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EFFLUENT AND NONEFFLUENT FIXED POINTS
ON DENDRITES

HELGA SCHIRMER

This paper gives a partial answer to the problem of es-
tablishing conditions for the existence of selfmaps of one-dimen-
sional spaces with prescribed fixed points and fixed point
indices. Two types of isolated fixed points on dendrites are
defined, and called effluent and n on effluent fixed points. They
correspond on polyhedral trees to fixed points of minimal or
maximal algebraic index, but are characterized by separation
properties. Necessary and sufficient conditions are given for
the existence of a selfmap of a dendrite which has a prescribed
set of effluent and noneffluent fixed points.

1. Introduction. It is known that dendrites, as well as many
polyhedra, have the "complete invariance property" (see e.g. [7], [12]),
which means that any arbitrarily given closed and nonempty subset of
these spaces can be the fixed point set of a suitable selfmap. For a fairly
large class of polyhedra this result has been sharpened considerably:
necessary and sufficient conditions have been established for the exis-
tence of a selfmap within a given homotopy class for which not only the
locations of the (finitely many) fixed points, but also their indices are
prescribed [8]. The construction of such a selfmap uses Nielsen's theory
of fixed point classes and the "splitting" and "moving" of fixed
points. These methods fail completely in one-dimensional spaces and
hence cannot be used for dendrites. Nevertheless the question arises
under which conditions selfmaps of dendrites exist for which not only the
locations of the fixed points, but also their indices are given.

We give here a partial answer to this question. Dendrites are
acyclic continua, and hence our proofs employ methods which belong to
continua theory. They consist of an exploitation of the connectedness
properties of dendrites which can e.g. be found in [4] and [13], as well as
of the partial order structure of dendrites which was developed by L. E.
Ward, Jr. [9], [10] and has often been found useful in the investigation of
fixed point questions. These methods belong to general topology, and it
is therefore necessary to replace the usual definition of the fixed point
index by a topological rather than an algebraic one. This is, however,
done only for fixed points wKich correspond to those with a minimal or a
maximal index. If c is an isolated fixed point on a polyhedral tree and is
of order o(c), then one can easily check that its index i(c) under different
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self maps can assume values for which 1 - o(c) ̂  i(c) ̂  1. The so-called
effluent fixed points defined in §2 correspond to fixed points with index
l - o ( c ) , and the noneffluent ones to those of index one. Inessential
fixed points are those which correspond to fixed points of index
zero. We do not consider fixed points which correspond to those of an
index different from 1,0, or l - o ( c ) .

Before we investigate the existence of selfmaps on dendrites with
given effluent and noneffluent fixed points, we establish some properties
of these types of fixed points. We show that noneffluent fixed points are
always essential (Theorem 3.2), and that every self map of a dendrite has
at least one noneffluent fixed point (Theorem 3.5). An effluent fixed
point is essential if and only if it is not an endpoint (Theorem 4.1). A
map need not have an effluent fixed point, and the existence of essential
effluent fixed points implies the existence of more than one noneffluent
one. Two lower bounds for the number of noneffluent fixed points in
the presence of effluent fixed points are established in Theorems 4.2 and
4.4.

These properties are used in the proof of the main result (Theorem
5.2), which gives necessary and sufficient conditions for the existence of a
selfmap of a dendrite which has a prescribed finite set of effluent and
noneffluent fixed points. These conditions are more complicated than in
the polyhedral case [8], and the case where all possible values of fixed
point indices for selfmaps of dendrites are considered will likely turn out
to be quite cumbersome.

A convex metric of the dendrite is used throughout. I do not know
how far the results can be extended to trees, i.e., to the nonmetric
case. The metric is not used in the definition of effluent and noneffluent
fixed points and could be omitted in the definition of inessential fixed
points. But it is, in the light of some work on trees by L. E. Ward, Jr.
[12], quite possible that at least §5 will not hold for nonmetric trees. An
attempt to prove the results of §3 and §4 without the help of a metric
seems to have a better chance of success.

I would like to thank the referee for his helpful suggestions.

2. Different types of fixed points on dendrites. Let
us first recollect the definition of a dendrite, and those of its properties
needed in this paper.

A dendrite D is a metric continuum in which every pair of distinct
points is separated by a third one. D has a partial order structure which
was developed by L. E. Ward, Jr. [9], [10]. It is obtained by selecting an
arbitrary point a E D as root, and defining x ^ y if x = a, x separates a
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and y, or x = y. Then a ^ x for all JC E D. The sets

L(x) = {y(ED\y^x}

and

M(x) = {y ED |x ^y}

are closed in D, the set M(x)\{x} is open, and L(x) is a chain (i.e., is
linearly ordered). A point m is called a maximum {minimum) of a
subset A of D iimft x (JC ?£ m) for each JC E A. It was proved by Ward
([9], Theorem 1; [10], Theorem 1) that every nonempty closed subset of
D has a maximum and a minimum. As L(x) is a chain, the maximum
and minimum of a closed nonempty subset of L(x) is unique. So is the
minimum of a subdendrite ([3], Lemma 2).

It follows from [13], pp. 88-89, that D is locally connected and that
every connected subset is arc-connected. The arc [JC, y] between any
two points JC, y E D is unique, and consists of all points which separate x
and y. Every closed and connected subset of D is a subdendrite ([13], p.
89), and hence M(JC) and (D\M{x)) U {JC} are subdendrites. A dendrite
has, at each of its points, a neighbourhood basis M so that every N E Jf is
a subdendrite with a finite boundary. (As D is regular ([4], p. 301),
there exists for every neighbourhood U of a point JC E D a neighbour-
hood V of JC which has a finite boundary, and we can also ask that its
closure Cl V is contained in U. A neighbourhood N EJf with N C U
can then be obtained as the closure of the arc-component of V which
contains x.) We call the elements N E JV* the basic neighbourhoods of D
at x.

The order o{x) of a point JC of D is defined in [13], p. 48. The point
x is called an endpoint if its order is one, and a branchpoint if its order is
greater than two. If either the order of JC or the number of components
of D\{JC} is finite, then these two numbers are equal ([13], p. 88).

It is the main purpose of this paper to construct mappings with given
effluent and noneffluent fixed points. We now define these, as well as
inessential fixed points. All definitions apply only to a fixed point c of
/ : D —> D which is isolated, i.e., which has a neighbourhood U such that
ClU n Fix/ = {c}, where Fix/ denotes the fixed point set of /. We give
D a convex metric d [1], [6], and denote the boundary of a subset by Bd.

DEFINITION 2.1. Let D be a dendrite and / : D —> D be a map with
fixed point set Fix/. An isolated fixed point c E Fix/ is called inessen-
tial if for every neighbourhood U of c with Cll/ D Fix/ = {c} and every
e > 0 there exists a map g: D -> D such that
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(i) d(f(x),g(x))<e for all x ED,
(ii) g(x) = f(x) for all xED\U,

(111) g is fixed point free on ClU.
Otherwise an isolated fixed point is called essential.

DEFINITION 2.2. Let D be a dendrite and / : D —> D be a map with
fixed point set Fix /. A fixed point c E Fix / is called effluent if every
neighbourhood of c contains a basic neighbourhood N(c) such that
N(c) PI Fix/ = {c} and such that x separates c and f(x) whenever
x EBdiV(c). A fixed point c E Fix/ is called noneffluent if every
neighbourhood of c contains a basic neighbourhood N(c) such that
N(c)nFix / = {c} and such that x does not separate c and f(x)
whenever x E BdN(c).

We see that a source of a vector field corresponds to an effluent fixed
point, and that sinks and circulations correspond to noneffluent fixed
points. —It should be noted that noneffluence is a stronger condition
than the negation of effluence and that the term "strictly noneffluent"
would have been more precise. We have avoided this pedanticism as
confusion seems unlikely.

3. Some properties of noneffluent fixed points. We will
show in this paragraph that every noneffluent fixed point is essential
(Theorem 3.2), prove that there always exists at least one noneffluent
fixed point (Theorem 3.5), and finally state a criterion for the existence of
exactly one noneffluent fixed point (Theorem 3.6). A frequent tool used
in the proofs here and further on is a retraction of the dendrite D onto a
given subdendrite Do.

LEMMA 3.1. Let Do be a subdendrite of the dendrite D which
contains the root of D. Then the function r: D -» Do defined by

r(jt) = max(L(jc)nD0) for all x ED

is a retraction, and r(x)EBdD0 if xf£D0.

Proof. The function r was used by L. Lum in [5], Theorem 2.1, and
it is shown there that it is a retraction. From the definition of r(x) as a
maximum it is immediate that r(x)EBdD0 if x§£DQ.

With the help of this lemma, the proof of the essential character of
every noneffluent fixed point is simple.

THEOREM 3.2. Every noneffluent fixed point of a dendrite is
essential.
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Proof. Let a be a noneffluent fixed point of the selfmap
/: D —> D. We choose it as the root of D. As a is noneffluent, we can
find a basic neighbourhood N(a) such that N(a)H Fix/ = {a} and
x£ (a,/(x)) for x E BdN(a), where (aj(x)) = [a,/(x)]\{a,/(x)}. Let
r: D-+N be the retraction of Lemma 3.1.

Assume now that a is inessential, so that there exists a map
g\ D ->D with g(x) = f{x) for all x E D\N(a) which is fixed point free
on JV(a). Define / ': N(a)->N(a) by / ' = r°g |N(a). If x £ B d N ( a )
and g(x)EN(a) then f (x) = g(x)/x, if x £ Bd JV(a) and g(x)£ N(a)
then /'(jc)GBdJV(a), so in either case f'(x)^x. If x E BdN(a), then
f'(x) = rof(x) and x£(a, /(x)) . Therefore r ° / (x )^ / (x ) implies
f'(x)^ x. Hence / ' is a fixed point free selfmap of the dendrite N(a),
which contradicts the fact that N(a) has the fixed point property. So a
must be essential.

We now want to establish the existence of a noneffluent fixed
point. This will involve us in a more complicated proof, and we prepare
for it with two lemmas.

L E M M A 3.3. For every f:D-*DthesetE = {xED\x^ / ( x ) } is
closed in D .

Proof. This follows e.g. from [11], Lemma 7.

LEMMA 3.4. If x',x"ED are two points such that x " E (x', f(x"))
and JC'E (JC",/(JC')), then f has a fixed point on {x\x").

Proof. Take /(JC ') as root. Then by assumption /(x') < x' < x" <
/(JC"). The set Eo= E n[x \x"] is closed by Lemma 3.3, is nonempty as
x" E Eo, and is /[x\x"] as JC ' £ Eo. Let JC0 = min Eo. As J50 is closed,
x0EE0, so that JCO^/(JCO). Assume now that JCO</(JCO). The partial
order of D is order dense [10], therefore we can choose t with
xo<t</(jc0),

 and, as / is continuous, an open set U(x0) containing x0 and
such that f(U(xo))CM(t)\{t}. But then J C E E 0 for all x E L ( x o ) n
C/(jc0), contradicting the minimality of JC0- SO we must have JC0 = f(x0),
and x0 is the desired fixed point.

THEOREM 3.5. If a selfmap of a dendrite has a finite fixed point set,
then it has at least one noneffluent fixed point.

Proof. Let / = fx: D —> D be a selfmap of a dendrite D = Dx with a
finite fixed point set Fix/. As F i x / / 0 , we can choose a point ax E Fix /
as root. If ai is not as desired, then there exists a basic neighbourhood
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) with Ni(ai) n Fix/ = {ax}, and such that ax < xx < /i(jti) for at least
one JCI E BdNi{ax). Now consider the set Ex = {x EDt\x ^ fi(x)}. As
Xi E Eu we have Ex 7̂  {ax}. An argument similar to the one used in the
proof of Lemma 3.4 shows that no x with x </i(x) can be a maximal
element of Ex. But Bx is closed by Lemma 3.3, and hence must contain
at least one maximal element, a2 say. Then a2E.Exn Fix/, and as
Xi E £1, we have a2 ¥" ax.

Assume now that a2 is again not as desired. We shall show that in
this case there must exist a third fixed point a3. For this purpose, select
a basic neighbourhood N2(a2) with N2(a2) DFix/ = {a2}, such that
x2E(a2,fi(x2)) for at least one x2 E Bd N2(a2). If x2 E M(a2)\{a2}, then
02 < *2 < /i(*2) implies JC2 E £1 which contradicts the maximality of
a2. Hence x2 E Bd N2(a2) n (D \M(a2)). Let y2 = max (L (a2) n L (x2)),
so that ai < y2 < a2, and denote by K(a2) the component of DiMy^ which
contains a2. As y2 E [a2, JC2], we have y2 E N2{a2) and therefore
/i(y2)/ y2. We also have fi(y2)& K(a2), for otherwise the assumptions
of Lemma 3.4 would be satisfied for x2, y2 (note that /i(y2) E K(a2) implies
y2^ x2) and fx would have a fixed point on (x2, y2)CN2(a2), in contradic-
tion to N2(a2) flFix/ = {a2}. Now let D^D^jK^a:*), and define
/2: D2-^D2 by / 2= r2°/i|D2, where r2: Di-

J>D2 is the retraction from
Lemma 3.1. As a 1 is not a noneffluent fixed point of fu it is not a
noneffluent fixed point of f2. We can therefore repeat the argument
from the beginning of the proof for /2 and E2 = {x E D2\x ^/2(x)}
instead of fx and E1? and find a maximal element a3 of £2. Again
£2^(01}: if y2£E2, then y2ED2 implies yif^fiiyi). If also JCI^E 2 ,
then xi < /I(JCI) implies JCI & D2 and hence y2 < xx. But then Lemma 3.4
yields a fixed point of fx on (y2, Xi) which must be different from au and
this cannot happen as now (y2, Xi)C iV^a^ and Ni(a1)nFix/ =
{<2i}. Therefore £2 must contain at least one of xx and y2, and we have
a3 E Fix/, a3 ^ au and also a3 7̂  a2 and a2 ^ E2.

If a3 is again not as desired, we repeat the last step of the proof, and
obtain a fixed point aAE: D3 = D2\K(a3), where K(a3) is defined in D2

analogously to K(a2) in Du and such that a4E Fix/\{ai, a2, a3}. This
process, if continued, must eventually lead to a noneffluent fixed point as
the fixed point set Fix/ is finite, and therefore Theorem 3.5 must be true.

We finally state a result which shows that usually more than one
noneffluent fixed point can be found.

THEOREM 3.6. Let f be a selfmap of a dendrite with a finite fixed
point set. Then f has exactly one noneffluent fixed point if and only if all
but one of its fixed points are inessential

The proof of Theorem 3.6 is lengthy and uses similar methods to
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those employed in the proofs of Theorems 3.2 and 3.5. It is omitted as
the theorem is not used in the rest of this paper.

4. Some properties of effluent fixed poiijts. We now
turn our attention to effluent fixed points. An effluent fixed point need
not be essential, but we can show that it is inessential if and only if it is an
endpoint (Theorem 4.1). There is no counterpart to Theorem 3.5, as
effluent fixed points need not exist. But if they do, then the number of
noneffluent fixed points increases. We establish in Theorems 4.2 and 4.4
two lower bounds for the number of noneffluent fixed points for maps
which have effluent fixed points.

THEOREM 4.1. An effluent fixed point of a selfmap of a dendrite is
inessential if and only if it is an endpoint.

Proof, (i) Let b be an effluent and inessential fixed point of the
selfmap / of the dendrite D, and Fix/ be its (not necessarily finite) fixed
point set. We use b as root. Assume by way of contradiction that b is
not an endpoint, so that D\{b} has at least two components Kt and
K2. As b is effluent we can find a basic neighbourhood N(b) with the
following properties: N(b) 2 Kt for i = 1,2, N(b) n Fix/ = {&}, and x <
f(x) for all x EBdN(fc). If y, EK,\N(fc), then the arc [6,yt] is con-
tained in the arc-connected set Kt U {b}. From b E N(b) and y,^ N(b)
it follows that there exists xt E (b, y,) PI BdiV(fe) for i = 1,2. As b is
inessential, we can find a selfmap g of D such that g(x) = f(x) for all
x E:D\N(b) and such that g is fixed point free on N(b). But then
g(x,) = /(*,) and therefore jc,<g(jc,) for i = 1,2, so that Lemma 3.4
asserts that g has a fixed point on (xu x2)CN(b). Hence we arrive at a
contradiction.

(ii) Now consider an effluent fixed point b E D which is an end-
point, and select it as root. Choose any e >0, and any neighbourhood
U(b) with ClU(b)CiFixf = {b}. Take 5 > 0 such that d i a m P < 5
implies diam/(P) < e for all P CD. As b is effluent there exists a basic
neighbourhood N(b) C U(b) such that x < f(x) for all x E BdN(B); we
can also require that diamN(fc)<5 and N(b)^D. As b is an end-
point, we can choose an open neighbourhood V(b) with Cl V(b) C N(b)
and such that Bd V(b) consists of exactly one point *i. Let K(b) be the
component of V(b) which contains b. Then K(b) is open in V(b),
BdK(b) = {x1}, and it is easy to see that K(b)U M(x1) = D. As
K(b)UM(x1) = D and K(b)CN(b)^D, there exists a point x'E
M(x!)\N(6), and therefore a point x2E [xux

f] n BdN(b). Then x2<
f(x2% and / is fixed point free on (xux2)CN(b), so that Lemma 3.4
implies Jt!</(jCi). We see that / ( x i ) ^ K ( 6 ) , for otherwise XiE
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[fc,/(jCi)] CK(b). But Xi is the boundary of the open set K(b), so
x^K(b).

We define g: D-+D by

/(*)={ O if
f(x) if

Then g is continuous, d (f(x), g (x)) < e, g (JC ) = /(JC) for x G D \ U{b) and
g is fixed point free on Cl U(b). Hence b is inessential.

It was not necessary in Theorem 4.1 to assume that / has a finite
fixed point set, but in the following theorem the assumption is needed.

THEOREM 4.2. If b is an effluent fixed point of a selfmap of a
dendrite D with a finite fixed point set, then every component of D\{b}
contains at least one noneffiuent fixed point.

Proof. Take the effluent fixed point b of the map / : D —>D with
fixed point set Fix/ as root, and let K be a component of D\{b}. As
Do = K U {b} is a subdendrite, a retraction r: D —> Do can be defined, as
in Lemma 3.1, by r(x) = x if x E Do and r{x) = b if X0. DQ. It follows
from Theorem 3.5 that the map g: Do—>D0 given by g(x)= r°f(x) for all
x G Do has a noneffluent fixed point a. If a^ b, then the theorem is
proved, as a noneffluent fixed point of g is clearly a noneffluent fixed
point of / if it is contained in the open subset K of D. It remains to rule
out the possibility that a = b.

If a = b and b is effluent for /, then we can select a neighbourhood
U(b) in D with U(b) D Fix/ = {6} which contains a basic neighbourhood
N(fc) with x <f(x) for x GBdJV(6), and such that K£N(b). Then
K HBdN(b)^0, so that there exists an xx G K n BdN(fo) with Jd<
/(JCJ). Let [/'(£) be the neighbourhood of b in Do which consists of all
points x with d(b,x)<\d{b,xx). As a is noneffluent for g,U'(b)
contains a basic neighbourhood N'(b) of b in Do with jt^g(jc) for
x G BdooiVX )̂, where BdDo denotes the boundary in Do. The fact that
Xi£N'(b) allows us to choose x2&BdDoN'(b)n(b,xl), and x2ftg(x2)
implies x2f£f(x2). Therefore Lemma 3.4 yields a fixed point of / on
(xl5 x2)CN(b) C U(b), in contradiction to U(b) fl Fix/ = {b}. So a = b
is impossible.

COROLLARY 4.3. / / b is an effluent fixed point of a selfmap of a
dendrite with a finite fixed point set, then the order of b is finite.

Proof If b is not of finite order, then D\{b} has infinitely many
components. But Theorem 4.2 asserts the existence of a noneffluent
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fixed point in each of them, which cannot happen if the fixed point set of /
is finite.

Note that the counterpart'of Corollary 4.3 for noneffluent fixed
points is not true. If the order of the point a E D is not finite, then the
map f: D->D given by f(x)= a for all x E D has a as its only fixed
point, and a is noneffluent. Less trivial counterexamples can also be
easily constructed.

Theorem 4.2 provides information about the location as well as the
number of noneffluent fixed points, and the lower bound for the number
of noneffluent fixed points obtained in it is the best possible one if only
one effluent fixed point is present. But we shall now sharpen this bound
considerably for the case where more than one effluent fixed point
exists. We denote by # A the number of elements of the finite set A.

THEOREM 4.4. Let a selfmap of a dendrite have a finite fixed point
set, and let A be the set of its noneffluent fixed points and B be the set of its
effluent fixed points. Then

-1 ) .

Proof. We know from Theorem 3.5 that A jt 0 , so we can select a
noneffluent fixed point a0 as root. Let now bt E B be an effluent fixed
point of the selfmap / of order o(bt). It follows from Corollary 4.3 that
o(bt) is finite, so that D\{k} has o(bt) components. Let Klk(k =
1,2,- • -,0(6,)- 1) be the components of D\{bt} which do not contain a0.

For each Klk the set

Dlk = [Klk U{6,}]\[U(M(67)\{6;}| b} E Klk)\

(where the set in the second square bracket can be empty) is a
subdendrite of D, and the function rlk: D —> Dlk given by

rlk{x)=<

x if JC ED l k ,

bt if xED\Kik,

b} if xEM(bj) and b} E Klk

is a retraction. Define

glk: Dlk -> Dlk by glk (x) = rlk °f(x)

for all x E Dlk. It follows from Theorem 3.5 that glk has at least one



548 HELGA SCHIRMER

noneffluent fixed point, say alk, and an argument similar to the one used
in the proof of Theorem 4.2 shows that alk ̂  h and alk ̂  b} for all
bj E Klk. Therefore alk is also a noneffluent fixed point of /. In this
way, we associate with each effluent fixed point b, a set of o{bx) — 1
noneffluent fixed points alk, which are different from the noneffluent fixed
point a0.

It remains to show that all alk are different. As bx < alk, the fact that
dxk — a}i would imply bx < b} or b} < bn say bx < br But then bl<b] < alk,
which is not possible according to the construction of the alk in Dlk. So
a0 and the points alk form a set of l + S6 G B(o(6)- 1) noneffluent fixed
points of /.

REMARK. In general, / has in fact more noneffluent fixed points
than the minimum number required by Theorem 4.4. As an example,
consider the cross in the xy -plane given by

D ={(x,y)ei? 2 | | x | ^ l and y = 0, or x=0 and | y | ^ l }

and define f: D->D by

f(x, 0) = (|JC - § | x |JC, 0) for all (JC, 0) E D,

for all ( 0 , y ) 6 D

(i.e. / moves the points on the x -axis away from the origin, and the points
on the y-axis towards the origin).

The self map / has five fixed points at (0,0), (±1,0), and
(0, ± 1). The points (±1,0) are noneffluent and the points (0, ± 1) are
effluent and all are of order one. The point (0,0) is neither effluent nor
noneffluent. Hence

#A=2>l + 2(
bGB

But we will show in the next paragraph, in Theorem 5.2, that / has
precisely 1 + SfceB (o(b) - 1) noneffluent fixed points if / has a finite fixed
point set and all fixed points of / are either effluent or noneffluent.

5. Mappings of dendrites with prescribed effluent and
noneffluent fixed points. The last paragraph of this paper con-
tains its main result, the construction of a selfmap of a dendrite with a
prescribed set of effluent and noneffluent fixed points. Necessary and
sufficient conditions for the existence of such maps will be given in
Theorem 5.2. They are consequences of Corollary 4.3 and Theorem 4.4,
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supplemented by one further condition which is motivated by Lemma
5.1. The proof of Theorem 5.2 depends heavily on the fact that D has a
convex metric.

LEMMA 5.1. Let A ^ 0 and B be two finite subsets of a dendrite, and
let the order o(b) be finite for each b E B. If

(a\a")nB/0 for all distinct a',a"EA,

then

(i)

Proof Select an element av E A as root of the dendrite D, and
index the elements of A so that L(at) does not contain more elements of
B than L(a}) whenever i </ . This obviously implies a}fC at. Let, for
all k = 2,3,- • •, # A, the finite subdendrite Dk of D be given by
Dk = U ([au at] | i = 2,3,- • •, fc), and denote by ok(b}) the order of b} in
Dk. We shall proceed by induction on fc, and associate with each ak an
element bk E B n Dk of order ok(bk)^2, so that either bk^ bs for all
j < k, or ok(b}) = 0fc_i(fc;)+ 1 for some / < k. If the points au a2,- • •, ak-x

and 62, b3,- • •, 6 -̂! satisfy

fc-lSl+ 2 (0^(6,)-1),

then the points au a2,- - *, ak and ft2, 63,- • •, bk satisfy

As ofc(fe) g o(fc) for all b E JB and as {b, \ 2 ̂ j' ^ # A} C B, this gives the
desired result (i).

If k = 2, then (a1? a2) PI B / 0 allows us to choose b2 E (al5 a2), and
as o2(fc2) = 2, we see that (ii) holds for k = 2.

Now assume that (ii) holds for the k - 1 points a b a2,
m • •, afc_i in

Dk_j. Let mk = max(L(ak)n Dk-0E Dk_!. I f m k 6 B f l Dfc_1? then we
choose bk = mk. In this case we either have bk = b} for some / < fc, and
hence ofc(6k) = 0k-i(6k)+ 1, or fck/^ b} for all / < k. If mk E A n Dk-U

then (mk, ak)n B/0, and we can select bk E (mk, ak). If finally
mkf£(A U B)H Dk-U then there exists an ^ E D ^ with mk < ar It
cannot happen that (mk, ak) d B/ 0, for (a,, ak) = (aI3 mk] U [mk, ak) must
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intersect B, and (mk, at) n B^ 0 with (mk, ak)HB/0 and i < fc con-
tradicts the way in which A was indexed. So we can again choose
bk G (mk, flk). We see that in each of these possible cases (ii) is satisfied
for aua2,- • -,ak.

We now proceed to establish the criteria for maps with prescribed
sets of effluent and noneffluent fixed points.

THEOREM 5.2. Let A and B be two finite subsets of a
dendrite. Then there exists a selfmap with fixed point set A U B for which
all points in A are noneffluent and all points in B are effluent, if and only if
the following three conditions hold:

(i) The order o{b) is finite for each b G JB,
(ii) (a',a")nB/0 for all distinct a',a"EA,
(iii) # A § l + 2»GB(

Proof. A. Necessity. Condition (i) follows from Corollary 4.3
and (iii) follows from Theorem 4.4, so we only have to deal with
(ii). Assume therefore that a selfmap / : D -> D of a dendrite D exists
with the prescribed fixed point set, and that there are two distinct points
a',a" E.A for which (a', a")HB = 0. We can choose a root of D such
that a' < a", and can clearly also assume that (a', a") fl A =0. As a'
and a" are noneffluent we can with the help of suitable neighbourhoods
find points x',x" E(a',a") with a'< x'< x" < a" and so that
x' £ (a', f(x')) and x"£(a", f(x")). But then x " G (JC', f(x")) and x' G
(JC",/(x')X s o Lemma 3.4 asserts that / has a fixed point on (x', x"). This
cannot happen if A U B is the fixed point set of /, and (ii) must hold.

B. Sufficiency. Assume now that Fix/ = A U J3, is a finite subset of
D which satisfies conditions (i), (ii), and (iii). As # A ^ 1, we can index
the points in A as in the proof of Lemma 5.1, and see from Lemma 5.1 (i)
and Theorem 5.2 (iii) that the points bk obtained in this proof are all the
points of B apart from possibly some points of order one, i.e., we have
B =B'UB", where B' = {b,\2^j'^ * A}with o(fc;)g 2 and not neces-
sarily all b} distinct, and where o{b) = 1 for all b G B". We also have, in
the notation of the proof of Lemma 5.1, o(b) = o*A{b) for all
bEB'. Let Dk, for 2 ̂  fc ^ # A, be the subdendrite from the proof of
Lemma 5.1, and Dx = {a^. We first define maps / f c :D f cUAU
B'->Dk UA UB' with fixed point set A UJ3' inductively for k =
1,2,-.-, # A .

If k = 1, then D1UAUB' = AUB\ therefore we put fx{x) = x for
all x G D i U A U B ' . Now assume that fk-x: Dk-X-* Dk-X has been
defined. Let again mk = max(L(flk) HDk-i), so that Dk =
Dk_! U [mk, ak], where [mk, flk] = [mk, bk] U [bk, ak], with mk = bk or
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mk^ bk, but always bk^ ak. In the definition of fk we shall use param-
eters A and //,, with O ^ A g l and fi = A +|A(1 - A). Note that then
0 ^ JJL ^ 1, and fi ^ A with n = A if and only if A = 0 or A = 1. We put

if X E D H U A U B \

/k(x) = | /*ak+(l-/x)fck if x =

if x =

We also write D' = D#A = D#A U A U £ ' and / ': D' -> D ' for the case
k = # A. It is easy to check that / ' is continuous, that its fixed point set
is Fix/ = A U B', and that the map / ': D ' - » D ' has the points of A as
noneffluent fixed points and the points of B' as effluent fixed points.

If B" = 0 , let D" = Df and /" = /'. If B V 0 , i.e., if a map with
inessential effluent fixed points is to be constructed, then let D" =
D'U(U([aub]\bEB")), and extend / ' : D'->D' to/" :D"^D" as fol-
lows: if x G D \ let /" (x) = /'(*). H x 6 D"\D', then x = Am + (1 - A)fc,
for some fe G B", with m = max (L(b) n D') and 0 ̂  A < 1. Let /"(x) =
/x/'(m) + (1 - ix )b, where again /x = A + |A (1 - A). Then /" has the fixed
point set A U B, with the points of A as noneffluent and the points of B
as effluent fixed points.

It remains to extend /": D"-> D" to / : D -* D. For this purpose,
let r:D->D" be the retraction of Lemma 3.1, i\D"-*D be the
injection, and define / by / = i°f"°r. Clearly / has the fixed point set
Fix/ = A UJB. The points of A are noneffluent, as x£(a, / (x)) for
JC G BdN(a), where N(a) is any subdendrite of D with N(a) d Fix/ =
{a}. In order to see that the points of B are effluent take any b G JB, and
any neighbourhood [/(ft). Choose a neighbourhood V(fe)C [/(£) with
Cl V(b) fl Fix/ = {&}, and so that Cl V(b)\{b} contains no branchpoints
of D". Let W(b) be an open neighbourhood W(b) C V(b) and so that
Bd W(b) consists of at most o{b) points, and let K{b) be the component
of W(b) which contains b. Finally put N(b) = ClK(b). Then
JV(fe) is a neighbourhood of 6 and is a subdendrite. As N(b) n
D"CC1 V(6)nD" and o(6) = oD<ft), we have N(b)DD" =
U ([6, JC,] | i = 1,2,- • •, o(b)), where [fc, x,] fl [b, x j = {6} for iV /. Hence

{JC, I i = 1,2,- • -,o(ft)} is the boundary of N(b)nD" in D". Now
BdD-(N(fc)nD")CBdlV(6) and Bd W(b) consists of at most o(b)
points. So we see that BdJV(6) = {x, |i = 1,2,- • -,o(b)}. By construc-
tion of / we have x, G (6,/(x»)) for all i, and therefore N(b) satisfies the
conditions in the definition of an effluent fixed point.

REMARK. In consequence of Lemma 5.1, we can replace the
condition (iii) in Theorem 5.2 by
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(iii)' # A = l + 2
6GB

But condition (ii) cannot be omitted even in the presence of condition
(iii)'. Consider, e.g., the dendrite D which consists of the points
0 ̂  x ^ 4 on the real line, let A = {0,1,4} and B = {2,3}. Then A and B
satisfy (i) and (iii)', but there is no selfmap of D which has the points of A
as its noneffluent fixed points and the points of B as its effluent fixed
points.
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