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INTERSECTIONS OF THE SPACE OF
SKEW-SYMMETRIC MAPS WITH ITS TRANSLATES

DANIEL B. SHAPIRO

For a quadratic space V over a field K, let 5£ C End(V) be
the space of all maps which are skew-symmetric with respect to
the inner product. For g G G L ( V ) , let ®(g) =
dim(i? fl g££). In this paper we determine the largest few
values possible for 3)(g), and we classify the maps g which
achieve these values. The restriction of this result to maps g in
the orthogonal group 6(V) generalizes the characterization of
± symmetries originally proved by Botta and Pierce.

1. Introduction. Let K be a field of characteristic not two and
let (V, J3) be a quadratic space of dimension n over K. That is, V is a
K-vector space of dimension n and B: Vx V—>K is a non-degenerate
symmetric bilinear form. Let G = €{ V, J3) be the orthogonal group of
this space. Let $£ be the space of all elements of End(V) which are
skew-symmetric with respect to JB. For g & G, the space g££ =
{g °h | h E 5E) may be considered as the tangent space to G at the point g.

For g GEnd(V), let

This dimension 3){g) is viewed as a measure of how far g is from being a
scalar map. For a G Kx, 3)(al) = d im^ = \n{n- 1). The following
theorem, due to Botta and Pierce, shows that the non-scalar elements
g E G which have the largest value for ®(g) are the ±
symmetries. For an anisotropic v G V, the symmetry (or hyperplane
reflection) corresponding to the line Kv is the map rv G G which sends v
to - v and which pointwise fixes the hyperplane (Kv)1.

THEOREM 1.1. [1, Prop. 7.1.]. Suppose n ^ 3 and gEG,g/ ±1 .

equality holding if and only if ±g is a symmetry.

The purpose of the present paper is to determine the next largest
values for 3){g), and to determine which maps g attain these
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values. The value of 2) (g) is computed in terms of the Jordan form of g,
by interpreting ®(g) as the dimension of the kernel of the linear map
g(g) l - l (g)g on A2V. The Jordan forms of all gGGL(V) having
3)(g) ̂  \{n - 2)(n - 3) are found, using some manipulations with
partitions. Then, we utilize results of Milnor [2] to restrict attention
back to elements g in the orthogonal group. The final result is stated
below.

We assume K is algebraically closed here, but this is not much loss of
generality (see Remark 1.5). The equalities stated in the theorem mean
that, with respect to some basis of V, the matrix of g equals the indicated
matrix. The symbol, ±, stands for orthogonal direct sum. We write
/ r(l) for the r x r matrix in Jordan form which corresponds to the
elementary divisor (x - l)r. A subscript indicates the order of a matrix.

THEOREM 1.2. Let K be an algebraically closed field. Suppose
n g 4 and g E 6( V, B\ over K.

(1) 2(g) = ̂ ^iff ±g = l ,

(2) 3)(g)={n~1^n~2) iff ±g = symmetry = ln.l±(-l1).

(3) Q){g)=l^n~2\n~3hff either

(i) ± g = 2-plane reflection = ln_2-L(- 12);
or

(ii) ± g = ln_4

or

(Hi) n = 4 and g = ( n
 2 _u ), for some scalar a^ 0,1, - 1.

\ U a l 2 /

(4) ®{g)={n~2\n~3) iff either

(i) ±g = ln_2l (^ a_tJ, for some scalar a7*0,1, -I;

or
(ii) ±g = ln_3±/3(l);

or
(iii) n = 6 and g = 1 3 1(- 13);

or
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(iv) n = 6 and g = ( n
 3 _H ), for some scalar a^ 0,1, - 1.

(5) 2)(g)<(n 2ffn ^otherwise.

PROPOSITION 1.3. Let g EG.
(1) Suppose n = 2. Then 3)(g)=l if g = ±1 and 3)(g) = 0

wise.
(2) Suppose n = 3. 77ien ® (g) = 3 // g = ± 1, ® (g) = 1 i/ ± g =

symmetry, and ®(g) = 0 otherwise.

REMARK 1.4. If g is a product of two symmetries, then either g is a
2-plane reflection, as in part (3)(i), or g lies either in part (4)(i) or (4)(ii) of
the theorem.

REMARK 1.5. Similar results over a general field K (of characteris-
tic not 2) quickly follow. The only parts of Theorem 1.2 that need to be
changed are the forms of the special matrices in parts (3)(iii), and (4)(i),
(ii), (iv). This generalization easily follows from Proposition 3.1 below,
and the fact that two matrices over K which are similar over the algebraic
closure of K must already be similar over K.

We would like to thank A. Wadsworth for his helpful comments
which led to a substantial improvement of the theorem.

2. Computation of 2>(g). Throughout this section, we use
a fixed gGGL(V). We will return to the orthogonal group in
Section 3.

The non-degenerate bilinear form B induces an adjoint involution,
~ , on End( V), defined by: B(J(u), v) = B(u,f(v)). If an orthonormal
basis of V is chosen, and matrices are used, then this involution is the
transpose map.

By definition, SB = {h G End(V)\h = - h}. An element he.% lies
in £ n g<£ iff gh = hg. Let T: i?-> End(V) be defined:

T(h):=gh-hg.

Then 3)(g) = dim(i? n gg) = dim(ker T).
By the usual method, the bilinear form B gives an identification of V

with its dual space V*, so that Enti(V)= V(g) V* is identified with
V(g)V. Furthermore, for /, fcGEnd(V), the operation h^lhk on
End( V) is identified with the usual operation of / (g) k on V (g) V, and the
adjoint involution, ~ , is identified with the switch operation
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u(g)H>H»w(g)i; on V(g)V. Therefore, ^CEndCV) becomes A2VC
V(g)V, and the map T above becomes the restriction to A2V of

We work with the Jordan decomposition of V with respect to
gGGL(V). Let the elementary divisors of g be (x - bt)\ for i =
1 ,• • -,p. Then, V = V i 0 • • • 0 VP, where Vt is the cyclic submodule
corresponding to (x - bx )

l\ There may be repetitions among the eigen-
values bx\ let aU"-,at be the distinct eigenvalues. Define
V((a)) := the sum of all V, such that bt = a, so that

V((a)) = {v G V\ (g - al)k(u) = 0, for some k}.

Then, V = V((ai))0 • • • © V((a,)). Let n} := dim V((a;)) so that n =
ni+ V nt. For each / = 1 ,• • -,p, the various /,'s corresponding to
6, = a} add up to nr They give a partition P} of the number nr The
eigenvalues a; and partitions P, completely determine the Jordan form of
g. We will compute 2 (g) using these partitions. The idea of using this
interpretation of ®(g) and some computations with Jordan forms is
already present in [1].

DEFINITION 2.1. Suppose P = (mi,- • •, mk) is a partition of n into fe
parts. That is, n = mi+ h mk, where each m, is an integer and
1 ^ mi ̂  • • • ̂  mk. Define

PROPOSITION 2.2. For g £ GL(V) as above, with partitions P, of n,,

Proof. For v, w G V, define u A W := |(u (8>w ~ w 0 U )
y°w:= | (u0H ' + iv(g)t;). For subspaces U, W C V, define
A2([/, W) := Spanfu A W \u G U, w G W} and S2(U, W): = Span{« ° w |
uEU,wEW}. Then, if [/ n W = 0, dim A2(l/, W) = dim S2(f/, W) =
(dimU)-(dimW). li U = W has dimension /, then A2(U): = A2(U, U)
has dimension / ( / - l ) /2 while S2(C7) := S\U, U) has dimension 1(1 +

Since V = Vi©---0Vp, we have A2V is the direct sum of the
A2(VnVs), for r^s, and similarly for S2V. Since T(VAW) =
g(v)°w — v °g(w), the map T is the direct sum of the maps

rn:A2(V,,VI)->.S2(Vl,VI),

for r ^- s. Therefore, ker T is the direct sum of the ker(Tre), for r ^ s.
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Let r ^ s be fixed. Choose a basis {u, 11 ̂  i ^ 1} of Vr correspond-
ing to the Jordan form; that is (setting vo = O), g(vt) =
brvt + 17,-1. Choose a similar basis {iv711 Si / ^ /,} of V,. It follows that

T(vt Aw})=(br -bs)vt°w, + vl-l°wJ -v^toj-!.

We will compute dimker(Trs) by working with coker(Trs), which is
S2(Vn Vs)modim(Trs). In the cases r/ s, ker(Trs) and coker(Trs) have
the same dimension.

Case 1. br7* bs. Then, in coker(Trs) we have (br - b$)vt°Wj =
- vl-i° Wj + v, ° Wj-i, and an inductive argument shows that every vt ° vv; =
0. Hence, dimker(Trs) = dimcoker(Trs) = 0.

Case 2. br = bs but r / s. Suppose lr g /s. The space coker(Trs)
is spanned by elements vl°wp which satisfy the relations vl-i°w} =
vt ° Wj-U for 1 ̂  i g /o 1 ̂  / ^ /5. Then, every u, ° w; reduces either to 0 or
to some vk°wy Therefore these lr elements span the space, so
dimcoker(Trs)^/r.

Also, the space im(Trs) is spanned by the lTls elements
TfaAWj). For every k with l^k^ln there is a relation
T(vk A Wi + vk-i A w2H + Vi A wk) = 0, so that at least lr of these
generators are redundant. Hence, dimim(Trs) ^ lrls - ln so
dimcoker(Trs) = lrls - dimim(Trs) g lr. Consequently, dimker(Trs) =
dimcoker(Trs) = lr = min(ln ls).

Case 3. r = s. Counting dimensions using the exact sequence

we see that dimker(Tr)+ lr = dimcoker(Tr). The space coker(Tr) is
spanned by elements v,°v,9 with relations vt-i°Vj = vt °v}-u for 1 ̂  ij ^
lr. Then, as in Case 2, every vl°v] reduces either to 0 or to some
vk°Vir. Hence, at most lr generators are needed, so dimcoker(T r)^
lr. Therefore, by the equation above, dimker(Tr) = 0.

By Case 1, 2(g) is the sum of the 2-values of the restrictions of g to
the eigenspaces V((a;)). For fixed /, suppose that (x - a})

mx,- • -,
(x-aj)mk are the elementary divisors of g with eigenvalue a;, where
1 ^ mx ^ • • • ̂  mk. Then P} is the partition (mi ,• • •, mk). By Cases 2
and 3, the dimension of the kernel of T restricted to A2(V((a;))) is

2 min(mnm5)= ^mr = (k -\)ml + (k -2)m2+ •• • + mfc_1=

This completes the proof.
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In order to determine which partitions have large 2-values, we
determine the maximal 2 -value of a partition of n into k parts.

DEFINITION 2.3. For integers l ^ l c ^ n , define Fn(k) as follows:

if n = kq + r, 0 ̂  r < fc,

LEMMA 2.4. The maximal 2-value of all partitions of n into k parts
isFn(k).

Proof. Suppose the partition n = mx+ • • • + mk has the maximal
S-value. If mk - m i S 2 , then there exist i <j such that either m, <
ml+1 ̂  my_i <m} or / = i + 1 and m}~ m,§ 2. In either case, define a
new partition of n into k parts by replacing m, by m, 4-1 and m7 by
ntj — 1. This new partition has larger S -value, contrary to
hypothesis. Therefore, mk- m^l, and the partition^ looks like n =
q + q + • • • + q + (q + 1) + • • • + (q + 1), for some q, where there are, say,
r of the (q + 1) terms (0 ̂  r < k). Then n = (k - r)q + r(q + 1) =
kq + r, and the (maximal) 2) -value for this partition is

as claimed.

REMARK. By a similar argument it follows that, for fixed n ^ 1,
Fn(k) is a strictly increasing function for 1 ̂  k si n.

From the following result, we can easily find the Jordan forms of all
with

PROPOSITION 2.5. Let n = «i + 1- n,, where 1 ̂  n, g • • • ̂  n,,
fef P, fee a partition of nt. Let 2 = 3)(Pi) +••• + 2)(P,). The following
list gives all cases when 3) & \{n — 2)(n - 3).

I. t = \
(i) Pl = (l,--;l)and2=L

2n(n-l).
(ii) P, = (1 ,• • •, 1,2) and 9 = Kn - l)(n - 2).
(iii) P! = (1 ,• • •, 1,2,2) and 9 = 1 + \{n - 2)(n - 3).
(iv) P1 = (1 ,• • •, 1,3) and 2 = \{n - 2)(n - 3).
(v) n = 6,Pr = (2,2,2) and 2 =6.

II. t = 2
(i) P, = (1), P2 = (!,-• •, 1) and 3>=\{n- l)(n - 2).
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(ii) P1 = (1,1), P2 = (1,- -., 1) and 2 = 1 + \{n - 2)(n - 3).
(iii) P, = (1), P2 = (1,- •., 1,2) and 2)=\{n- 2)(n - 3).
(iv) Px = 2, P2 = (1 ,• •., 1) and ®=\(n- 2){n - 3).
(v) n = 6,Pt = (1,1,1), P2 = (1,1,1) and SD = 6.

III. r = 3
(i) Pl = (1), P2 = (1), P3 = (1,- • •, 1) and a = \(n - 2){n - 3).

Proof. I. r = l. By Proposition (2.4), \{n -2)(n - 3 )^ 2?(Pi)^
Fn(fc), where the partition Pi has fc parts. If n = kq + r, 0 g r < fc, then

n 2 - 5n + 6 ^ 2Fn(fc) = k(k - l)q + r(r - 1) = (k - l)n - (k - r)r

so n2 + 6 ̂  (k + 4)n and therefore fc g n - 3. Suppose F2 =
(mum2,- - -,mk) and mi = m2= - • • = mt = 1, while 2 ^ m / + i ^ • • • ̂  mfc.
Then n ̂  / + 2(k - /) = 2k - / g 2n - 6 - /, so l^n-6. Finding all
such partitions and computing their Q) -values is now easily done. Note
that, for any partition P, 2(P) ^ in(n - 1) with equality iff P = (1 ,• • -, 1).

II. t = 2. By part I, 3) g I n ^ - l) + \n2(n2- 1). The function
/(JC) = !X(X - 1 ) satisfies the following shift property: if x ^ y then
/(*) + / ( y ) < / ( * - l ) + /(y + l)- Suppose n !S3 (so that n ^ 6 ) and
shift to get 3} S 3 + i(n - 3)(n - 4). If n > 6, this value is less than
|(n - 2){n - 3). Then n = 6, and since equalities hold, no shifts could
have occurred. Therefore, n1 = n2 = 3, and since ®(P») = 3, we have
Ft = P2 = (1,1,1).

Suppose nx = 2. If P, = (2), then 2 = 2£(P2) ^ |(n - 2)(n - 3), so
equality must hold. Therefore, by part I, P2 = (1 ,• • •, 1). If Pi = (1,1),
then 3) = 1 + 3(P2) g 1 + i(n - 2)(n - 3). If Px ? (1 ,• • •, 1) then, by part
I, n - 2 ^ 2 and 3)(P2)^

1
2(n - 3)(n - 4). Then |(n - 2)(n - 3 ) ^ 2 ^

1 + |(M - 3)(n - 4), and this implies n ̂  4. Hence, n = 4 and P2 =
(2). This case is already covered, after switching Px and P2.

If n, = 1, then |(n - 2)(n - 3) ̂  3 = 3)(P2). By part I, both P2 =
(1 ,• • •, 1) and P2 = (1 ,• • •, 1,2) will do, but all other cases are eliminated.

III. t ̂  3. By the shift property stated in part II, we can increase 2
by cutting nu n2 ,• • •, nt-x down to 1 and increasing nt to n - t + 1. Hence,
2 ^ On - t + l)(n - r). If f ̂  4, this value is too small. If t = 3,
equality must hold, so that no shifts could have occurred. Then
n{ = n2=l and n 3

= n - 2 . Again, since equality holds, P3 must be
(1 ,• • •, 1). This completes the proof.

3. Specializing to orthogonal group elements. The
theorem (1.2) will follow ftom the results of the previous section once we
know what the Jordan form of an element g E O(V,B) can be. This
information is found in a more general setting in [2]. We quote the
relevant results.
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Let g E €(V,B) be fixed. Then V is a K[jc]-module, in the usual
way, and we examine the decomposition of this module into cyclic
submodules. Recall that for an eigenvalue a of g, V((a)) is the sub-
module consisting of all v with (g - a)k(v) = 0, for large k.

PROPOSITION 3.1. Let g E O(V,B). Then: (1) V((a)) and V((b))
are orthogonal, unless ab = 1.

(2) The cyclic decompositions of V((l)) and V ( ( - 1)) can be chosen
so that cyclic pieces of different dimensions are orthogonal.

Proof. This is a special case of Lemma 3.1 and Theorem 3.2 of [2].

Let g E End(V). For each eigenvalue a, of g, let n, = dim ^((a,))
and let P, be the partition of nx given by the degrees of the elementary
divisors of g corresponding to a,.

PROPOSITION 3.2. (1) Suppose g E 6(V,B) and a, = ±1,P, =
(m{,- • •, mk). If an even number occurs among the mn it must occur an
even number of times.

(2) Suppose g E 6(V,B) and a , / ± 1 . Then, for some /, a~l = an

nv = n;, and the partitions Px and P} are the same.
(3) If g E End(V) /ms Jordan form satisfying the conditions in (1)

and (2), f/ien there exists a nondegenerate symmetric bilinear form B on V
with gEG(V,B).

Proof. This is all a special case of Theorem 3.4 of [2] and his
discussion on pp. 94-95, 97.

The proofs of Theorem (1.2) and Proposition (1.3) are now easily
done. If gE0(V,B) and S(g)^ i (n - 2)(n - 3), then the possible
partitions induced by the Jordan form of g are known, by Propositions
(2.5) and (3.2). Eigenvalues can then be assigned to these partitions,
subject to the restrictions in Proposition (3.2). Then, the possible
Jordan forms for g are known, and Proposition (3.1) tells which pieces
may be taken to be orthogonal. We omit the details.

REFERENCES

1. E. P. Botta and S. Pierce, The preservers of any orthogonal group, Pacific J. Math., (to appear).
2. J. Milnor, On isometries of inner product spaces, Invent. Math., 8 (1969), 83-97.

Received March 20, 1977. Partially supported by an NSF grant.

OHIO STATE UNIVERSITY

COLUMBUS, OH 43210


