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ON THE CONTINUITY OF THE NONLINEAR
TSCHEBYSCHEFF OPERATOR

R. B. BARRAR AND H. L. LOEB

An existence theorem and a Lipschitz continuity theorem
for uniform nonlinear Tschebyscheff approximation are given.
These theorems include as special cases known results on
generalized rational functions but also yield new results for
exponential families.

The classical theorems on the uniqueness and characterization of
the best uniform approximations by polynomials have been extended
to nonlinear approximating families in the papers of Motzkin [11],
Tornheim [16] and Rice [13]. These papers introduce the important
ideas of unisolvent and varisolvent families.

Meinardus and Schwedt [10] have stressed the importance of a
gradient function in the theory of nonlinear approximation.

In the present paper, we combine both these concepts and are
thus enabled to extend the strong unicity theorem and theorems on
the continuity of the Tschebyseheff operator to nonlinear approximating
families. The strong unicity theorem in the linear case is due to
Newman and Shapiro [12]. The continuity theorem for ordinary rational
approximation is proved in Maehly and Witzgall [9]. The theorems
for generalized rational approximation appear in Cheney and Loeb [3],
and Cheney [2].

Our assumptions appear to cover many of the nonlinear approxi-
mating families in current use. Some examples are given in the last
section of the paper.

2. Notation. Let P be an open subset of real Euclidean M
dimensional space EM. We consider a family V of real valued functions
F(A, x) where A = (αn , aM) belongs to P and x belongs to [0,1].
The functions F(A, x) and dF(A, x)/dai9 i = 1 M are assumed to be
continuous in A and x.

We further assume that the family V satisfies the following con-
ditions:

(A) To each AeP, the functions dF(A, x)/da,i, i — 1 M generate
a Haar Subspace W(A) of dimension d(A) where d(A) ^ 1. For con-
venience of notation and without loss of generality, we will assume
in the statements and proofs of all lemmas and theorems in this
paper that dF(A, x)/dai9 i = 1 d(A), generate the Haar Subspace.

(B) For each A e P, F(A, x) a£ F{A^ x) implies F(A, x) - F(Aly x)
has at most d(A) — 1 zeroes. d(A) is sometimes called the degree
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of F(A, x). Note that d(A) is the smallest integer for which (A) and
(B) hold.

We use the notation that if fe C[0,1], then | | / | | = m a x ^ ^ \f(x)\,
and if A, A* belong to P, then || A — A* || = m a x u ί ^ |α» — α* |.

^(A, x) is said to be a best approximation to /(x) e C[0, 1] if
||i^(A, x) - f(x)\\ S \\F(Aly x) - f(x)\\ for all A e P. We sometimes
suppress the x and write i^(A) — / for F(A, x) — f(x).

Instead of conditions (A) and (B), it will be clear to the reader
that our results hold under the following conditions (in this connection
see Rice [15]):

We consider a family V of real valued continuous functions con-
tained in C[0, 1] such that for each v e V, there exists a largest integer
s ~ d(v) with the following properties.

(A') There exists a C1 mapping Fυ(alf , αs) of an open neighbor-
hood of the origin of real Euclidean s dimensional space into V with
-^(0, •••, 0) = v, such that the s functions dFJddi i = 1, •••, s are
-continuous and form a Haar system of dimension s.

(B') If vx G V intersects v in more than s — 1 points then vt = v.
Although conditions (A) and (B) introduce slight additional difficul-

ties in our proofs because they include redundant parameters, we have
nevertheless formulated our results under these conditions since they
arise naturally, for example, in the case of ordinary rational function
approximation.

DEFINITION. Let N be the maximal value of d(A) for AeP. A
function fe C[0, 1] will be called a normal point in C[0, 1] if it has a
best approximation F(A*, x) which has the property that d{A*) = N.
Note if F(A, x) e V and d(A) = N, then F(A, x) itself is a normal
point in C[0, 1].

We say An is equivalent to A!n if F(An, x) = F(A'n, x). Further-
more, the sequences {AJ and [A'n] are said to be equivalent if A!n is
equivalent to An for each n.

3* Main results*

LEMMA 1. // A* = (aΐ, •••, αj), let d(A*) = q. Further, let xlf

• , xqbe distinct points in [0, 1] for which F(A*, ^) = c^i — 1, , q).
Then for sufficiently small ε > 0 there exists a d(ε) > 0 such that
the equations

with \Ci — Ci\ ^ d have a unique solution A — (alf •••, aM) such that
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α̂  = a* for M ̂  i ^ q + 1 and

(2) ||A - A*Π ̂  s .

Proof. This is immediate from the implicit function theorem ap-
plied to the functions:

fi(a19 , aq9 c19 , cq) = F(aλ, , aq9 a*+19 , α ί , &<) - c*

i = 1, , q .

LEMMA 2. Under the conditions of the above lemma, if F(A*, x)
is a normal point there is only one F(A, x) in V satisfying (1), i.e.,
if F(A, x) satisfies (1), an Ax equivalent to A can be found satisfy-
ing (2).

Proof Since for each AeP, d(A) ̂ N= d(A*) it follows that if
both F{A, x) and F(A19 x) satisfy (1) then F(A, x) = F(A19 x).

LEMMA 3. // F(A*, x) is a best approximation to g(x) then
JP(A*, X) — g(x) must have at least one zero.

Proof Assume that the lemma is false, and that

F(A*, x) - g(x) > 0

for all xe[0,1]. It is well known that in a Haar subspace there is
always a strictly negative function. Hence there is an AeEM such
that (d/dt)F(A* + tA9 x) | ί = 0 < 0 for all xe [0,1]. Then by the mean
value theorem, for small positive ί, \\F(A* + tA) - g\\ < \\F(A*) - g\\.
This contradicts the fact that F(A*, x) is the best approximation to
g(x), and the lemma follows.

From Rice's general investigations on varisolvent families [13] it
follows that: (see also Rice [14])

THEOREM 1. (1) The function F(A*, x) is a best approximation
to g(x) with respect to V if and only if there is a sequence of
d(A*) + 1 points {#J where 0 ̂  xt < xi+ί <^ 1 such that

F(A*, xi) - g(xt) = -{F{A*, xi+ι) - g(xί+1))

(2) Each fe C[0,1] has at most one best approximation from V.

Proof. We show how Rice's work applies in the present circum-
stances. First it follows from Lemma 1 that the set V of functions
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is solvent in the sense of Rice. Secondly Rice assumes if A Φ A* then
F(A, x) and F{A:% x) can intersect at most in d(A*) — 1 points, while
in this paper we assume this when F(A*, x) ^ F(A, x). With this
change of definition the reasoning used by Rice still holds. Finally
Dunham [4] has recently pointed out that the proof in [13] neglects
the possibility that a best approximation has a nonzero constant error
curve. However our Lemma 3 rules out this possibility in the family
V. Thus the result follows.

THEOREM 2. (Also see Dunham [6].) Let F(A*, x) be the best
approximation to g(x) and assume F(A*,x) is normal. Then for any
sequence {F(A8, x)} such that l inv^ \\F(AS) — g\\ = \\F(A*) — g\\, we
can find a sequence {Ap}eP such that lim^oo || A* — A'p\\ — 0, where
the sequence {Ar

p} is equivalent to a subsequence of the {A8}, and the
last M — N components of each A'v agree with the corresponding
components of A*.

Proof. Without loss of generality we can assume g(x) = 0 in the
following discussion. Let 0 fg xλ < x2 < < xκ+1 ^ 1 be a sequence
of N + 1 critical points for F(A*, x), i.e.,

4 F(A*, x,) = (-iy+1F(A*, xi+ί)

\\F(A*)\\ = \F(A*,xί)\. %~ ' ' " '

For definiteness assume F(A*, xλ) = \\F(A*)\\.
Now let {F(AP, x)} be a subsequence of {F(AS, x)} that converges

at the N + 1 points, xu •••, xn+ι. We call the limits of these N + 1
p o i n t s F(Xj), j = l, , iSΓ + 1 . S i n c e \\F(AP, x)\\^\F(AP, x s ) \ i t f o l l o w s
that

( 5 ) max \F{xό)\ ^ \\F(A*,x)\\ = \F(A*,xk)\ .

From (4) and (5) it follows that

( 6 ) (-iy+1F(A*, xs) ^ F{xό) ^ (~iy'F(A*, xs)

We wish to show

( 7 ) F(xj) = F(A\ X,) j = l, . . . , iV.

It will then follow easily from Lemma 1 and 2 that some sequence
{A'p}, which is equivalent to a subsequence of {A8}, can be found so
that l i n v ^ ||A* — A'p\\ = 0 and the last M — N components of each
Ar

P agree with the corresponding components of A*.
Let us assume (7) is not satisfied for some xjm We will show
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this leads to a contradiction. For deίiniteness assume (7) does not
hold at xN+ί. Then c = \F(A*, xN+ι) — F(xN+1)\ > 0. We restrict our-
selves to positive ε less than c/2. By Lemma 1 for ε > δ > 0 and δ
sufficiently small there is an A such that

(a) F(A, xj) = F(A*, xά) + ( - l ) ^ i - ) j = 1, . . . , N .

(8)
1

(b) \\F(A) - F(A*)\\ £ - | = 4 IF(A*, ̂ + 1 ) - F(xN+1) \ .

We only consider p so large that

(9) ^xs)F(xd)\<^ i l , ,iSΓ+
4

Then by construction,

(10) sign (F(A, xs) - F(AP, xs)) = -s ign (F(A, x^) - F(AP, x^)

For by (6) (8a) and (9), (10) surely holds for j = 2, - , N and from
(6) (8b) and (9), it also holds for j = N + 1.

Thus from (10) it follows that F(A, x) - F(AP, x) has at least N-
zeros in [0, 1]. But since N is the maximal degree it follows that
F(A, x) = F(AP, x). But by construction F(A, x) and F(AP, x) disagree
at a?!, , xN+1. This is the desired contradiction and the result follows.

THEOREM 3. Let F(A*, x) be the best approximation to g from
V, where F(A*, x) is normal. Then there is an a > 0 such that for
each AeP

\\g - F(A)\\ ^ \\g - F(A*)\\ + a\\F(A) - F(A*)\\ .

Proof. The result is trivial if g e V. Hence we assume g £ V.
Now if the conclusion is false one can find a sequence {An} e P and a
sequence of positive numbers {aj converging to zero so that F{An) Ξ£
F{A*) and such that

(11) ||</ - F(An)\\ = \\g - F(A*)\\ + an\\F(An) - F(A*)\\ .

We claim the sequence {|| 2̂ (̂ 4̂ ) ||} is bounded. This can be seen by
considering the following expression derived from (11):

\\F(A*) - F(An)\\ - \\g - F(A*)\\ £ \\g - F(A*)\\

+ aΛ\\F(A*) - F(An)\\ .

If one divides both sides of (12) by \\F(A*) — F(An)\\ and assumes
H} is not bounded, then the assumption that an—*0 is con-
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tradicted. Hence by (11) and the boundedness of

(13) lim||<7 - F(An)\\ = \\g - F(A*)\\ .

Therefore by Theorem 2 there is a sequence {Bk} e P converging to A*
where the sequence is equivalent to a subsequence of {An} and the last
M — N components of each Bk agree with the corresponding components
of A*. Note that for the sequence {Bk} (11) remains valid. Let

Y={xe [0,1]: \g(x) - F(A*, x)\ = \\g - F(A*)\\]

σ(x) = sign (g(x) - F(A*, x)) .

Since the the {Bk} satisfy (11), it follows that for each xeY,

ak\\F(Bk) - F(A*)\\ = \\g - F(Bk)\\ - \\g - F(A*)\\

^ σ(x)[g(x) - F(Bkf x)]

-σ(x)[g(x)-F(A*,x)]

= σ(x)[F(A*, x) - F{Bk1 x)].

We claim there is a 7 > 0 such that for all k

(15) maxσ(x)[-F(Bk, x) + F(A*9 x)] ̂  Ύ \\Bk - A* || .
xeY

If (15) is false there is a sequence of positive numbers {7k} converging
to zero and a subsequence of the {Bk} which we do not relabel such
that

(16) max a(x) -*&>.*) + F(A*, *) ^
I | | J 5 A * | |

By the mean value theorem for large k,

(17) max aφ dF^> *) ̂  + ffi g γ.

where jBfc = (bkl, , 6^^), iV = (Z(A*), and ΛA(α;) e P is on the line be-
tween Bk and A*. Set Ck = -J5 , + A*/||JB4 - A*\\. Since | |C f c | | = 1
we can assume by going to subsequences that Ck—+C^ (clf , cM)
where | | C | | = 1. Using this subsequence in (17) and taking limits, we
find,

(18) max σ(x) Σ ^-^-(A*, x)^0 .

By (18) and Theorem 1, the nonzero function Σf=i<?i(di'τ(A*, x)/ddi) has
at least iNΓ zeroes which contradicts the fact that TF(A*) is a Haar
subspace. Therefore (15) holds. Combining (14) and (15),
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(19) ak \\F{Bk) - F(A*)\\ ^ 7 \\Bk - A || .

Since Bk —> A*, by the mean value theorem there is a D > 0 such that
for sufficiently large k,

(20) 11 F(ft) - F(A*)|| ^ Z>||B* - A*|| .

Hence from (19) and (20), for large k

This contradicts the fact that ak —• 0. The proof is thus complete.

THEOREM 4. // F(A*, x) is a best approximation to g(x) and
F(A*, x) is normal then,

(1) There is a y > 0 such that \\f — g\\ < 7 implies f has a best
approximation, Tf.

(2) Furthermore there is a X > 0 such that for all f which have
a best approximation Tf

\\F(A*)-Tf\\£\\\g-f\\.

Proof. By Theorem 3 for all AeP there is a a > 0 such that,

(21) a\\F(A) - F(A*)\\ ^\\g- F(A)\\ - \\g - F(A*)\\ .

F o r e a c h f(x) a n d each n consider all F(A, x) s u c h t h a t \\f — F(A)\\ <L
lfn + i n f i e P | | / - F(A)\\. T h e n from (21),

a \\F(A) - F(A*)\\ £ \\g - / | | + \\f - F(A)\\ - \\g - F(A*)\\

(22) £\\g-f\\ + \\f-F(A*)\\ + 1/Λ - ||0 - F(A*)\\

Choose ε > 0 such that ||A — A*|| ^ e implies A e P . By Lemma 2
there is an δ > 0 so that \\F(A*) — F(A)\\ ^ δ implies the existence of
a A! such that || A* - A!\\ ^ ε and F(A, x) = F(A', a?). Thus the set

{F(A, x): AeP, \\F(A) - F(A*)\\ £ δ}

is compact. Hence from this fact and (22), there is an 7 > 0 such
that \\f — g\\ < Ύ implies Tf exists. For the analogous argument in
the case of unisolvent functions see Tornheim [16], Theorem 7. The
second conclusion follows directly from (22).

It should be noted that an immediate consequence of Theorem 4
and the definition of d(A) is that the normal points in C[0, 1] form an
open set.
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4* Applications* We now consider several applications of the
continuity results. First, we consider the case of generalized rationals.
Let P and Q be two finite dimensional subspaces of C[0, 1] with bases
(Vι, , PJ and (qt, , qm) respectively. Then

V = <F(A, x): F(A, x) = Σ α ^ ω / Σ aj+nqj(x):

Σ aJ+nq,.(x) > 0 for x e [0, 1]} .

P z= {A = (a19 , α Λ + w ) e En+m: F(A, x) e V} .

If we assume for each F(A, x) e V that

P + F{A, x)Q = {p(x) + F(A, x)q(x): peP,qeQ}

is a Haar subspace, then it is easy to show that V satisfies conditions
(A) and (B) and d(A) = dimension (P + F(A, x)Q). This is the situa-
tion in ordinary rational polynomial or trigonometric approximation
[3,8].

The second application occurs in the problem of approximation by
exponential families. Specifically consider

V - JF(A, x) = Σ 0,0**+**:

k

Π aζ Φ 0, ak+1 = 0 i = 1, , w - &
t - 1

α —/- /γ /ί —/- >Ί ΛQ 1 Ί <CΓ 'i o < d /

Note that we rule out the difficult case of coalescing exponents [7].
In [10] it was demonstrated that V satisfies conditions (A) and (B).
For F(A, x) e V, d(A) - n + k.

A rather interesting application is a slight modification of a pro-
blem posed by Dunham [5]. Let V be a family satisfying conditions
(A) and (B), and let ό(y) be a real valued function whose domain is
the real line and whose first derivative is continuous and strictly posi-
tive. Then we seek F(A*, x) in V which minimizes

max I/(a) - φ(F(A, x))\ .
ie[0,0]

It is easy to show that the family

V = {g(A, x): g(A, x) = φ{F(A, x)): x e [0, 1]; F(A, x) e V}

satisfies conditions (A) and (B), and if g(A, x) = φ(F(A, x)) then the
degree of g is equal to d(A).

Finally, consider the following problem. Let V be a family which
satisfies conditions (A) and (B). Let 0 g xλ < x2 < xk <J 1, where
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k fj min^ep d(A) be fixed points. Then we seek among all F{A, x) e V
which interpolate g(x) at xu •• ,xk, the F(A*,x) which minimizes
||g — F(A)\\. This problem is discussed in [1]. It is not too difficult
to demonstrate that the continuity results can be extended to this
setting.
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