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ON ALTERNATIVE RINGS AND THEIR
ATTACHED JORDAN RINGS

MICHAEL RICH

Let A be an alternative ring and Aq its attached quadratic
Jordan ring. We show that if A is finitely generated by n
generators then Aq is finitely generated by the monomials in A
of degree ^ n + 1. It follows that if A is finitely generated then
A is nilpotent if and only if Aq is solvable, and for arbitrary A
the Levitzki radical of A coincides with the Levitzki radical of
Aq. Finally, if A has an involution * and H(A, *) denotes the
^-symmetric elements of A then several results known for
associative rings connecting properties of H(A, *) to those of A
apply.

The Levitzki radical L(R) of a ring R (associative, Jordan, alterna-
tive) is known to be the maximal locally nilpotent ideal of R and has the
properties that L(R) contains all locally nilpotent ideals of R and that
L(R/L(R)) = 0. In [9,11] it is shown that if R is an associative or
alternative algebra over a commutative ring <J> such that 1/2 E $ then
L(R) = L(R+) where R+ denotes the attached linear Jordan
algebra. In §1 we extend this by considering an alternative ring A of
arbitrary characteristic and its attached quadratic Jordan ring
Aq. Recall that Aq is defined to be the additive group of A together
with the quadratic operators x2 and Ux: a*+ xax for all x in A. The
bilinear operators attached to these are x • y = xy + yx and
[/xy: a H» (xa)y + (ya)jc = x(ay)+ y(ax). The key result we prove is
that if A is generated by xu x29 — -9xH then An+2CA UA and that Aq is
finitely generated by all monomials in A of degree ^ n + 1. This
enables us to conclude that L(A) = L(Aq) and that if A is finitely
generated then A is nilpotent if and only if A9 is solvable.

In §2, we assume that A is a ring with involution * and note that
several known results for associative rings in which A inherits properties
of //(A, *) apply to alternative rings. In particular, if A is alternative
and if the quadratic Jordan ring H(A, *) is nilpotent of index n then A is
nil of index S 2n. Finally, if A is an algebra over a field with at least n
elements and if H(A,*) is nil of bounded index n, then A is nil of
bounded index S2n.

1. Throughout we shall make use of the Moufang laws

(1) (xax)y = x[a(xy)]
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(2) y(xax)=[(yx)a]x

(3) (xy)(ax) = x(ya)x

It is known that if B, C are ideals of A then BUC is an ideal of
A. For if b G B, c G C, a G A then

by (1) and (3). But c{b(ca)) + (ca)(bc)= bUc,ca G BUC and c(ab)c =
(ab)UcEBUc. Thus (BUC)ACBUC. Similarly A(BUC)QBUC. In
particular AUA is an ideal of A.

LEMMA. If u is a monomial in A of degree ^2 inx and u/ x2 then
either u = 0 mod AUA or u = x2y mod AUA for some y in A.

Proof. First note that x2y + yx2 = xUx,y G AUA so that terms of the
form yx2 are covered by the Lemma. Now in view of the fact that AUA

is an ideal of A and that (ab)c = -{cb)a mod A UA9 it follows that
(x2a)b^ ~{ba)x2 mod AUA and(ax2)6= - (x2a)b ^(ba)x2 mod AUA.
Similarly for their left-right duals: b(ax2)= - x\ab) mod AUA and
b(x2a) = x\ab) mod A[/A . Thus, if we let Tfl = K or Ta = Lfl, an easy
induction on 5 shows that if u = x2TaxTai• • • TQs then w = x2y mod AUA

for some y G A. It follows that if a factor of u satisfies the results of the
Lemma then so does u itself.

We may assume now that u has a factor u' which takes one of the
forms:

(i) u' = xTaiTa2'-TakTx

or
(ii) u' = (xTm Ta2" Tak) (xTbl Tfe • • • Tbk)

for some an bt G A.
For case (i) we induct on k and note that the result is trivial for

fc = 1. Assume then that the result holds for any w = xT^T^ - • • TdnTx

with dt G A and n < k. Now if for some i Tai = Rat and Tai+X = i?fll+1 then

u' = xTfllTfl2 • • • TakTx = (((xTat - • • rjfl.Jfl.+OT,,, • • • 7^7;

- • • TakTx mod AUA

so that u' = xTai • • • TailLbTai+2 • • • rakTx mod AC/A for 6 = - aI+1fl,. By
the induction hypothesis on the number of T's we have our
result. Similarly if Tfll = Lfll and Tfll+I = Lfll+I for some i. Thus ra2(B+I =
i?fl2m+1 and T ^ = L ^ or Tfl2m+1 = La2m+1 and Taim = Rnm for all
m. Therefore, if k = 2 we have the cases ((ax)&)x, (a(x6))jc, x((ax)b),
and x(a(jc6)). But
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((ax)b)x = - (xb)(ax)s - x(ba)x = 0mod AUA by (3)

and

(a(xb))x = ~(x(xb))a= - (x2b)a =(ab)x2mod AUA

and similarly for the last two cases. Thus the result holds for fc = 2.

Suppose now that fc > 2 and that Tfl2m+1 = Ra2m+l and Ta2m =
Ra2m. Then

U = [y^2^Xfliy^fl3j 1 Q4 ' * * laklx.

Since A is alternative we have a2(jcfli) = (a2jc)a! + (a2ai)x - a2{axx) so
that

Since the the first term has two consecutive right multiplications, the last
term has two consecutive left multiplications, and the middle term fewer
than fc T's, we have W' = JC2, or u ' = 0modAl7A, or u' = x2y modAUA

for some y by the induction hypothesis. If Tfl2m+1 = La2m+1 and Ta2m =
La2m

 w e get the same result using the fact that (axx)a2 =
a,i{xa2)- (jc«i)a2 + x{axa2). Thus we have disposed of case (i).

For case (ii) we induct on fc = min(fc1? fc2) and note that fc = 0 is case
( i ) . I f fc2 g fc1? w e l e t w = x T a i " Taki, v = x T b l " Tbk2_x a n d c = bk2 a n d
we have one of the two cases:

u' = w(vc)= - c(vw)mod AUA

(*) or
u' = w(cv)= - v(cw)modAUA.

Now if fc2 = fc = 1 then vw and v(cw) are of the form of case (i) so that u1

satisfies the results of the Lemma. If fc > 1 then both vw and v(cw)
have a lower value of fc, so by the induction hypothesis they satisfy the
desired conclusion. Hence so does u'. The case fci^ fc2 follows from
the left-right dual of (*). Thus, in all cases we get u =0modAU A or
u =x2y mod AUA for some y E A.

THEOREM 1. If A is generated by n elements then An+2C AUA.

Proof Let u E An+2. Then since A has n generators it follows
that either there is at least one generator, say JC, such that the degree of u
in x is g 3 or there are at least two generators, say w and z, such that the
degree of u in w is g 2 and the degree of u in z is ^ 2. If the latter
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holds then by the lemma if uf^O modAUA we have u = z2y
modAUA. Since y is of degree at least two in w we get y = w2 or
y = w2a mod AUA for some a & A. Thus, either u = z2w2 mod AUA

or u=z\w2a) modAUA. But z2w>2= - wz2w =0 modAl7A and
z\w2a) = — a(w2z2) = 0 mod AUA. Thus in this case u =0 mod A[/A.

If the former holds then u=x2y modAUA where y contains a
factor x. Thus u = x 2(xTfll Tfl2 • • • rflk) mod A UA for some a, E A. Thus
u = 0 mod A E/A by induction on fc. For if k = 1 then we get M = x3ax =
0 mod A UA or w = x2(ax) = 0 modA[/A. As in the lemma we may
assume that no two consecutive T's represent JR or L so that the case
fc=2 reduces to x\a2{xal)) or x2((aix)a2). But x2(a2(xai)) =
x [x (a2(xai))] = x [(xa2x )al] = 0 mod A UA and x 2((aiX )a2) ="
- a2((aiX )x2) =0 mod A C/A. The inductive step is obtained precisely as
in case (i) of the lemma. Thus u E AUA and the theorem is proven.

REMARK. The advance in Theorem 1 is not the fact that a power of
A is contained in AUA but rather in the precise value n + 2. For, as
noted by Professor McCrimmon in a private communication, if A is
finitely generated then A = A /A UA is finitely generated and nil satisfy-
ing the polynomial identity x3 = 0. This, by an earlier result of his [6,
Theorem 3] implies that A is nilpotent so there is an integer k such that
AkCAUA.

THEOREM 2. If A is generated by xu x2, • • •, xn then the Jordan ring
Aq is finitely generated by all monomials of degree < n + 2.

Proof. Let F be the free alternative ring generated by
Xi,x2, • • -,xn. Then if u is an element of minimal degree in Aq not
generated by the monomials of degree ^ n + 1 then deg u S n + 2 so that
u E Fn+2 C FUF. Thus, w = 2, a,^, + S^L^,,,, for monomials a,, 6O pw g,,
r, in F. Therefore a,, bn pn qn rt have lower degree than u and are
generated in Fq by the monomials of degree < n + 2. Thus u is
generated by these monomials also and we* have the result for F. Now
Aq = F3/K for some ideal K of Aq. Therefore Aq is also generated by
the monomials of degree < n + 2.

Recall that if / is a Jordan algebra then D(J) = JUj is a quadratic
ideal of /, and the derived series of / is given by

/ = D°(J)DD(J)DD2(J)D- - • D D"(J)D • • •

where D I+1(/) = D(Dl (/)). / is solvable if Dn (/) = 0 for some n. The
degree of an element is defined by deg(flt/ft) = 2 deg b + deg a,
dcg(aUbc) = deg a + deg b + deg c, deg a2 = 2 deg a, and deg a - b =
deg a + deg 6. / is nilpotent if there is an n such that all monomials of
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degree g n are zero. McCrimmon has shown that if / is finitely
generated then J is solvable iff J is nilpotent [4]. In our situation we
write D'(A) to denote Dl{Aq).

COROLLARY. If A is finitely generated then for each t there is a k
such that Ak CD* (A). Also D*{A) is finitely generated for every t.

Proof. The second statement follows immediately from Theorem 2,
since it is known that if a Jordan algebra / is finitely generated then so is
D'(/) for all t [4]. Thus, by Theorem 2, D'(A) is finitely generated as a
Jordan ring and hence, as an alternative ring. The first statement is
arrived at by induction on t. The case t = 1 is the statement of Theorem
1. Assume true for t. Since D'(A) is a finitely generated alternative
ring then by Theorem 1 there is an integer m such that (D'(A))m C
D(Dt(A)) = Dt+1(A). Thus (Ak)m C (D'(A))m CD r+I(A). By a re-
sult of Zwier [12] there is an integer r such that A r C(A k ) m . Thus
A rCD'+ 1(A).

The following theorem extends a result of Shirshov for alternative
algebras over a field of characteristic ^ 2.

THEOREM 3. If A is a finitely generated alternative ring then A is
nilpotent iff Aq is solvable iff Aq is nilpotent.

Proof. Clearly, A nilpotent implies Aq solvable. The equivalence
of Aq solvable and Aq nilpotent is the result of McCrimmon mentioned
earlier. Since to each t there is a k such that Ak CD'(A) we conclude
that Aq solvable implies A nilpotent.

THEOREM 4. If A is an alternative ring then L(A) = L(Aq).

Proof. Clearly L(A) is an ideal of Aq and since it is locally
nilpotent in A, it is also locally nilpotent in Aq. Thus L (A) C L (Aq).

For the converse it is sufficient to prove that L(A) = 0 implies that
L(Aq) = 0. For under this assumption if L ( A ) ^ 0 then, since
L(A/L(A)) = 0, we get L(Aq/L(A)) = 0. Since the homomorphic
image of a locally nilpotent ideal is locally nilpotent we get
L(A<)/L(A)CL(AVL(A)) = O. Thus L(Aq)C L(A).

Recall that if B is an ideal of Aq then KerB = {b G B \bA +
Ab C B) is an ideal of A. It is shown in [5] that AUB C KerB and that
L(A) = 0 implies that A is strongly semiprime in the sense that AUa = 0
implies that a = 0. Assume now that L(A) = 0 and that L(Aq) / 0. If
KerL(Aq) = 0 then AUL(A^ = 0 contradicting the fact that A is strongly
semiprime. Thus L(Aq) contains a nonzero alternative ideal K =
KerL(A«). We show that K C L(A) to obtain a contradiction. For if
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R is a finitely generated alternative subring of K then by Theorem 2 Rq

is a finitely generated quadratic Jordan algebra. Since Rq C L(Aq) it
follows that Rq is nilpotent. Then, by Theorem 3, R is a nilpotent
ring. Thus K is a locally nilpotent ideal of A and X C L ( A ) for the
desired contradiction. It follows that L(A) = 0 implies that L(Aq) = 0
and the proof is complete.

REMARK. Note that the proof of Theorem 4 can be used equally
well to show that the locally finite dimensional radical of A coincides
with the locally finite dimensional radical of Aq.

2. In the following let A be an alternative ring with involution *
and let H(A,*) denote the Jordan ring of *-symmetric elements of
A. In [3] McCrimmon asked the question: If B is an associative algebra
with involution * such that all ^-symmetric elements are nilpotent, does it
follow that B is itself necessarily nil? Osborn [8] answered the question
in the affirmative if B is an algebra over an uncountable field O. In an
analogous result Montgomery has shown that if B is an associative
algebra with involution over an uncountable field and if the symmetric
elements of B are algebraic then B is algebraic [7]. We note that both
of these results apply to an alternative algebra A with involution. For if
a&A then by Artin's theorem AQ=<$>[a, a*] is an associative
algebra. Since the symmetric elements of Ao are nil (algebraic) it
follows that Ao is nil (algebraic). Thus the elements of A are nilpotent
(algebraic).

The key result needed by Osborn is the result of Amitsur that if A is
an associative algebra over a field <& such that the cardinality of $
exceeds the dimension of A over $ then the Jacobson radical of A is nil
ideal. We note that the proof of Amitsur's theorem as presented in
[2, pp. 19-20] carries over verbatim to the alternative case once the
follo.wing two observations are made. (1): the proof in [2] that the
elements in the radical are either nilpotent or transcendental uses
associativity but can be easily adjusted. For if a E Rad A is algebraic
then <$>[a] is finite dimensional. From the power-associativity of A we
know that O[a] is nil or contains an idempotent e [10, p. 32]. The latter
implies that e E Rad A which is impossible. Thus a is nilpotent. (2):
the proof of Proposition 2 in [2] requires the fact that (ab)b~l = a for all
a,bEA. This is also true in alternative rings [9, p. 38].

Some other results which relate nilpotency in H(R, *) with nilpo-
tency in R for an associative ring R are given in [9] under the assumption
that 2x = a is solvable for all a in JR. We note that these results also
apply to an alternative ring A with involution and do not require any
characteristic assumptions. For the key result needed is that if
aj3(0,0) = 1 and a/3(n, k) denotes the sum of all monomials of degree n
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in a and degree k in /3, then for any x E R we get

(4) x
2n = f § <^8(2n - 2fc - 1, fe)lx + [ § ^3(2fc, n - fc - 1)10

Lk=o J Lfc=o J

for a = x 4- JC * and j8 = - x *JC. Since all of the computations take place
in the subring generated by x and JC*, by Artin's theorem this identity
holds for an alternative ring A. Thus we get:

THEOREM. If A is an alternative ring with involution * and if the
quadratic Jordan ring H(A, *) is nilpotent of index n, then A is nil of index

Proof. As in [8], if JC E A let a = x + x *, j8 = - x *x. Then if Kx

denotes the quadratic Jordan subring of H(A, *) generated by a and j3
then Kx is nilpotent of index ^ n. If Kx denotes the set of all sums of
monomials in Kx of degree g t then the proof of [9, Lemma 6] shows
(without any characteristic assumptions) that a]8(m, t) E Km+t for all m, t
such that m + r g l . Thus, by (4) x2n = 0.

COROLLARY. J/ Jf (A, *) is solvable then A is a nil ring.

Proof. The proof of the previous theorem shows that if x E A and
Kx is nilpotent of index n then x2n = 0. Now since H(A, *) is solvable it
follows that Kx is solvable. Since Kx is finitely generated it is nilpotent
of index t for some t. Therefore x2t = 0.

With our previous remarks the following theorem of [9] carries over
to the alternative case with no changes.

THEOREM. Let A be an alternative algebra with involution * over a
field $ with at least n elements. Then if H(A, *) is nil with bounded
nilindex n, A is nil with bounded nilindex ^ In.

REMARK. In [9, theorem 3] it is shown that if A is an associative
algebra over a field F of characteristic / 2 with involution then
L(H(A, *)) = H(A, *) n L(A). We note that the same result holds for
the locally finite dimensional radical SB. For, as in [9], the proof reduces
to showing that if U is a nonzero ideal of A and U n H(A, *) C
if(H(A, *)) then U C «#(A). Assume then that B is a finitely generated
subalgebra of U. Then by the result of Osborn mentioned in [9],
H(B, *) is finitely generated and thus finite dimensional of dimension n
for some n. But then H(B,*) is algebraic and satisfies a polynomial
identity. Then, by a result of Baxter and Martindale [1], B is finite
dimensional. Thus, U is a locally finite ideal of A so that U C !£(A).
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