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CONGRUENCES ON ^-SEMIGROUPS

HOWARD HAMILTON

The study of a semigroup in terms of its congruence
relations has been used many times in the past. In the case of
^-semigroups Tamura initiated this study with a paper [9]
determining the ^-congruences of an ^-semigroup. Recently,
Dickinson [4] has determined the congruences which correspond
to homomorphic images having no idempotents as refinements of
9?-congruences. Group congruences on a commutative
semigroup have been determined by Tamura and the author
[11], but here they are determined for an ^-semigroup from the
group of quotients of the ^-semigroup, ^-congruences and
group congruences on ^-semigroups are of fundamental impor-
tance in characterizing ^-semigroups. In this paper we make a
study of all types of congruences on ^-semigroups.

1. Introduction. All semigroups in this paper are commuta-
tive semigroups, and all undefined terms may be found in [3].

If S is a semigroup then we will let ££{S) denote the lattice of
congruence relations on S. The universal relation and the equality
relation on a semigroup S will be denoted by a) and i, respectively, or by
cos and is if we wish to indicate the semigroup S.

The following is a well known theorem concerning congruences.

THEOREM 1.1. Let p &J£(S). Then the set of congruences on S
containing p form a sublattice of££(S) which is isomorphic onto ££{S/p).

Let & be some property or condition on semigroups. If p E ££(S)
is such that Sip has property @> then p is called a ^-congruence on S, or
a congruence on S of type 9.

If A is a subsemigroup of a semigroup S and p E ££{S) then we call
p Pi (A x A) (denoted p | A) the restriction of p to A. Also, a congru-
ence p is said to extend a congruence a on A if p | A = a.

We, also, have the following well known correspondence between
homomorphisms and congruences.

(A) If / : S ->T is a surjective homomorphism then pf =
{(x, y) E S x 5: f(x) = /(y)} is a congruence on S.

(B) If p is a congruence on S then fp (x) = xp is a homomorphism of
S onto Sip.
Then p/p = p and if we identify S/pf and T we have /w = /.

The following is a useful theorem from [11] concerning the restric-
tion of a group-congruence to an ideal.
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THEOREM 1.2. Ifp is a group-congruence on S and J is an ideal of S
then a = p\J is a group-congruence on J and Sip = J/cr. Furthermore, p
is the unique extension of a to a group-congruence on S.

COROLLARY 1.3. The join semilattice of group-congruences on a
semigroup S is isomorphic onto the join semilattice of group-congruences on
any ideal J of S. The isomorphism is just the restriction of a group-
congruence on S to the ideal J.

We will use Z (Z+,Z+0,Q,Q\R,R+) to denote the additive
semigroup of the integers (positive integers, nonnegative integers, ratlon-
als, positive rationals, reals, postive reals). Also, Z~ = Z\Z+fi and
Z"° = Z\Z+. We will also use • to denote the empty set.

DEFINITION 1.1. A commutative semigroup S is said to be an
archimedean semigroup if for each x and y in S there is m E Z+ and
z ES such that xm = yz.

A fundamental theorem due to Tamura and Kimura [12] in 1954
states that every commutative semigroup is a semilattice or archimedean
semigroups. The fact that a commutative archimedean semigroup has
at most one idempotent lead Tamura [6] to the following classification of
them:

TYPE 1. Archimedean semigroups with an idempotent which is
zero.

TYPE 2. Archimedean semigroups with a nonzero idempotent.
TYPE 3. Cancellative archimedean semigroups with no idempo-

tents.
TYPE 4. Noncancellative archimedean semigroups with no idem-

potents.

A Type 1 semigroup is called a nil semigroup, and a Type 3
semigroup is called an Sft-semigroup. A semigroup of Type 2 has been
shown [6] to be an ideal extension of the group of units by a nil
semigroup. Thus we will call such a semigroup a GN-semigroup, and
we will call a semigroup of Type 4 a T4-semigroup after Dickinson [4].

Hence the study of commutative semigroups is reduced to the study
of these four fundamental types of commutative semigroups and the
study of how they are put together to form larger semigroups. Here we
concern ourselves only with ^-semigroups.

The following fundamental facts about commutative archimedean
semigroups will be used later (see [7] for a proof).

Fact 1.1. If S is a commutative archimedean semigroup and a E S
then C\QD

n=la
nS is either empty or a kernel of S which is a group.
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Fact 1.2. If S is a commutative archimedean semigroup without
idempotent then for all x, y E S x / xy.

In 1957 Tamura gave the following characterization of Sft-semi-
groups [7].

THEOREM 1.4. Let G be an abelian group and let I: Gx G-+ Z+o

be a function such that for all a, /3, and y in G

(1.1) I(a,j3)

(1.2) /(a, j3) + I(aj3, y) = I(a, j3y) + I(j3, y)

(1.3) 1(6, a) = 1 wftere 6 is ffte identity element of G,

and

(1.4) for each a EG there exists m G Z+
 SMC/I tfzaf J(a, a m ) > 0.

Lef S = Z+>0 x G and define an operation on S by

(m, a)(n, j8) = (m + n + I(a, j8), aj8)

w,nG Z+ o and a, jS G G.

Then under this operation S becomes an ^-semigroup. Conversely,
every ^-semigroup is isomorphic to an ^-semigroup obtained in this
way.

We use the notation S — (G, I) to denote that S is the ^-semigroup
determined as above from the abelian group G and the function
I: G x G-*Z+i0. The function I is sometimes called an /-function or
an index-function. The group G is sometimes called a structure group
of S.

More recently [10], Tamura has given another characterization of an
^-semigroup as a subdirect product of a positive real number additive
semigroup and an abelian group. That is,

THEOREM 1.5. Let G be an abelian group and let <p: G -> R+ be a
function such that

(1.5) cp (e) = 1 where e is the identity element of G.

(1.6) cp(a) + <p(/3) -<p(a(3) is in Z+o for all a, j3 G G.
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For all a E G there exists m E Z+ such that
(1.7)

cp(a)+<p(am)-<p(am-1)>0.

Let S={(x,a)ER+xG: x - <p(a)E Z+o}. Then S is an 9?-
semigroup under coordinatewise multiplication, and every 9^-semigroup
is isomorphic onto an ^-semigroup determined by some G and some <p,
as above.

When we are using this characterization of an 9^-semigroup S we
will write S = (G, <p). If we are given cp: G —>R+ satisfying conditions
(1.5) thru (1.7) then we get an index-function I; GxG->Z+Q by
defining I (a, /3) = q> (a) + <p(/3)- <p (a/3) for all a, /3 E G. In this case
we have the ^-semigroup (G, /) is isomorphic to the Sft-semigroup
(G, cp). We will sometimes abuse the notation and write (G, I) = (G, 9 ),
and we will work with the two characterizations simultaneously.

Let S be an ^-semigroup then since S is commutative and cancella-
tive it has a group of quotients ^ = ^(S) which is the smallest group into
which we can embed S, in the following sense: If S can be embedded into
a group G then $ can be embedded in G. That is, ^ is the Grothen-
dieck group (see [5]) of S. We can view ^ as S x S/ = where for x, y, w,
and t; in S (x,y) = (u,v) if and only if xv = yu. If [JC, y] s denotes the
= -class of (x,y) we think of [x, y ] s as xy~l. Then xy"1Mt;"1 =
(xw)(yt;)"1. In [8] Tamura shows that if S = (G,I) is an ^-semigroup
then we can obtain ^ as the abelian group extension (Z, G; /) of Z by G
with respect to the factor system / : G x G->Z defined by /(a, j8) =
I(a , j3)-1 . That is, <S = Z x G with the following operation: For
((m, a)), ((n, ]8)) E Z x G let ((m, a))((n, /3)) = ((m + n + /(a, 0), a/3)).

REMARK 1.1. We use the double parentheses ((,)) to denote
elements of $ and single parentheses (,) to denote elements of S.

S = (G, I) is embedded in <S = (Z,G\ f) when / = / - 1 by taking
(m, a) E 5 to ((m + 1, a)) E % Thus S can be identified with its image,
{((m,a))<E<S: m >0}, in %

REMARK 1.2. The identity element of $ is ((0, e)) where e
is the identity element of % and the inverse of ((m,a)) is
( ( - m - / ( a , a 1 ) , a - 1 ) ) .

In this paper we will be concerned with the study of ^-semigroups in
terms of their congruence realtions, equivalently in terms of their
homomorphic images. Note that every homomorphic image of an
archimedean semigroup is again an archimedean semigroup. Hence
every factor semigroup of an ^-semigroup is one of the four types listed
earlier.

We now introduce some notation to denote certain subsets of
when S is an Sft-semigroup.
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set of cancellative congruences on S.
= the set of group-congruences on S.
= the set of Sft-congruences on S.
= the set of nil-congruences on S.
= the set of Rees-congruences on S.
= the set of GN-congruences on S.

= the set of T4-congruences on S.

2. Cancellative congruences. In this section we study
£C(S) where S is an Sft-semigroup and show that it is a complete modular
sublattice of ££{S). We also give three characterizations of the congru-
ences in J£C(S). Here we also study the problem of when ZBG{S) and
CS£H(S) are sublattices of £C(S). This leads to a characterization of the
power-joined ^-semigroups.

As an immediate extension of Lemma 1.1 in [9] we have the
following lemma.

LEMMA 2.1. Let S and T be commutative cancellative semigroups
and let h be a homomorphism of S onto T. Then h extends uniquely to a
homomorphism ofcS(S) onto ^(T)^ Furthermore, ifh is a homomorphism
of ®(5) onto a group G then <S(h(S))=G.

Proof The first part of the lemma is proved exactly as Lemma 1.1
of [9]. That is, if h:S-*T is a homomorphism then the unique
extension of h to a homomorphism h from ^{S) to $(T) is defined by
h(ab~l)= h(ajh(b)~l for a,bE.S. To see the last statement of the
theorem let h: ^S(S)-:>G be a surjective homomorphism. Let g G G
then there exists x , y E S such that h(xy~1) = g. That is, g =
h(x)h(yyl E «(^(S)). Thus G = «(MS)) and we are done.

Actually, if we remove the requirement of ontoness of the
homomorphisms in Lemma 2.1 we see that the map (S, ft)-> (^(S), h) is
a covariant functor from the category of commutative cancellative
semigroups into the category of abelian groups.

Lemma 2.1 tells us that i?(^) is isomorphic onto ^C(S). That is, if
p E i?($) corresponds to h and p E ££C{S) corresponds to h then p—> p
is an order preserving one-to-one map of =S?(̂ ) onto Z£C{S) whose
inverse is also order preserving. Thus since i?(<S) is a lattice so is
cS?c(S). Recall that the lattice of congruences on a group is isomorphic
onto the lattice of normal subgroups of the group and is therefore a
modular lattice [1]. We, therefore, have the following theorem.

THEOREM 2.2. If S is a commutative cancellative semigroup then
i?c(S) is a complete modular sublattice of ££{S) which is isomorphic onto
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Since the only commutative cancellative archimedean semigroups
are groups and ^-semigroups, we have

if S is an ^-semigroup. Tamura has shown [9] that ^ ( S ) corresponds
to those subgroups of ^(5) which do not intersect S. Such subgroups
are called SR-kernels and ([9] Theorem 1.13) they are characterized as
follows.

LEMMA 2.3. Let S = (G,I) be an 31-semigroup. Let H be a sub-
group of G and let h:H^>Z+0 be a map such that h(a)+h((3)-
h(ap) = I(a, j3) - l for all a,/3EH. Then K =
{ ( ( - / i (a ) ,a ) )6S(S) :aGH} is an %1-kernel and all 91-kernels are
obtained in this way.

REMARK 2.1. Notice that in Lemma 2.3 K = H C G and so every
structure group G of S contains an isomorphic copy of every Sft-kernel of
S. That is, the Sft-kernels of S are invariants of the structure groups of S.

The congruence associated with H and h (i.e. with K) is given [9] as
follows

-> EH, and

(m,a)p(n, j8) if and only if

The next theorem characterizes all subgroups of <§ = C&(S) when
S = (G, I) and hence all cancellative congruences on S.

THEOREM 2.4. Let S = (G, I) be an %1-semigroup. Let H be a
subgroup of G. Let A G Z+o, and let h: H-*Z be a function with the
following property:

(2.2) h(a) + h{(S) -h(a/3) = 1 - I(a, j3)mod A for all a,pEH.

= {((x,a))G^: a E H and x =h(a)modA}. Then K is a sub-
group of <& and every subgroup of $ is obtained in this way.

Proof. Assume that we have H, h and A given and let K be as
defined from /f, h and A in the statement of the theorem. Then choose
((*, a)) and ((y, j8)) in K. We have
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Since if is a subgroup of G, a/31 EH. Thus to show that K is a
subgroup of $ we need to show that x - y - /(j3, p~1) + f(a, j8~1) =
ft^jS'^modA. By the definition of K we have x == ft (a) mod A and
y =h((3)modA, and by (2.2) ft(a) +ft(j3)~ ft(aj3) + /(a, j3) =
0 mod A. In particular, ft (ajS"1) + ft (j3) - ft (a) + /(aj8~\ j3) =
OmodA. Therefore, from (1.2) with I replaced by /, we have x -y -
/(ft p-l) + f(a, jS"1) = ft(aj8~1)mod A. This completes the proof that K
is a subgroup of <$.

Conversely, let K be a subgroup of (S. Let TT: K—> G be the map
taking ((JC, a))EK to a. then IT is a homomorphism of K onto a
subgroup JJ = TT(K) of G. Now for each a EH let Xa =
{((m, a)) E K}. Note that since K is a group Ka((x, j3)) = K^ whenever
((x,/3))eK More precisely, the map ((m,a))»-» ((m,a))((x, j3)) =
((m + x + /(a, /3), a/3)) is a bijection of Ka onto KaP. If <((1, c))) denotes
the subgroup of $ generated by ((1, e)) then we have Ke = <((1, e))> H K
is a subgroup of (((1, €))) = Z. Hence K€ = Z or Ke = {((0, e))}. Let
A GZ+'° be such that ((A, e)) is the generator of X€. Next, for each
a EH choose an integer ft (a) such that ((ft (a), a))EKa then a » ft (a)
is a map ft: / / - » Z such that (2.2) holds. Property (2.2) follows from
the fact that K is closed under the multiplication in ^ and the fact that
Ka = Ke - ((ft (a), a)). This completes the proof of the theorem.

The problem with this characterization of the subgroups of $ is that
it is not one-to-one. Note that K uniquely determines H and A but not
ft, unless A = 0. In the next theorem we remedy this situation by
replacing ft by a homomorphism k: H-»R/(A) where R/(A) is the
additive group of real numbers factored by the subgroup of integral
multiples of A, A G Z+o .

We will denote the subgroup K of $ determined by H, ft and A
with (2.2)asK = (H,ft,A).

THEOREM 2.5. Let S = (G, I) = (G,<p) with I (a, j6) =
<p(a) + (p(p)-<p(ap)for all a, j6 G G. Lef K, = (H, ft,, A) for i = 1,2 fee
subgroups of % Then ft, induces a homomorphism fe,: H-*R/(A) for
each i = l,2 swcft fftaf

(2.3) - ^ ( a ) + 7 r ^ ( a ) ) C Z /or i = 1,2 and a G R

Where TTA : R —> R/(A) is the natural map. Furthermore, ifKY = K2 fften
fci = fc2. Conversely given a homomorphism fc:/f->i?/(A) satisfying
(2.3) we can de/ine ft: H —>Z satisfying (2.2).

Prao/. Let K = (H,ft,A) be a subgroup of & Define ft'(<*) =
1 - 9(a) for all a G if. Then
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Hence h-h': H-+R has the property

{h -h')(a) + {h ~hf)(P)-(h ~h')(afi) = Omod A for all a, j3 G H

so that h - h' followed by vA is a homomorphism from H into
R/(A). Let fc = 7TAo(h -h'). Then 7rA\k(a)) = {x E R: x =
(h - h')(a)modA}. Therefore, for x G 7rA\k{a)) we have for some
nEZ

-<p(a) + x = -<p(a)+h(a)-h'{a)+nA

= - (p(a) + h(a) + <p(a)- 1+ nA

= h(a)-l + nA EZ since h(a)EZ.

Next, suppose that Kx = (H,huA) = (H,h2,A) = K2 then by the
proof of Theorem 2.4 we see that there exists a function I: H->Z such
that ft2(a) = hx{a)+ l{a)A. Then

= 7rA(h1(a)+ (p(a)- 1) = fc^a) for all a G H.

To see the converse statement let fc: H->JR/(A) be a homomor-
phism satisfying (2.3). For each a EH choose xa E 7rA

1(k(a)) and
define h on H by Ji(a) = xa - <p(a)+ 1. By (2.3) we have h(a)E
Z. Also,

and TTA(xa + xp - xa^) = 0 in JR/(A) and we have h(a) + h(/?)- h(ap) =
1 - I (a, j8) mod A. Thus from k we have constructed a map h: H-+Z
satisfying (2.2) and the theorem is proved.

As an immediate consequence of Theorem 2.5 we have a one-to-one
correspondence between subgroups K of ^ and triples {H, fc, A} where
H is a subgroup of G, A G Z+ o and fc is a homomorphism of H into
J? /(A) such that (2.3) holds. We write K = [H, fc, A ] to denote that X is
determined from (or determines) H, fc, and A as above. We now
describe the cancellative congruences on S determined by K = (H, ft, A)
or K = [Jf,fc,A].

Recall that given (H,h,A) = K we have K = {((JC,a))E<g:aEH
and x = ft (a) mod A}. The congruence p G .^ (S) corresponding to K
is just the restriction to 5 of the congruence on $ determined by the
cosets of K in & That is, if (m, a) and (n, j8) are in S then (m, a)p(n, j8)
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if and only if ((m + 1, a))((n + 1, /3))"1 G K. But

if and only if a/3 ~l G H and m-n- /(/3, j3 "*) + / (a , ]8 "*) =
h(afS~l) mod A or ap^EH and

A.

Thus we have

THEOREM 2.6. 77ie cancellative congruence p on S = (G, I ) corre-
sponding to (H, h, A) is giuen fey

(2.4) (m,a)p(n,(i)ifandonlyif w . „ .
and

- t ) - J ( a f ^

ft (a/3"1)mod A.

Now if (H,ft,A) = [H,fc,A] and if pE&c(S) corresponds to
(H,h,A) then p is defined by (2.4). What does this say in terms of p
from k instead of ft ? Well, ft (a) = xa + 1 - <p (a) mod A where
xa G 7TA1(fc(a)) by the proof of Theorem 2.5. Thus

Therefore, <rrA(h(a)- h(p))= k(ap'1)+ 7rA((p(p)- cp(a)). So in terms
of k is given by

(2.5) cap'1 EH, and
(m, a)p{n, /3) if and only if i

U
We now give a group theoretical condition for a subgroup Jf of a

structure group G of an Sft-semigroup S = (G, I) to have a function ft,
satisfying (2.2) for some A G Z+o, defined on it.

Suppose H is a subgroup of G and ft: H —> Z satisfies (2.2) for some
nonnegative integer A. Then let hA = 7rA°ft where TTA: Z-*Z/(A) is
the natural map. Also, let fA: H x if —>Z/(A) be the map given by
fA = TTAO(-f)\(H x H) where f: GxG-*Z is the factor set which
determines the group of quotients of S.
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That is, f(a, j6) = I (a, j8) - 1 for all a, (3 E G. Since / is a a factor
set and TTA is a homomorphism, we have that fA is a factor set. Property
(2.2) for /* and the fact that TTA is a homomorphism imply that

(2.6) M « ) + M I S ) - M*18) = A(«, 18) for all a, jS E H.

Thus fA is a transformation set and thus it is equivalent to the trivial
factor set ®: H x H-> Z/(A) (i.e. 0(a, j3) = 0 for all a, (3 E / / ) . Thus
the abelian group extension (H,Z/(A);/A) of if by Z/(A) determined
by the factor set fA is equivalent to the direct product H x (Z/(A)).

Conversely, if (H, Z/(A);/A) is equivalent to the direct product
Hx(Z/ (A)) then /A(a, j3) = c(a) +c(j6)-c(aj3) for all a,/3 E H for
some function c: H->Z/(A). We can get a function h: H-*Z by
simply choosing for each a EH a representative /i(a) from
7rA(c(a)). From (2.6) with /iA replaced by c we have that h satisfies
(2.2). We therefore have the following theorem.

THEOREM 2.7. Let H be a subgroup of G and A E Z+ o . There
exists a function h: H-> Z satisfying (2.2) if and only if the abelian group
extension (H, Z/(A);fA) is equivalent to the direct product H x (Z/(A)),
that is, if and only if fA is a transformation set.

Next we will separate t£c{S) into its two pieces i?G(S) and

LEMMA 2.8. Let pE%c(S) for S = (G, I) such that (m, a)p(n, a)
for some a E (3 and m,n E Z+ o with m^ n. Then p E Z£G(S) and p
corresponds to a subgroup K of ^ such that K = (H, h,A) with A >0 for
some subgroup H of G and h: H-^> Z satisfying (2.2).

Proof. Assume m>n and (m,a)p(n,a) then

(m, a) = (0, a)(0, e)mp(0, a)(0, e)n = (n, a).

And since p is a cancellative congruence we have (0, €)m"n+1p(0, e)\ hence
Sip has an idempotent. Thus pE£G(S). Now let K = (H, h,A)
correspond to p. Recall that A = 0 if and only if Xn(((l ,e))) =
{((0,6))}. Well (0,e)p(0,e)m-"+1 implies that ( ( ^ ^ ( ( l . e ^ e K
and ((1, €))"-+I((lf e)r = ((m - n + 1, e))((- 1, e)) = ((m - n, e)) E K
with m - n > 0; therefore, K n <((1, e))> ̂  {((0, e))} and so A > 0.

Let ^ ( S ) = {p6i?c(S): P corresponds to (H,fr,A) with A >0}.
Since a homomorphic image of a group is a group, it is immediate that
3?G(S) is a join subsemilattice of S£C{S) and that ^ ( S ) is a meet
subsemilattice of <

THEOREM 2.9. i^(S) is a sublattice of %C(S).



CONGRUENCES ON ^-SEMIGROUPS 433

Proof. It is immediate from Lemma 2.8 and property (2.4) that
^ ( 5 ) = {p e gc(S): there exists m,nE Z+ o with m/n and a EG
such that (m, a)p(n, a)}. Thus, since £C(S) is closed under joins, this
characterization of SE^S) makes it clear that i£*(S) is closed under
joins. Let pl=(Hhhl,Al) with A , > 0 for i = l,2. Then for each
a EG we have by (2.4) (O^jp^AjAz,^) for i = 1,2. Hence
(0,a)p1np2(A1A2,a) and so p1np2Gi?8/(S).

An Sft-semigroup S = (G, I) = (G, 9) is said to be power-joined if for
all x, y E S there exists m,nEZ+ such that xm = yn. From [2] we see
that S is power joined if and only if G is a periodic abelain
group. Tamura [9] has shown that if S is power joined then ^ ( S ) is a
sublattice of J£C(S) isomorphic to the lattice of subgroups of the
subgroup H of G defined by H = {a E G: <p(a) E Z+}. Hence if S is
power joined then i^(S) is a modular lattice.

THEOREM 2.10. The following are equivalent for an %1-semigroup S:
(a) S is power joined.
(b) 2M{S) = 2a{S).
(c) <£G{S) is a sublattice of %(S).

Proof, (a) implies (b): Assume 5 is power joined. Let p =
(H,h,0). Let k: H~->R be the homomorphism induced by h as in
Theorem 2.5. Then since ff is periodic we have k must be the zero
map. But recall k(a) = h(a)+ (p(a)-1 for all a EH. Therefore
<p(a)=l-h(a) is in Z (since fc:H->Z), and <p(a)>0 for all
a G H . Hence fc(a)<0 for all a G H. And so - f c (a )S0 so
-h:H-^Z+0 and - fc(a)- fc(j8) + fc(ajS) = J(a,jfr)- 1 so that by
Lemma 2.3 the subgroup of ^(S) determined by /f and - h as in that
lemma is an Sift-kernel. But that subgroup is just K = (H, h, 0). Thus p
is an ^-congruence and S£M{S) = £G(S).

(b) implies (c): This follows from Theorem 2.9.
(c) implies (a): Assume S = (G, I) is not power joined.

Then there exists a E G of infinite order. Let Kl = (((l,e))) and
K2 = <((1, a))). Then X, n S^ • for i = 1,2 so that X! and K2 corre-
spond to group congruences on S. But since a has infinite order,
KiC\ K2 = {((0, e))} is an Sft-kernel and so the group congruences of S are
not closed under intersection. Hence SBG(S) is not a sublattice of Z£(S).

Thus if S is a power joined Sft-semigroup we have £6C(S) is the
disjoint union of the two sublattices «S?G(S) and i?9t(S). Although power
joinedness is a sufficient condition on S to make <2H(S) a sublattice of
J£(S), it is not necessary because every irreducible Sft-semigroup (i.e. an
Sft-semigroup with no proper 5ft-homomorphic images) has only i as an
Sft-congruence.
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REMARK 2.2. The correspondence from SR-kernels to triples
(if, h, 0) is one-to-one. Also, as is obvious from the proof of (a) implies
(b) in Theorem 2.10, a triple (if,h90) gives an 9^-kernel if and only if h
maps H into Z~°. (Compare this with Lemma 2.3.)

PROPOSITION 2.11. Let p, correspond to (if,, hn0) for i = 1,2 be two
^-congruences on S then px v p2 is an ^-congruence if and only if for all
a E Hi and j8 E H2 we have

(2.7) hx{a)+h2{p) + I(a,P)^l.

Proof. Let K, = (Ht, ht,Q) be the subgroup of ^(S) associated with
px (i = 1,2). Then px v p2 corresponds to KXK2 = {kxk2\ k, E K,
(i = 1,2)}. Then if ̂ 2 is clearly the subgroup of G determined by K ^
(see the proof of the converse half of Theorem 2.4). Now if px v p2 is an
Sft-congruence then for each y E HXH2 there is a unique integer ft (y) ^ 0
such that ((h(y), y)) E KXK2. Let a E ifx and j3 E if2 with a/3 = y then
((M«),«)) 6 X, and ((fc2O), j8)) E X2. Hence

but since a]8 = y we have hx(a) + h2(p) +f(a,(i)= h(y)^0 or

Conversely, if for all a E Hx and j8 E if2 we have fri(a) + h2{p) +
I(a,p)^l then if ( ( j c j j j G K A there must be ((h1(a),a))EKl and
((/i2(j3),j3))EK2such that

Hence JC = fti(a) + h2(p) + I(a, p)- 1 ̂ 0 so that KtK2 is an 9^-kernel
and pi v p2 is an 9^-congruence.

The following corollary to Proposition 2.11 gives us a large number
of examples of ^-semigroups for which J£W(S) is a sublattice of
<£{S). Those for which the structure group G is not a periodic group
show that power joinedness is not necessary to make S£^{S) a sublattice
of 2{S).

COROLLARY 2.12. If S = Z+ x G for some abelian group G then
is a sublattice of S£{S).

Proof. Z+ x G is isomorphic onto the $ft-semigroup (G, i ) where
I (a, p) = l for all a,pEG. Hence given ht: Ht^> Z~fi (i = 1,2) we
have (2.7) is obviously satisfied.
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REMARK 2.3. Note that condition (2.7) implies that ht(a) = h2(a)
for all a E Hx (1 H2 since h is unique for an ^-congruence. This can be
shown directly also.

3. General congruences. Here we make a study of the
general congruences on an ^-semigroup S = (G, I). We first study
ideals of S and relate them to certain functions from G into Z+o . This
yields a characterization of 5£R (S). Next, we associate a particular ideal
Jp of S with each congruence p on S and use its emptiness or
nonemptiness to separate the congruences on S into two types. The
first being those which do not relate elements of S with the same second
coordinate denoting the collection of those congruences by
J£n(S). Then the other type is shown to be the intersection of a
group-congruence with a nil-congruence. We go on to give character-
izations of members of i£n(S) and 3?N(S).

Throughout this section we will assume that S = (G, I). Let J be an
ideal of S. For each a E G let Ga = {m E Z+ o: (m,a)E J}.

(3.1) If x E Z+'° and mEGa then m+xEGa.

Proof. mEGa implies (m, a ) E / . Thus for all (x, e)E
S(x, e)(m, a) = (m + x + 1, a) E / as / is an ideal.

(3.2) If J/D then Ga/D for all a E G.

Since / = UQGG(Ga x {«}) if J/ O then there exists a0GG
such that G^ ^ D. Let (m0, a0) E /. Choose a EG. G being a group,
there is a /3 E G such that a = aop (i.e. j3 = ao1**). Then

(m0, ao)(O, j3) = (m0 + I(a0, j3), a0i8) = (m0 + I(a0, j3), a) E /

so that m0 + /(ao, j3) E Ga and Ga ̂  Q Thus if / ^ D for each aEGGa

is a segment [^(a),00) of Z+o, that is, for each a EG there exists
il/(a) E Z+'° such that Ga={mE Z+>°: m ^ i/r(a)}. H / = D then for
each a E G Ga = O and so we will define ij/(a) = oo for all a E G where
oo is adjoined to Z + o as a largest element under ^ and as a zero under
addition (that is, x + oo = oo + x = oo + oo = oo for all x E Z+o). The result-
ing ordered semigroup being denoted by Z^°. In any case, an ideal /
determines a function ijj: G -> Z^° such that

(3.3) il/(a) + J(a, j3) g ^(aj8) for all a, j3 E G.

Proof. ( i | f(a),a)G/ implies that

) + /(«, j8), a/3) E J



436 HOWARD HAMILTON

for all a , j 3£G. Hence i//(a) + I (a, p) G GaP, so (3.3) holds and we are
done. A function \\J: G —> Z*'° satisfying (3.3) is called an ideal function
on G.

Conversely, given an ideal function if/ we obtain an ideal / of S by

(3.4) J = {(m,a)ES: m S < (̂a)}.

REMARK 3.1. Constant functions ij/: G-+ZZ'0 are ideal functions,
and translates of ideal functions are ideal functions. (That is, if if/ is an
ideal function on G then iAk(a) = $(&)+ K where k EZ+-°, is also an
ideal function on G.)

REMARK 3.2. Since <A(«0 + I{a,a~1^)^ i/r(/S) for all a,/3 G G, we
see that ^(a) finite for one a G G implies that ${a) is finite for all
a EG. Moreover by (3.3) we see that ${e) + I(e, j3) = i/f(e) + 1 g i/r(/3)
for all j8 G G where e is the identity element of G. Hence if ij/ maps
into Z+-° then i/> is bounded.

Let \\iG denote the collection of all ideal functions on G. i/fG
becomes a lattice under the natural ordering (i.e. i/̂  g i/r2 if for all a in G
il/i(a)^if/2(a)) and the join and meet are given by (i/r1v^2)(a) =
m a x j ^ a ) , ^ ) } and ( ^ A i/r2)(a) = min ima) , i/>2(a)}. If ^, corre-
sponds to the ideal /, of S for i = 1,2 then i/fx v i/r2 corresponds to /i fl /2,
and i/̂ i A î 2 corresponds to JXUJ2. Hence S£R{S) is dually isomorphic
onto the lattice (i/rG, g ) = (i/fG, v, A).

Again we assume that we have our 9?-semigroup S determined as
(G, I). Let p be a congruence on S. Define

Jp = {(m, a) G S: there exists (n, a ) G S with n ^ m
(3.5)

and (m,a)p(n, a)}.

Claim. Jp is an ideal of S (possibly empty).

Proof. If Jp/O let (m,a)EzJp then there exists n ^ m such that
{m,a)p{n,a). Let (/, y )GS then (Z, y)(m, a)p(l, y)(n, a) and so
(/ + m + /(% a), ya)p{l + n + I(y, a), ya) and / + m + I(y,a)/ 1 + n +
I(y,a) since m/ n. Hence (/, y)(m, a)G Jp. Thus /p is an ideal.

LEMMA 3.1. Jp ={(m,a)E S: (m,a)p(m + I, a) for some I &Z+}.

Proof. Let / ='{(m, a) G S: (m, a)p(m + Z, a ) for some / G Z+}. By
the definition of Jp we have / C Jp. Let (m, a ) G /p. Then (m, a )p (Z, a)
for some / G Z + o with Z/ m. If Z > m then (m, a ) G / by the definition
of / so assume Z < m. Then we have
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(m, a)(m - / - 1, e)p(l, a)(m - I - 1, e)

so that (2m - /,a)p(m,a) and 2m -l>m. Thus (m,a)G J. And we
have shown JPCJ and hence / = Jp.

LEMMA 3.2. If (m, a)p(n, j3) rften (m + fc, a)p(n + fc, j3) /or all
kBZ+0.

Proof. If fc > 0 then

(m + fc, a) = (m, a)(fc - 1, £)p(n, j3)(fc - 1, e) = (n + fe, 0).

LEMMA 3.3. 1/ / P ^ D anrf (m,a)p(n,/3) wif/i (m ,a )E / p f/ien
(n,i8)GJp.

Proo/. Assume (m,a)GJp and (m,a)p(n,/3). By Lemma 3.1
there is IE Z+ such that (m,a)p(m +1, a) and by Lemma 3.2
(m + l,a)p(n 4- /, /?). Hence, since p is a transitive relation we have
(n, j3)p(n + /, j3) and so by Lemma 3.1 (n, j8)G /p.

We will denote the ideal function associated with Jp by i/rp.

LEMMA 3.4. If JP^D then fi = p |/p is a group-congruence on Jp.

Proof. Let (m,a)GJp and let lGZ+ such that
(m, a)p(m + /, a). Note that we can assume that l^i | i(e) because
(m, a)p(m + /, a ) implies that

(m, a)p(m + /, a)p(m + 2/, a)p(m + 3/, a) • • •

and e/r(e)<oo because / P ^ D . Let (m,a)fjL denote the /x-class (= the
p-class) of (m, a) for each element (m, a) in /p. Then we have (m, a),, =
(m + /, a)^ = (m, a)^(/ - 1, e)^ and by our choice of / g i/r(e) we have
( / - l , e ) G / p . Therefore

so that

(m^a^E n (/-l,€K(/p/ix).
n = l

Hence by Fact 1.1 we have (m, a)^ is in the kernel of Jp/fi which is a
group. But (m,a) was an arbitrary element of Jp. Thus /p//u, is a
group. This proves the lemma.
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By Theorem 1.2 fi extends uniquely to a group-congruence v on S.

LEMMA 3.5. v D p if Jp^{3.

Proof. If a,b E S with apb then choose e E Jp such that e^ is the
identity class of JP//JL then aepbe hence ae/jube and avb.

Now /p/p is an ideal of Sip (since Jp is an ideal of S). Let f̂ be the
nil-congruence on S determined by the composition of the following two
natural maps:

That is, Jf equals p outside of Jp and N collapses Jp. In symbols,

(3.6) N\(S\Jp) = p\(S\Jp) and Jf\Jp = a>Jp.

Hence, since v\J = /i = p\Jp we have

THEOREM 3.6. If JP^D then p = vHN.

Our problem of determining all congruences on S is reduced to
determining the nil-congruences on S and the congruences with Jp =
Q We know the group-congruences on S from §2. We will denote the
collection of those congruences p on S with Jp = • by &n(S).

We will now show that the congruences in 3?D(S) are quite simply
determined by the pairs of columns in S which contain p-related
elements of S and by the first elements of these columns which are
p-related.

Let p E S£U{S). Define a relation ap on G by

For a, ]8 E G acr9fi if and only if there exists m,n E Z + o

(3.7)
such that (m,a)p(n, j8).

Claim. ap is a congruence on G.

Proof. Reflexivity and symmetry of ap follow from the same
properties for the congruence p. To see that crp is transitive let acrpp
and papy for a, j8, y E G. Then there are m, n, fc, / E Z + o such that
(m, a)p(n, j8) and (fc, j3)p(/, y). Assume k ^ n then

(m + k - n, a)p(n + fc - n, j3) = (fc, /3)p(/, y)

so that by transitivity of p we have aapy. The case where fc < n is
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handled in the same way. Thus ap is transitive. To check that ap is
compatible let a, j3 G G with aapp and let y EG. We need to show
that ayGrppy. Well, acrp{} implies that there are m,n G Z + o such that
(m, a)p(n, j8) then (m + I(a, y), ay) = (m, a)(0, y)p(n, j3)(0, y) =
(n + /(/3, y), /3y) so that aycrp/3y. Thus o-p is a congruence on G.

Next we define a function <\>p: vp-+ Z+ o (first used by Dickinson [4]
to determine T4-congruences) by considering crp as a subset of G x G. If
(a, /3) G crp then define

(3.8) 0p(a, /3) = min{m: (m, a)p(n, j3) for some n G Z+o}.

It then follows that (<f>p(a, j8), a)p(<^p(j8, a), j8) whenever a<rp/3 and hence
by Lemma (3.2) we have

fta)+k,i8) for all

Furthermore, since Jp = D we have

(3.9)
and fc G Z+o},

or

(m, a)p(n, j8) if and only if ao-p/3 and there exists k G Z+ o

(3.9')
such that m = <f)p(a, j8)+ fc and n = $p(]3, a ) + fc.

Thus p is determined by a congruence crp on G and a map
(j)p: ap ->Z+'°. The natural question is when do a congruence a on G
and a map $: o-—»Z+i° determine a congruence relation by (3.9) or
(3.9')? That is, what are the defining properties of <j>p and its relation to
pp? We now present a collection of lemmas which determine these
properties and relations, and then in Theorem 3.12 we choose from
among this collection of necessary conditions on a and (f> those which are
sufficient to determine a congruence on S by (3.9').

REMARK 3.3. The reader will notice that some of the following
lemmas are quite similar to statements proven by Dickinson [4]. In
Dickinson's proofs he used the link between "0-functions" and "d-
functions" (d -functions were introduced by Tamura in characterizing
^-congruences). Note that here I have deleted the need for the
d -function and its properties by essentially restating the d -function
properties in terms of <̂ . That is, d is really determined by <f>.
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LEMMA 3.7. <l>P(a, a) = 0 for all a E G.

Proof. (0, a)p(0, a) since p is reflexive.

LEMMA 3.8. If (m,a)p(n,/3) then m - n = <f>p(a, (3)-<f>p(p,a).
This follows from the fact that Jp = D.

LEMMA 3.9. If acrpp and papy for a, j8, y E G then we have
( ) ( ) ( ) ( ) )

We will give a proof assuming that <f)p(f},y)^
(t>p((3, a). The proof for the opposite inequality is identical. Let
<£p(ft y) = <£PO3, « ) + fc w i t h fc E z + ' ° - T h e n by Lemma 3.2

Hence by Lemma 3.8

cf>p(a, y) ~ <fr,(y, a) = c^p(a, j8) + fc - <£P(y, j8)

k - < p̂(j8, y ) + ^p(j85 y ) -

and we are done.

LEMMA 3.10S For any a, j8, y E G swcft f/mf ao-p/3 and j8crP7
k,lEZ+0 with min{M} = 0 and (f>p(/3, a ) + fc = <^p(ft y ) + /.

m E Z + o swc/z r/iar c )̂p(a, y) + m = <j!>p(a, j8) + k and

Proo/. Assume that / = 0, then

(a) <MAa)+fc=*PGB,y).

Suppose fc = 0, also, then

A «), i8) = (*P(A y), PMhiy, 18), y)

so by transitivity of p we have (<£p(a, j8), a)p(c^p(y, j8), y). Thus
(j)p(a, y)^(f>p(a, j8) and there exists m EZ+1° such that <£>p(a, y ) + m =
<t>p(a,p) = <t>p(a,p)+k. If fc > 0 then (<£p(a, j8) ,a)p(0p(A a),j8) implies
that
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Hence <t>p(a, y ) ^ 4>p(a, /3)+ k and so there exists m E Z + o such that

(b) <M

From (a) we have

which implies from (b) that

4>p(j3, a ) - <j>p(a, jS) + 4>p(a, y )+ m + <fc(y, j8 ) - <fc,(j3, y) = <fc,(y, j3).

By Lemma 3.9 we have

<MAa)-<Ma, j8) + <Ma,y)^

Hence 0p(y, a ) + m = < p̂(y5 j8) = <£p(y, P) + '•

LEMMA 3.11. / / acrp{} then for all y E G

Proo/. This follows from the compatibility of p, Lemma 3.8 and the
definition of <£p.

We now state the theorem which gives us the converse to the above
characterization of p E i?n(S).

THEOREM 3.12. Let a be a congruence on G and let <)>: a -> Z + o be
a map such that

(Ql) <f>(a,a) = 0 for all a E G.

(Q2) For a// a, j8, y E G wi/A acr/? anrf jSo-y fer fc, / £ Z + ) 0 with

min{k, /} = 0 and 0(j3, a ) + fc = <£(£ y) + /. Tften f/iere exis

m GZ+ i 0 5MĈi that<f)(a,y)+m =c^(a,

(D.3) 1/ a,/3 EG with aa(3 then (f>(a, j3) + J(a, y) - <£(ay, /3y) =

If we define a relation p on S by (3.9;) then p E i?n(S). We denote
p = (a, <£).
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Proof. Clearly, if p defined from a and <f> by (3.9') is a congruence
on S then Jp = • and so p G <£n(S). To see that p is in «5?(S), note that
(D.l) implies that p is reflexive and the definition of p clearly makes p a
symmetric relation. Now let (m, a)p(n, /3) and (n, j3)p(/, y) then m =
<£(a,j3)+fc, n = <^(j8,a)+fe = 0(/3, y)+r, and / = <£(y,/3) + r for some
)c,rEZ+i0. Hence <j!>G3,a) + fc -min{fc,r} = <£(A y) + r - min{fc,r} and
minffc -minjfc, r}, r-min{fc, r}} = 0 so by (D.2) there exists s G Z+>0

such that 0(a, y ) + s = $(a, /3)+fc -minjfc, r} and <£(y, a)+s =
<j)(y, j3) + r-min{fc, r}. Therefore m = <^(a, y)+ 5 + min{fe, r} and / =
(ply, a) + s + min{fc, r}. Since o- is a congruence on G, ao-y. Thus
(m, a)p(/, y) and p is transitive. Next let (m, a)p(n, j8) and (/, y)G
S. Then m=<f)(a,P)+k and n = 0(j3, a)+k with fc e Z+o. We
need to show that (m, a)(/, y)p(n,/3)(/, y), that is,

(m + / + I(a, y), ay)p(n + / + I(ft y), jBy).

Well, we have m + / + J(a ,y)= c^(a,/3)+ fe + / + J(a, y) and
n + / 4- J(j8, y) = 0(j3, a) + fc + / + I(j8, y). By (Q3) there exists r G
Z+-° such that 0(a, j8) + /(a, y) = <f>(ay, j8y) + r and 0(0, a ) + J(j8, y) =
0(j3y,ay)+r. Thus m + / + I(a, y )= ^(ay,j8y)+ r + k + I and
n + / + J(j8, y) = <£(j3y, ay ) + r + fe + /. Also, aya-/3y since or is
compatible. Hence

(m + / + I(a, y), ay)p(n + / + I(ft y), ]8y).

Thus p is a congruence on 5.
If o" and 0 satisfy conditions (D.l) thru (D.3) then define a map

<t>: o - ^ Z + 0 by

(3.10) £(a, j8) = ĉ >(a, /3)- min{0(a, j8), ̂ (ft a)}.

Then we have,

THEOREM 3.13. If cr and </> satsify (D.l) thru (Q3) r/ien o- and $
satisfy (D.l) r/ir« (D.3). The congruence (cr,<l>) is in SBC(S) and is the
smallest cancellative congruence on S containing (a, </>).

Proof _(Ql)for <£: ^ (a , a ) = <f>(a,a)- min{^(a,a),^>(a,a)} = 0.
(D.2) for ĉ>: Let k , / G Z + 0 with min{k,/} = 0 and (

3, y) + /. Then by (3.10) we have

, a) - min{0(j3, a), ^ (
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Set r = fc-min{0(/3,a),0(a,/3)}, s = / -min{(j8,y),</>(y, j3)} and f =
min{r, s}. Then <f>(p,a) + r - t = <f>(P,y) + s - t with r - t,s - t G Z + o

and min{r-r , s - f } = 0; therefore, by (D.2) for there exists m G Z + o

such that <f)(a, y)+m = <\>(a, j8) + r - r and 0 ( y , a ) + m =
) + s-f . Hence

(o;, y) + m = <j>(a, y ) - min{0(a, y), <\>{y, a)}+m

r-t-min{4>(a, y),<(>(y,a)}

and

, a) + m = <f>{y, a) - min{<^(y, a) , <f>(a, y)} + m

) + s-t- mm{<f>(y, a), <f>(a, y)}.

Therefore,

a, y), 0(y,a)}+r

, a), <f>(a, /3)} + fe

and

^ , a) + m + min{0(y, a), <#>(a, y)} + t =

8, y),

Thus (D.2) holds for 0.
(D.3) for 0 : By (D.3) for 0 we have

<f>(a, /3) + /(a, y) - 0(ay, j8y) = <f>(/3, a) + /(ft y) - 0(j8y, ay) ^ 0

for all a, /3, y G G with aa-/8. Therefore, we have

(a) <f>(a, /3)- min{0(a, ]8), 0(j8, a)} + /(a, y ) - 0(ay, )8y)

, /3y), 0(j8y, ay)}

Which by (3.10) becomes

(b) 0(a, /3) + J(a, y ) - 0(ay, j8y) = 0(j8, a) + /(/3, y ) - 0(j8y, ay).
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We need only show that this number on either side of (b) is nonnegative,
equivalently, the number on either side of (a) is nonnegative. Note
that -<l>(ay,(iy) + mm{<l>(ay,Py),<l)(py,ay)} = 0 or -<t>(Py,ay) +
min{$(ay, j3y), <f>(@y, ay)} = 0; hence, in the first case the left-hand side
of (a) is clearly nonnegative and in the second case the right-hand side of
(a) is clearly nonnegative. Thus (D.3) holds for $.

Proof that p = (o-,0) is in £C(S): Let (m,a)(/, y)p(n, /3)(/, y) for
(ra, a), (n, fi) and (/, y) in S. That is,

(c) (m + / + I(a, y), ay)p(n + / + J(ft y), jSy).

Hence aycrfiy and so aor/3. Thus ($(a, ]3), a)p(<£(j6, a), j8) and so

or

and

(<£(«, j8) + I(a, y) + I(ay, y"'), a)p(<£(/3, a ) + I(j8, y)+ J(/3y, y"1),

But by (3.9') this implies that

(d) I(a, y) + (ay, y"1) = J(ft y) + I(fiy, y'1).

Now from (c) if we multiply both sides by (0, y"1) we get

Therefore, m + / + /(a, y) + /(ay, y'1) = <£(a, 0) + r and n + / + I(j3, y)
+ /(/3y, y"1) = <l>((3, a) + r for some r E Z+ o . Rewriting the last line we
have m = <j)(a, j8) + r - l-I(a, y)-I(ay, y"1) and n = 0(j8, a) + r -

-1). Let

by (d). This number 5 is nonnegative because <£>(«, /3) or < (̂/3, a) is 0
and m, n G Z+o . Hence by (3.9;) we have (m, a)p(n, j8).

Proof that p is the smallest cancellative congruence on S containing
p = (a, <f)): Let (m, a)r(n, j8) where r is any cancellative congruence on S
containing p. We have (m, a) = (m - l ,a)(0, e) and (n, ]8) =
(n - 1, j3)(0, e) if m - 1 and n - 1 are nonnegative. Hence



CONGRUENCES ON ^-SEMIGROUPS 445

(m, a)r(n, P) implies (m - 1, a)T(n - 1, j8) if m — 1 and n — 1 are
nonnegative. Similarly, (m - 2 , a ) r ( n —2, j8) if m—2 and n - 2 are
nonnegative, etc. Thus (<£(<*,j3),a)r(c^(j8,a),j8) and so r D p . This
completes the proof.

COROLLARY 3.14. Lef (cr,0)Ei?n(S). 77ien (cr,<t>)e£c(S) if
and only if for all a, (3 E G wif/i ao-jS we /iaue <£ (a, j8) = 0 or <f> (/3, a ) = 0.

The proof of this corollary is contained in the proof that p is a
cancellative congruence in Theorem 3.13.

We will now determine the triple (H,h,A), from Theorem 2.4,
associated with p = (cr, <£).

THEOREM 3.15. Let p = (or, <£) E i?n(S). Lef H =^ker a =
{a E G: acre) and let h: H-^Z be given by h(a) = <f>(a, e ) - <f>(e,a) =
<f>(a, €)-$(€, a) for all a E H. Then h satisfies (2.2) with A = 0 and

Proo/. Let a,j3 EH. By (D.3)
, a ) + l-^(]8,Q;i8) so that 1 - I(a, j8) = 0(a, e ) - ^(e,o:) +

i8)-0(ai8,i8). Let 0P be defined by (3.8) then <f)p = <f> if p =
(cr,<^). Hence Lemma 3.9 gives 0(j3,aj8)- ^(aj8,i8) = <^(j8,e)~
<£ (e, j8 ) + 0 (€, a/8 ) - <f> (aj8, € ) because jSere and €cra/3 for a, ]8 E
if. Thus

l-Jfa0)=*te€)-*(e,aH^

and (2.2) holds for h.
To see that (H, h, 0) = (a, </>) let r = (H, ft, 0) and p = (cr, 0). Then

(m,a)r(n,p) if and only if afi~lEH and m— n =
J(/8,p-j-I(a,p~ l)+ hiaP'1) by (2.4). That is, (m,a)T(n,/3) if and
only if aarp and m - n = I(j8, jS"1)- J(a, j8"1)+ 4>{ap~\e)- <!>(€, ap'1).
Now (Q3) implies that <j>{ap-\e)-^(e,a]8-1) = ^(a, j3) + J(a, p~x)-
4>(faa)-I(fi,f}-1). So (m,a)r(n,P) if and only if a<rp_ and m-n =
c^(a, j8)- 0(j3,«) = c^(a, P)~<t>(P, a). Since <£(a, ]8) or <£(j3, a ) is 0 this
implies that m — <f)(a, P) = n - <f>(p, a) are nonnegative integers. Hence
(m, a)r(n, j8) if and only if (m, a)p(n, j8).

We now turn to the characterization of the nil-congruences on S.
Let p EcS?N(S). Let /p be the p-class of S which is the zero of

Sip. Let TT: S —> S/p be the natural map then /p = TT"1^); hence, /p is
an ideal of S and p\JfL= o)Jp. From this it is easy to see that Jp is that
ideal of S defined by (3.5). Let ^p: G -> Z+ o be the ideal function on G
associated with Jp. Note that the relation crp on G defined by (3.7) is
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<yG. We define (^p:wG = G x G ^ Z+ o by (3.8). It then follows that p
is determined from $P and <f)p as

(m, a)p(n, j8) if and only if

m ^ il/p(a) and n ^ ij/p(P)

or

m < IAPO*)* n < ^ P O ) and there

exists fc G Z+ '° such that

m = <f>P(a, j3) + fc and n = <£p(/3, a ) + jfc.

The necessary relationships between i/rp and <£p in order that (3.11) yield a
p E ££N(S) are stated in the next few lemmas.

LEMMA 3.16. <j>p(a, a) = 0 for all a G G. (This is just a repeat of
Lemma 3.7).

LEMMA 3.17. For all a, j8 6 G <f>p(a, 0) g </rp(a).

Proof. (IIJP (a), a )p (i/fp (]8), /3) for all a, j3 G G since p | /p = coJp. Thus
the result follows from (3.8).

LEMMA 3.18. If (m, a) & Jp and (m, a)p(n, /3) then m - n =
il/p(a)- ijjp(p) = <^p(a,j8)- $p(/3, a), and f/ie /asf equality holds for all
a, (3EG.

Proof By Lemma 3.3, (m, a) &JP implies that (n, /3) ^ /p. Hence
iltp(a)>m and i/fp(j8)>n. Let r = max{i/rp(a)-m, i/fp(j8)-n}. Then
r G Z+ . Now, (m, a)p(n, j8) implies by Lemma 3.2 that (m + r, a)p(n 4-
r, ]8). Hence, m + r = ij/p(a) if and only if n + r = ^p(j8) by Lemma 3.2
again. That is, max{i/rp(a)- m, ̂ P(j8)- n} = if;p(a)- m = iAP(j3)- n
and m - n = ij/p(a)-il/p(/3). In particular, if (f>p(a, (})< il/p(a) we get
c^ p ( a , i8 ) -^ p ( i8 , a ) = l/rp(a)-iAP(i8); and if <fc,(a, j8)= ^ ( a ) then
<£p(j6, a ) = i/>(/8), by Lemma 3.2, so that again <£p(a, j 8 ) - ̂ P(j8, a ) =

LEMMA 3.19. For a// a,j8, y G G we

*p(i8, r) - ^P(% is) = <fe(a, r) ~ ^(% «)•

Proo/. Use the proof of Lemma 3.9 and replace the use of Lemma
3.8 by Lemma 3.18.

LEMMA 3.20 = Lemma 3.10 (with ap = o)G) holds in this case,
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also. Just replace the use of Lemma 3.9 in the proof by Lemma 3.19
above.

LEMMA 3.21. for all a , f t y £ G <t>p(a, j6) + I(a, y ) ^ 0p(ay,j3y)
and if<f>p(a, j8) + I(a, y ) < ^(a, y) f/ien <fr,(a, j3) + I(a, y ) - <fr,(ay, j3y) =

Proo/. This follows from the compatibility of p, Lemma 3.18 and
the definition of (f>p.

We are now ready to state and prove the theorem which character-
izes all nil-congruences on S.

THEOREM 3.22. If if/: G->Z+-° is an ideal function on G and if
(f>: GxG->Z+'° is a function such that

(N.I) <f>(a, a) = 0 for all a G G.

(N.2) 0(a, j8) ̂  ijj(a) for all a, j6 G G.

(N.3) For a// a, p E G i)/(a) - <A(j3) = 0(a, j6) - </>(& a).

(N.4) For all a , j3 ,yGG i/ fc, / G Z + o vWf/i min{k,/} = 0 and

, a)+fc = <^(j8,y)+/ /̂ien f/iere exists m G Z + 0

a:, y) + m = ^(a,j8) + kanrf^(y,o:)+ m =

(N.5) For a// a:,/3,yGG c^(a, ]8) + /(a, y ) g <f>(ay, )8y) and //

then 0(a,j8) + / (a ,y )

r/ie relation p defined by (3.11) is in i?iv(S), and euery congruence in
is obtained in this way. We denote p by (fa <f>).

Proof (3.11) and (N.I) make it immediate that p is reflexive and
symmetric. To see that p is transitive let (m, a)p(n, ]8) and
(n, j3)p(/, y). If m g i/r(a), n g <K/3), and / g i/r(y) then by (3.11) we
have (m, a)p(l, y). Thus we will assume that m < i//(a), n < i/r(/8) and
/ < i^(y). Let r, sE Z + o be such that m = 0(a, j8) 4- r, n = <£(j3, y) + r =
(^(|8,y) + x, and / = <f>(y, j8) + s. Using (N.4) here as we used (n.2) in
the proof of Theorem 3.12, we have the transitivity of p. We now turn
to the compatibility of p.

Let (m,a)p(n, ]8) and (/,y)GS. If m^il/(a) and n^i|r(j8)
then m+l + I(a, y ) S {//(a) + / + I(a, y) g / + i/f (cry ) ̂  iA(ay ) and
n + / + J(ft y) g r̂(jS) + / + I(ft y) ^ / + *A(A 7) ^ *(j8y). Hence
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(m,a)(/,y)p(n, j8)(/, y). If m<i/f(a) and n < i/r(]8) then there exists
r G Z+'° such that m = <f)(a, j8) + r and n = <£(/3, a ) + r. If
m + / + I(a, y) < i/r(ay) then <f)(a, ]8) + J(a, y) < i^(ay) so by (N.5) there
is 5 E Z+'° such that <f)(a, j3) + I(a, y) = <£(ay, ]8y) + s and

) + (fty)=<KjBy,ay)+s. Thus

m 4- / + I(a, y) = <£(a, j8) + r + / + I(a, y) = <£(ay, j8y) + r + / + 5,

and

n + / + 1(0, y) = ^(j8y, ay) + r + / + 5.

Now r + I + sGZ+i° and by (N.3) we have n + / + I(/3,y)<
e/r(j3y)• Hence m + / + I(a, y) < ij/(ay) if and only if n + / + I(/3, y) <
i/f(/3y). Thus in all cases we have (m, a)(/, y)p(n, J8)(/, y) and so p is a
congruence on S. Clearly the p-class of (i^(a), a) , a G G, is a zero of
Sip. Hence Sip is a nil semigroup and p E i?N(S).
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