
PACIFIC JOURNAL OF MATHEMATICS
Vol. 75, No. 2, 1978

ON STOPPING RULES AND THE EXPECTED
SUPREMUM OF SJTn

MICHAEL J. KLASS AND LAWRENCE E. MYERS

Let Sn and Tn be nth partial sums of two independent
sequences of i.i.d. random variables. Si and 7\ may have
different distributions. Assume 0^ESt<^, ETX<™ and
P[Tl>0] = l. Let mn be the or-field generated by
Si, Ti, • • •, Sn, Tn, and let JR=c be the collection of extended-valued
stopping rules with respect to 981, 38 2, • • •• It is shown that
E supnS1 SnITn < oo iff supTeKooEST/TT < oo iff JBS!log+Si<oo
and E (771) < oo. The (random) cutoff points characterizing the
optimal rules are easily obtained as fixed points of certain
contraction mappings. A Markov walk generalization of the
Chow and Robbins binomial stopping problem is viewed within
the SnlTn framework.

1. Introduction. Let U, Ul9 U2,-" and V, Vu V2, • • • be inde-
pendent random variables defined on a common probability space
(ft, &i P). Assume the f/'s are nondegenerate and identically distri-
buted with 0 ^ £ [ / < o o . Assume the Vs are identically distributed
with P[V>O] = 1 and EV<oo. Let Sn = Ux+---+Un and Tn =
V, + • • • + Vn. Define the cr-fields &n = 9b(UuVu-; Uw VB), S8'n =
»{UU ' • •, Un), ®"n=®(Vu • • •, Vn), and let R*, RL, Rl be the collec-
tions of extended-valued stopping rules (Definition 1 [8]) with respect to
{®n}U, {»JK-i, {9K-1, respectively. That is, r G Rx (RL,Rf:) if and
only if [r = n]G ®n{® n,@

f
n) for all n ^ 1 and P[r = oo] + 2 : = 1 P[r =n] =

1. In order that our expected rewards be well defined, we follow the
strong law and set SJ«>, oo/r., SJTX equal to EU, 1/EV, EU/EV,
respectively. Unless otherwise mentioned, all suprema and infima are
over {n: n^ 1}. We write E supSn/Tn for E[snpn^(Sn/Tn)].

It is well known (Burkholder [1] and McCabe and Shepp [9]) that

(1.1) E sup Sn/n <°°<£> E[/log+l/<oo<i> sup J 5 S T / T < « ,

and in this case an optimal stopping rule exists (Siegmund [10]), i.e., the
last supremum in (1.1) is attained by some r &RL

Operating under successively weaker conditions, Chow and Robbins
[2], Teicher and Wolfowitz [11], Dvoretzky [6], Thompson, Basu and
Owen [12], Davis [4], and Klass [8] have proved that the (unique)

467



468 M. J. KLASS AND L. E. MYERS

minimal optimal rule is to stop at the first time n such that Sn ̂  am where
r{an}™=i is the strictly increasing sequence of positive constants satisfying
ajn = supTGi?iE[(an + ST)/(n + r)].

One purpose of this paper is to generalize the above results to the
reward sequence Sn/Tn. The independence suggests treating Sn and Tn

separately, via the elementary inequality

(Einin/Tn)(EsnpSn/n)^E supSJTn

(1.2)
=i(£ sup n/Tn)(E supSJn).

In light of (1.1) our attentions focus on n/Tn. In §2 is proved a general
result (Theorem 1) which implies that E sup n/Tn<°° just in case
E(V~l) < oo. Section 3 shows that E supSn/Tn < oo iff supTGRooESJTT <
oo iff EU log+ U < oo and E( V1) < oo.

For future reference and some immediate methodology we recall
here that

(1.3) {Snln}l
n=ao is a reversed martingale,

so that the conditional Jensen's inequality and independence imply

(1.4) {n/Tnyn=0o and {Sn/TnYn=oa are reversed submartingales.

Application of a well known submartingale inequality (Doob [5], p.
317) to (1.3) yields the sufficiency of EU log+ U < oo in (1.1). A possible
approach to characterizing E sup Sn/Tn <oo (or Esupn/Tn <oo) might
then be to apply the same inequality to obtain the sufficient condition
E(U/V)log+(U/V)<™ (Ey-1log+(V"1)<oo). As our results show,
these conditions are not "sufficiently" weak. After all, EV~1log+(V~l) <
oo precisely when J3 supn^SjLi V~l<™, and n^S^i V;1 almost surely
dominates n/Tm by the inequality of the arithmetic and harmonic
means. The underlying idea in the proof of Theorem 1 is the classical
inequality relating the arithmetic and geometric means.

In §4 we employ contractions to obtain the cutoff points which
characterize the optimal rules. The situation is somewhat novel in that
the optimal stopping times depend on the intrinsic times k only through
the values of Tk at those times, and the cutoff points are themselves
random, owing to dependence on the Tk. This section relies heavily on
§§1 and 2 of Klass [8].

In §5 we indicate how a Markov chain generalization of the Chow
and Robbins [2] example may be viewed as an Sn/Tn problem.
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2. Expected suprema of inverse generalized means.
For simplicity we now assume (w.l.o.g.) that Vk((o) > 0 for all k ^ 1 and
all a) G ft. Let

Mn(t,a>)=(n-lt(Vk(a))y)Ut for t/0;
\ k=i I

Mn(0, co) = lim Mn(t, <o) =

For n and co fixed, Mn(f, co) is an increasing function of t (Chapter 2 of
rfardy, Littlewood and Polya [7]).

For r > 0 let ||X||r = [E(|X| r)]1/ r if the expectation is finite; other-
wise let ||X||r = oo.

T H E O R E M 1. For all t^O and Ng 1

(2.1) £ (sup [Mn{U co)]"1) ̂  || V~%IN{2" + N log2 + 1).

Consequently, for all r § 0

(2.2) E{V~l) ^ E (sup [Mn(r, co)]"1) S (3 + log 2 ) ^ ( ^ 0 ,

whence J5(sup^! [MM(f, co)]"1) < oo for (all) t S 0 if and only if E ( V"1) <
oo. More generally,

E (sup [Mn(f, co)]"1) < oo for (all) t > 0

(2.3)

if and only if E min (V:1) < oo

whereas

(2.4) £ (sup [Mn(0, co)]"1) < oo if and only if £ (V ' 1 / N ) < oo.

Proof. First we establish (2.1). Since for n and co fixed and / S O
the [Mn{t,o))\~l are all majorized by the inverse geometric mean
[Mn(0, a))]-1 = (Un

k=l Vfe1)17", it suffices to prove (2.1) for t = 0.
Fix N g 1. We may assume || V " 1 ^ < °°- Let C = E(V'1/N) and

B = [2£(V"1/N)f. Then
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E sup ( f l Vr"") = ( " P [ sup FI V r 1 / n ^ y l dy
n^N \ , = 1 / Jo \_n^N i = l J

~N)+ 2 C"f"
n = N+l J B

This proves (2.1), from which (2.2) and (2.4) follow readily. To
prove (2.3) note that for t > 0

N'1" max V. ^ M*(r, <u) ̂  max V..

Hence for t > 0

( ; ) (sup(su

We may assume £ m i n ^ ^ (Vr
y"

1)<oo, in which case
lim^oo y (P( V'1 > y ))N = l i m ^ yP[min lg^N V;1 > y ] = 0. We may con-
clude that E(V~Va)< oo for any a > N. Take a = N + 1 and use (2.1) to
complete the proof.

Taking t = 1 in (2.2) yields

COROLLARY 1. E sup n/Tn < oo « E( V"1) < oo.

REMARK 1. To illustrate the (qualitative) sharpness of (2.1) for
t = 1, fix N ^ 2 and let V be a gamma random variable with mean and
variance both equal to 1/(N - 1). Then En/Tn = oo for 1 ̂  n < N, while
by (2 .1)£sup^ N n/T n <oo.

To underline the distinction between (2.3) and (2.4), take N ^ 2 and
i > y ] = (y i/N log(ey))-1 for y ^ 1. Then

e1/Ny ))-!dy = oo,

Emm (VJ1) = 1 + | (JP( V-1

£( V"1/N) = 1 + ]"" (yN log(

while
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Whenever £(V~1) = oo> E(V~1/N), Theorem 1 yields that
E sup^i n/Tn = oo >E supni>Nn/Tn, so that the infinite expected sup-
remum owes exclusively to the behavior of the first few terms. Our next
result sheds additional light on this.

THEOREM 2. Let V, Vu V2, • • • be i.i.d. nonnegative random vari-
ables with P[ V > 0] > 0. Then

(2.5) E sup n/(b + Tn) < oo for each b>0.

Proof. We use ladder variables to transform the given reward
sequence to an Sn/n reward sequence.

There exists c > 0 such that P[V^c]^c. Let r(0) = 0. Having
defined T(0), • • -,T(fc), let r(fc + l ) = l s t n s.t. Vx+'-'+Vn^
c + Vi + • • • + VT(k). Then TT(k) § fcc. The random variables r(k)
(for k g 1) are sums of fc i.i.d. ladder variables qu • • -,qk. Note that
P[q1>n] = P[T(l)>n]^P[n?=1{VJ<c}) = [P(V<c)]n^(l-cy, so
that all moments of qx are finite. Further,

E sup n/(ft + Tn) = E sup sup n/(b + Tn)
JfcSO T(ik)<n^T(fc+l)

p

(l) + (2/c)£ sup r(k)lk9

which is finite by (1.1).

REMARK 2. We conclude this section by mentioning another con-
dition equivalent to E sup n/Tn <oo. One can show that

(2.6) [r/(r 4- l)]EYl sup Y"(r+1) S E sup Y7 ̂  E ^ sup Y;(r+1)

for any r > 0 and any positive reversed martingale • • • Y2, Yi (the upper
bound is trivial; the lower bound follows from an integration by parts,
inequality (3.4") of Doob [5, p. 314], and Fubini's theorem). It follows
from (2.6) and (1.3) that

(2.7) sup n/T.eL^P) iff T[/2sup n/Tn G L2{P).

3 . E sup SJTn < oo <z> B [ / log+ [/ < oo and JB( V 1 ) <
oo. The following lemma is a consequence of the strong law. The
corollary follows from the lemma and (1.2).
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LEMMA 1. P[inf n/Tn = 0] = 0 and 0 < E inf n/Tn < ».

COROLLARY 2. E sup Sn/Tn = oo whenever E sup Sn/n = oo.

THEOREM 3. ITie following are equivalent.
(i) supTel?00EST/rT<oc
(ii) E sup Sn/TM< oo
(iii) E sup Sn/n < oo and E sup n/Tn < oo
(iv) EU log+ U< oo and E( V"1) < oo.

Proof, (iii) and (iv) are equivalent by (1.1) and Corollary 1. (iii)
implies (ii) by (1.2). (ii) implies (i) since E sup Yn S supTGRoo J3YT for any
reward sequence {YB}"«i. The chain will be completed by showing the
inverse of [(iv) =£> (i)].

Suppose first that E(V"1) = oo. Define TERL by T = 1 if
C/i >0 , r = oo otherwise. Then EST/TT = oo since P[UX > 0] >0 .

Now suppose EU log+ U = oo. Then sup,ejRi ESr/f = oo [9]. it fol-
lows that for every m ̂ 1 there exists TmE.RL such that ESTmlrm >
m/E inf (n/Tn); Lemma 1 has been invoked here (0< Einf n/Tn <oo).
Because each rm is independent of the V,, and S8(S1? Tu - • -, Sm, Tm)D
db (Si, • • •, Sm) for every m, we have

sup EST/TT g sup EST/TT g sup E r(STm/rm)inf n/Tnl
r E R . rGJRi m^l L n = 1 J

= sup E(STm/Tm)E inf n/Tn = sup m = oo.
mgl L " - 1 J m^l

This completes the proof.

4. The form of the optimal rule. We assume throughout
this section that E(V~1) and EUlog+U are both finite. Our return
sequences Yn(a, b) are defined by Yn(a, b) = (a + Sn)/(b + Tn), a real,
fci^O. Since y n ( a , f t ) ^ £ [ / / £ V and Tn f » a.s., we set Yoo(a,fc) =
EU/EV and ^ = 00. By the results of §3, E sup Yn(a, 6)<oo. We
thus see that assumptions Au A2, A3 of Klass [8] hold for our
Yn(a, b), so that the entirety of §1 there is applicable. In particular

(4.1) Mb(a) = sup E(a + ST)/(b + TT)

is well-defined, finite, and attained by some T €z R* (Klass [8],
Theorem 1).

We omit the proof of the following lemma (EV < oo is used).
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LEMMA 2. For each b^O there exists e(b)>0 such that for any

If P[T < oo] > 0 the leftmost inequality is strict.

REMARK 3. In the SJr problem (r G RL), the form of the minimal
strictly semi-optimal rule (Definitions 4 and 5 of Klass [8]) is dictated by
the fact that for each n ^ O there is a unique an such that Mn(an) =
an/n. Our result, in addition to being more general, is obtained with a
considerable economy of effort over earlier ones through the observation
that the maps a —> bMb(a) contract the reals.

THEOREM 4. Fix b^O. Mb(a)> EU/EV g 0 for each a. Mb(a)
is a continuous strictly increasing function of a. bMb is a contraction of the
reals, and so has a unique fixed point ab(bMb(ab) = ab).

Proof. The theorem is proved with the appropriate modifications of
the proof of Lemma 8, page 729 of Klass [8]. Fix b g 0.

For the first assertion, it suffices to show that P[sup(a + Sn)/(b +
Tn)>EU/EV] = 1 for any a. But (a + Sn)/(b + Tn)>EU/EV if and
only if 2r=1 (U - (EU/EV^) > b(EU/EV) - a. Since a nondegener-
ate mean zero random walk almost surely exceeds any real number
infinitely often, the first assertion is proved.

Again fix b ^ 0, let ax < a2, and let T, attain Mb(at), i = 1,2. Then
P[TX <OO]>0 since Mb(at)>EU/EV, i = 1,2, and two applications of
Lemma 2 yield

0 < ( a 2 - a1)E[l/(b + TTl)} ̂  Mb(a2)- Mb{ax)

* (a2-a1)E[l/(b + 7;)] ^ ( a 2 - ax)/[b +

The continuity of Mb follows, as does the last assertion of the
theorem:

| bMb(a2) - bMb{ax)\ g fc + ^ | a2 - ax[.

Lemmas 6 and 7 and Remark 2 of Klass [8] carry over in straightfor-
ward fashion to our case, culminating in
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LEMMA 3. For 6 ^ 0 :
(i) a<ab => bMb(a)>a
(ii) a>ah^> bMb(a)<a
(iii) e > 0 => a6+e > a6.
Rather than introduce randomization (which is "unnecessary"; see

Theorem 5.3, p. I l l of Chow, Robbins and Siegmund [3]) and determine
up to equivalence the collection of all r which attain Mb(a), we content
ourselves with exhibiting one such r. The situation is somewhat novel in
that the optimal stopping time depends on intrinsic time k only through
the values of the Tk at those times, and the cutoff points aTk are
themselves random. Then ab in Theorem 5 are in accordance with those
of Theorem 4.

THEOREM 5. Given a real, 6 ^ 0 , define r G j R J y

r = minffc: a + Sk> ab+Tk}

= oo if a + Sfc ^ ab+Tk for all k.

Then E(a + ST)/(b + TT) = Mb(a).

Proof. Clearly T E R*. To show that T is optimal for the reward
sequence Yn(a,b), it suffices to show that r is minimal strictly semi-
optimal (Definitions 4 and 5 and Theorem 6 of Klass [8]).

Suppose Sn = sn, Tn = tn and r instructs us to stop at time n for the
reward (a + sn)/(b + tn) > ab+tn/(b + tn). By continuing we would expect
to get at most Mb+tn(a + sn), which is strictly less than (a + sn)/(b + tn), by
(ii) of Lemma 3. Hence r is strictly semi-optimal.

The proof that r is minimal (strictly semi-optimal) is as in the proof
of Theorem 7 of Klass [8, p. 734], with an+k replaced by ab+Tk.

5. A Markov walk example. The following example
generalizes the fair coin tossing problem treated in Chow and Robbins
[2]. Let {Xk}k=1 be a {0, l}-valued stationary Markov chain with
P[Xk+1=l\Xk=O] = p = l - q and P[Xk+1 = 0\Xk = 1] = p'= 1 - q ' . In
order that the chain have stationary initial distribution we must have
P[Xi = 1] = a = p/(p +/?')• We consider the optimal stopping problem
with reward sequence 5*/n = (Xt + • • • + Xn)/n. Let v = supTGi?. ES*/T,
where Rt is the collection of stopping rules w.r.t. {$(XU - - -,Xn)}"=1.

Clearly any optimal rule has r = 1 if Xx = 1 (otherwise r is not
regular; see Definition 2 and Theorem 2 of Klass [8]).

Now suppose Xi = 0. We thrust independence into the picture as
follows. Suppose the statistician gets to see the data, not a digit (0 or 1)



STOPPING RULES AND THE EXPECTED SUPREMUM OF Sn/Tn 475

at a time, but in blocks (more formally, instead of observing the original
Xn he views the sojourn times Vu Uu V2, U2, * - •, where Vt(Ui) is the
time spent in the ith visit to {0} ({1})). The idea here is that, in the
context of the original "game", it is clearly more profitable to stop at the
end of some string of l's as opposed to stopping in the middle of a 1-block
or somewhere in a 0-block.

So let U,UUU2,-' be i.i.d. geometric r.v.'s with P[U = k] =
(<?')k~y> * = 1, and let V,VUV2,-' be i.i.d. geometric r.v.'s with
P[V = k] = qk~*p. Then the foregoing heuristics show that

v ^ a + (1 - a)E sup[SJ(Sn + Tn)\
(5.1)

^ a + (1 - a)(E sup SJTn)/(E supSJTn + 1).

Here we have used Jensen's inequality and the fact that f(x) = x/(x + 1)
is concave increasing for x >0. In this way an upper bound on
E sup Sn/Tn may be employed in majorizing v.

For example, one may use Theorem 3.4, p. 317 of Doob [5], together
with the fact that {Sn/TnYn=ao is a reversed submartingale, to obtain

E supSJTn =g [e/(e - 1)][1 +E(U/V)log+(U/V)].
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