Hr of j?-automorphisms of N with NH = K and N11' = L.
Observe that N11'11' — K n L which by Theorem 3.8 implies K f] L is
projective and separable over R.

3. Throughout this section we shall adhere to the following nota-
tions and assumptions. R is a commutative ring with Rp wτith semi-
local for each p e spec B(R). A is a separable projective j?-algebra with
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center K, and every idempotent of K belongs to R. Let G be the
group of all iϋ-algebra automorphisms of A and assume AG = R. Also
we assume there is a finite subset of G whose restrictions give a finite
set J of automorphisms of K with KJ = R.

If H is a subgroup of G we let iϊ0 be the normal subgroup of H
consisting of those elements of H which are inner automorphisms of
A. We let R{H) be the subring of A generated as a iΓ-algebra by
all the units giving the inner automorphisms in H. If B is an R-
subalgebra of A we let GB be the group of all elements in G leaving
B elementwise fixed.

Call a subgroup H of G complete if every inner automorphism of
A by an element of R(H) is in H and if when restricted to K, every
element of G/Ho which leaves KH fixed is in H/Ho. We show later
that this last condition implies that on K we have H a closed group
of automorphisms in the sense defined in § 1. Call a subgroup H of
G regular if H is complete, R{H) is a separable i£-algebra, and every
central idempotent in R(H) belongs to K.

If B is an i?-algebra of A we call B regular if B is separable as
an iϋ-algebra, if every idempotent in the center of B 0Bf]K K is in K,
and if the commutator of K B in A is generated as a Z-algebra by
its units.

If R is a semi-local ring whose only idempotents are 0 and 1 these
definitions reduce to [4]. For the same reasons as in the Galois theory
for simple algebras over fields, it is the regular subgroups and the
regular subalgebras which the Galois theory relates.

THEOREM 10. If H is a regular subgroup of Gy then AH is a
regular R-subalgebra of A, and H is the group of all automorphisms
of A leaving AH fixed.

Proof. The commutator of R{H) in A is AH°; thus by Theorem
2 of [7], AH° is a separable 2?-algebra. Now H leaves R(H) setwise
invariant so H leaves AH° setwise invariant. Restricting H to AH°
yields a group of automorphisms H' of AH° leaving AH fixed which is-
isomorphic to H/Ho. Similarly H leaves K setwise invariant. Since
all automorphisms of A leaving K fixed are inner by Theorem 3, H
restricted to K is also isomorphic to H/Ho and can be viewed as the
restriction of H' to K. By our assumptions there is a finite subset
J of H' with KJ - KHf = K Π AH. By Corollary 2, K n HH is separable
over R. The center of AH°, being the same as the center of R(H),
is protective and separable over K. Furthermore K is protective and
separable over R so AH° is protective and separable over R. By Theo-
rem 6 we know (AHήJ = B is separable over KJ and AH() = B (g) K
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(tensor over KJ). Since KH is separable over R, B is separable over
R. Every idempotent in the center of AH° is in K by assumption on
R(H). Now AHcB but if σ eH and σ \B φe then σ (g) 1 is an automorphism
of B(g)K = AH° which is the identity on K so σ (g) 1 extends by Theorem
3 to an element of JBΓ0. This is impossible since B c AH°. Thus AH = B
is a regular subalgebra of A.

To prove the last statement of the theorem observe that Ho con-
tains all the inner automorphisms leaving AH fixed. Also H' = H/Ho

contains all the automorphisms of AH° leaving AH fixed since AH° =
AH ®K (tensor over AH Π K). Moreover H/Ho is closed when viewed
as a group of automorphisms of K.

THEOREM 11. Let B be a regular subalgebra of A containing R,
then the group GB is a regular subgroup of B and B is the fixed ring
of GB.

Proof. If C is the center of B, then C®B{λKK is the center of
B(S)BC)KKJ SO C K is the center of B K and is separable over R. By
Lemma 9 C Π K is separable over R, therefore B Π K is separable over
R. By our assumption there is a finite subset of G whose restrictions
to K leave exactly R elementwise fixed so by Theorem 6 we can write
A = AG <g) K. By Corollary 2 there is a finite subset J' of the R-
automorphism group of K with KJI = B Π K. The representation of
A as AG <g) iΓ insures that every element of J ' extends to an element
in G/Go. Next we show the natural map j : B®B^KK-^ B K is an
isomorphism. Now ker.? = I*{B(^B^KK) where I is the kernel of the
restriction of j to C &)cnκ K- Consider the exact sequence of C
modules

0 >I >C®CC]KK >C K •O.

Now Z*K is a projective jβ-module, so since C®G{λKK is a sepa-
rable i?-algebra Z K is a projective C(g) c n r ϋΓ-module. Hence the
sequence splits and I is generated by an idempotent. Since every
idempotent in CζZ)cr\κK belongs to K, I — 0 and j is an isomorphism.

Extend each & in J ' to B K = Bξ§Bf]KK by

<7'(ί>&) = bσ'(k) .

Lift a', viewed as an element of G/Go, to an element σ of G. Then
<7 restricted to K is σ' so σ-V: B-K-+A leaves if fixed. Since every
central idempotent in B-K belongs to K, σ^σ' extends to an inner
automorphism τ of A by Theorem 5. Now σr is στ restricted to B K
so σ* extends to an automorphism of A. Each a' in Jr in this way
extends to an element of GB, and since J' defined on B K leaves ex-



630 F. R. DEMEYER

actly B fixed, GB must leave exactly B fixed.
The commutator L in A of B is the commutator in A of B-K,

so is finitely generated and separable over K with every central
idempotent of L in K. Clearly, any automorphism of GB comes from
a unit in L and every unit in L defines an inner automorphism in GB.
To show that L = R(GB) and consequently that GB is regular, it suf-
fices to show that L is generated as a iΓ-algebra by its units. This
follows from the definition of regularity for B.

Retain the notation of Theorem 11 in Theorem 12.

THEOREM 12. If B is a regular subalgebra of A and GB is a
normal subgroup of G, then G/GB is the group of all algebra auto-
morphisms of B.

Proof. Set H = GB. The restriction map from G to the auto-
morphism group of B has kernal H. Since H is normal in G, this
implies every element in G/H can be viewed as an automorphism of B.
The proof will be complete when we extend any iϋ-automorphism σr

on B to an automorphism of A. Now Hr = H/Ho is a normal sub-
group of G' — G/Go by the second isomorphism theorem so restricting
our attention to K we know by Corollary 2 that B Π K is a normal
separable extension of R with group G'/H' and G'/iϊ' contains all
automorphisms of B Π K leaving R fixed. View σf as an element of
G'/H' and extend to an element σ of G. Then τf — o~ισ' is an auto-
morphism of B leaving B Π K fixed. Define τf on B ®Br]K K — B K
by τ'(bk) = τ'(b)k; then τ' is an automorphism of B-K leaving K fixed.
By Theorem 5, τ' extends to an automorphism τ of G. For any b e B,
στ(b) = στ'(b) = σ(σ-ισ)(b) = σ'φ) so στ is the desired automorphism.

Following [5] we call a subalgebra B of A almost regular in case B
is separable over R, every central idempotent in B K belongs to K, and
the commutator of B-K in A is generated by its units. Every regular
algebra is almost regular and in this context the converse also holds.

THEOREM 14. With A, K, R, and G as above, every almost regular
R-subalgebra of A is regular.

Proof. Let B be an almost regular i?-subalgebra of A. Since
every idempotent in B K belongs to K it suffices to show that the
natural map

>B K

is an isomorphism. As in the proof of Theorem 11 we can restrict our
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attention to the natural map j : C ®Cf]KK —> C K where C is the center
of B.

Since C f] K = L is separable over R by Lemma 9 and projective
by the lemma on page 25 of [4] both C and K are projective when
viewed as L-algebras. Thus C (g)L K = C-K0 ker (j). By Theorem 2.3
of [4], ker(i) = 0 for every pe spec B(R) so ker(jΓ) = 0 and j is an
isomorphism.

BIBLIOGRAPHY

1. M. Auslander and 0. Goldman, The Brauer group of a commutative ring, Trans.

Amer. Math. Soc. 97 (I960), 367-409.

2. H. Cartan and S. Eilenberg, Homological algebra, Princeton Univ. Press, Princeton,

N. J., 1956.

3. S. Chase, D. K. Harrison, and A. Rosenberg, Galois theory and cohomology of com-

mutative rings, Mem. Amer. Math. Soc. 52 (1965).

4. L. N. Childs and F. R. DeMeyer, On automorphisms of separable algebras, Pacific

J. Math. 23 (1967), 25-34.

5. G. Hochschild, Automorphisms of simple algebras, Trans. Amer. Math. Soc. 69

(1950), 292-301.

6. G. J. Janusz, Separable algebras over commutative rings, Trans. Amer. Math. Soc.

122 (1966), 461-479.

7. T. Kanzaki, On commutor rings and the Galois theory of separable algebras, Osaka

J. Math. 1 (1964), 103-115.

8. H. F. Kreimer, A note on the outer Galois theory of rings, Pacific J. Math, (to

appear)

9. , Outer Galois theory for separable algebras, (to appear)

10. T. Nagahara, A note on Galois theory of commutative rings, Proc. Amer. Math.

Soc. 18 (1967), 334-340.

11. R. S. Pierce, Modules over commutative regular rings, Mem. Amer. Math. Soc. 7O

(1967).

12. 0. E. Villamayor, Separable algebras and Galois extensions, Osaka J. Math. 4

(1967), 161-171.

13. 0. E. Villamayor and D. Zelinsky, Galois theory for rings with finitely many

idempotents, Nagoya Math. J. 27 (1966) 721-731.

14. and , Galois theory with infinitely many idempotents, Nagoya

Math. J. 35 (1969), 83-98.

Received April 9, 1969






