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ON THE EXTENSION OF ADDITIVE FUNCTIONALS
ON CLASSES OF CONVEX SETS

H. GROEMER

Let Sf be a class of sets and let U(&) denote the class of all
finite unions of sets from £f. This paper concerns itself with the
question whether a vector valued function on Sf has an additive
extension to U(£f). Several characterizations of functions with
such an extension property are presented. One of these charac-
terizations establishes a relationship between such extensions
and integrals of certain types of simple functions. The special
cases when Sf is the class of all convex polytopes or the class of all
compact convex subsets of a euclidean space are investigated in
more detail. Some examples are given to show that various
extension problems that have been solved previously by methods
particularly designed for each individual problem can also be
solved by the application of these general results.

1. In t roduc t ion . Throughout this paper d is assumed to
denote an arbitrary but fixed nonnegative integer. Ed denotes d-
dimensional euclidean space. The class of all compact convex sets in Ed

will be denoted by 3if, and the class of all (compact convex) polytopes in
Ed by 0>.

Let S be an arbitrary set, and Sf a class of subsets of 5. We shall say
that Sf is intersectional if 0 G Sf and X DYEtf whenever X G ^ ,
Y G y. A function A that maps an intersectional class Sf into some
vector space is said to be additive if A (X U Y) =
A(X) + A(Y)- A(X n Y) for all sets X, Y with X G S ^ Y G ^ , X U Y G
&>. Typical examples are the volume or surface area of sets from 3C or
0\ and these examples show already that it is of interest to investigate
whether these functional can be extended to more general classes of
sets. Here we concern ourselves with extensions from $f to the class
U(SP)9 i.e. the collection of all unions of finitely many sets from SP.

For the class 9 this extension problem has already been considered
by Volland [14] (for functions with values in an abelian group) and
Hadwiger [7] (for a much more restricted class of real valued
functions). Important results regarding the general case are contained
in the paper [10] of Perles and Sallee.

In the present paper a rather different approach to this extension
problem will be presented. It is closely related to methods that have
been used previously (Groemer [2], [3], [4], [5]) for the extension of some
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functional on X (Euler characteristic, mixed volumes etc.). This
method offers a wider range of applications and it also establishes a
connection between the extension problem and a seemingly rather
different problem in the theory of integration.

To formulate this latter problem we have to introduce the following
definitions and notations. If Sf is again an intersectional class of subsets
of S, and if X G 5̂  we denote by X* the characteristic function of
X. Hence X* is defined on S and has the property that X*(x)= 1 if
x G X and X*(x) = 0 if x g X. The class of all functions X* with X G Sf
will be denoted by Sf*. Any function / of the form

(1) / = fllX? + a2Xf + • • • amX* (X, G Sf, a, real)

will be called a simple function, or, more precisely, a simple &>-
function. The simple Sf-functions form obviously a vector space (over
the reals), and this vector space will be denoted by V(Sf). If A is a
mapping of Sf into some vector space (again over the reals) it appears to
be natural to define the integral, more precisely, the A-integral of a
simple function / with the representation (1) by

(2) j fdk = fllA (Xx) + a2k (X2) + • • • + amk (Xm).

Clearly, this definition is only meaningful if fdk does not depend on

the special representation (1) of /. If this is the case for every simple
S^-function we say that &* permits a A-integral. Typical examples are
provided by taking for Sf the class of intervals or the class of Lebesgue
measurable subsets of JB1 and for A the length of an interval or the
Lebesgue measure; the integral defined by (2) is then the Riemann
integral for step functions or the Lebesgue integral for (Lebesgue) simple
functions. It is worth mentioning that, in general, the additivity of A
does not imply that Sf permits a A-integral. For example, if one
assumes that S ={1,2,3}, S? = {0,{1},{2},{3},{1,2,3}} and A(0) = O,
A(X)= 1 for X/0 then $f is intersectional, A is additive and fl}* +
{2}*+ {3}*-{1,2,3}* = 0*; but A({1}) + A({2}) + A({3})- A({1,2,3}) = 2
and A(0) = O.

Any function A on Sf can also be viewed as a function on 5̂ * (simply
by setting A(X*) = A(X)). Then, instead of asking whether A has an
additive extension to U(&) one may ask whether A has a linear extension
to V(&).

The following section is devoted to a discussion of the relationship
between this problem, the existence of A -integrals, and the existence of
additive extensions of A to £7(5 )̂. It also deals with a concept that will
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be referred to as general additivity. A vector valued function A on an
intersectional class Sf is said to be generally additive if

A(X,UX 2 U ••• UXm)
(3)

2 2 2 A ( x , n x ; n x k ) - + •••

whenever X, E Sf and Xx U X2 U • • • U Xm E Sf.
Section 3 concerns itself with the special cases that result when Sf is

taken to be the class of convex polytopes or the class of all convex bodies
of Ed. In §4 several examples are presented, and in §5 the case- of
spherically convex sets is briefly discussed.

2. A general extension theorem. Part of the following
theorem, namely the equivalence (iii) =£> (iv), has already been formulated
and proved by Perles and Sallee [10]. Our proof of this result is based
on the relationship between extensions and integrals.

THEOREM 1. Let Sf be an intersectional class of sets, and let kbe a
function mapping Sf (or Sf*) into a vector space (over the reals) so that
A(0) = O. Then, the following statements are equivalent'.

(i) Sf permits a A -integral,
(ii) A has a unique linear extension from Sf* to V(Sf),
(iii) A has a unique additive extension from Sf to U(Sf),
(iv) A is generally additive.

Proof. First we note that (i) is equivalent to the following state-
ment:

(i') If bxY* + b2Y*2 + ••• + bkY*k = 0 (Y^Sf, bt real) then
bl\(Y1)+b2\(YJ+ •••+bk\{Yk) = 0.

Indeed, if Sf permits a A-integral then (i') is certainly satisfied since the
second sum in (i') is the integral of the first sum and therefore equal to

OdA = 0; and if Sf does not permit a A-integral there are two

representations of the form (1) that yield different values (2), but if (i')
were true it could be applied to the difference of these two representa-
tions of / and one would immediately arrive at a contradiction.

As another preliminary remark we note that the characteristic
function on an intersectional class Sf is generally additive. In other
words, if Xt E Sf, Xx U X2 U • • • U Xm E Sf then
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( X , U X 2 U ••• UXm)*

(4)
1Z'Z 2 (x,nx/nx*)*-

This is a simple consequence of the binomial theorem.
Our proof of the theorem proceeds now by showing that (i') ^

(ii) => (iii) => (iv) => (i')-

Proof of (i') =£> (ii): If (i') is satisfied this implies, as already re-

marked, that y permits a A -integral I fdk for every / G V(Sf), and it is

obvious that this integral is a linear functional on V(if). Also, if X E if

then I X*d\ = A(X) = A(X*), which shows that the integral is an

extension of A as a function on if*. Finally, if A' is any linear extension
of A from if* to V(if) then it follows from (1) that

A'(/) = a,A'(X1)+---+amA'(Xm)

= a 1A(X 1 )+---+amA(Xm ) =

Hence, a linear extension of A from if to V(Sf) is unique.

Proof of (ii) 4> (iii). If T G U{Sf) then T = X, U X2 U • • • U Xm

with X, G 5f, and it follows from (4) that T* £ V{Ef). Hence, if K is the
extension of A on V to V(Sf) then, Au defined by AU(T) = AU(T*) is an
extension of A from if to l / (^) . Moreover, if A e L7(5 )̂, B G 1/(50
then

which shows that Au is additive. The uniqueness of Au can be derived
inductively from the fact that for X, G Sf and any additive function fi on
U(<f)

/ i ( X , U X 2 U • • • UXm) = fi(X1) + (x(X2U ••• U X m )

(5) -/x((x, nx2 )u(x, nx3)u • • • u(x,nxm))
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since this relation shows that the value of fi for a union of m members
from if is uniquely determined by the value of /JL for unions of less than
m terms.

Proof of (iii) => (iv). The general additivity of any additive function
on 17(5 )̂ can be deduced from (5) by an obvious induction
argument. Hence, if A has an additive extension Au to U{&) then Au is
generally additive on U(Sf), and A (since it is the restriction of Au to 5̂ ) is
a generally additive function on 5̂ .

Proof of (iv) =£> (i'). Let us assume that (iv) is true but that there
exist sets Yu Y2, • • •, Yk in Sf so that (i') is not satisfied. It will be shown
that these assumptions lead to a contradiction. We define sets
Du D2,-,DP (where p = 2k - 1) by the following rules: Dx = Yu D2 =
Y2, • • • Dk = Yk; Dk+1, Dk+2, • • • Dkl are the intersections Yt D Y, with i < j
(in some order); Dkl+l9 Dkl+2, • • • Dk2 are the intersections Yt n Y} n Yx with
i <]' < 1, and so on until one meets Dp = Yx D Y2 (1 • • • n Yk. Then,
every intersection of the form Dg n Dh is again some Ds with s ̂
max{g, h}. Because of Dx = Yu - - - Dk = Yk, and since (i') is not satisfied
it follows that there are real numbers c, so that

(6)

(7)

Since r is restricted by l ^ r g p we may assume that the coefficients c»
have been selected so that r is as large as possible. However, r = p is
impossible, since in this case (6) and (7) would reduce to the contradicting
relations CpD * = 0, cpk (Dp) / 0. Because of (6) it is impossible to find a
point x so that D *(x) = 1, D ?(*) = 0 for all i > r. Hence, every point of
Dr is in some D, with i > r, and therefore

Dr = D r n ( D r + 1 U D r + 2 U ••• UDP)

= {DT n Dr+1) u (Dr n Dr+2) u • • • u ( A n D P ) .

Since both A and the characteristic function are generally additive it
follows that

and

2 A(D,nD,)-
r<i<p

D*= 2 (DrnD,)*- 2 (AnD,nDy)*+ .
r<Kp r<i<]<p
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Each intersection appearing in these two equalities is some Ds with
s > r. Hence, there are coefficients ds so that

(8)

and

(9)

If (8) and (9) are substituted into (6) and (7) one obtains obviously
expressions of the same type as (6) and (7) but with a larger value of r.
Since this contradicts the assumption that r be maximal, the proof is
finished.

3. Convex sets. We consider now the special case when Sf is
the class ^ of compact convex polytopes or the class 3if of compact
convex subsets of Ed. It will be shown that rather weak assumptions on
the functional A enable one to prove that the statements (i)-(iv) of
Theorem 1 are valid. The following definitions and notations will be
useful for this purpose. If H is a hyperplane in Ed we denote by H+ and
H~ the two closed half-spaces determined by H. A vector valued
function A on ^ (or 3C) will be said to be weakly additive (cf. Sallee [12])
if for every hyperplane H and every X G ^ (or X G 3if)

(10) A(X) = A(xn / f + )+A(xnf f - ) -A(xn / f ) .

Clearly, every additive function is weakly additive. But weak additivity
is sometimes easier to handle than additivity.

First, we prove a theorem concerning the relationship between weak
additivity and the statements (i)-(iy) °f Theorem 1. Under the assump-
tion that the pertinent function be additive, and using different methods,
essentially the same result has been proved by Volland [14] and Perles
and Sallee [10], see also Hadwiger [7, p. 81].

THEOREM 2. Let X be a vector valued function on 8P such that
A (0) = 0. Then, the statements (i)-(iv) °f Theorem 1 are true if and only
if A is weakly additive.

Proof. Since it has already been shown that the statements (i'), (i),
(ii), (iii), (iv) are equivalent, and since (iv) implies obviously (10), it
suffices to prove that (10) implies (i'). Hence, we have to show that it is
impossible that there exist a weakly additive function A on 0>, polytopes
Pi, P2, • • • Pm in SP, and real numbers pu p2," ' pm so that
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and

(12) imi

For the space E° (11) and (12) are clearly contradictory, and we make the
induction assumption that the same be the case for Ed~\ It will be
shown that for the space Ed (11) and (12) will also lead to a
contradiction. Let us denote by k the number of d-dimensional
polytopes P, that appear in (11). We may assume that k is minimal; in
other words, we suppose that there are no relations of the type (11), (12)
with less than k polytopes of dimension d.

If k = 0 the polytopes P, are contained in a finite number of
hyperplanes, say Hu H2, • • •, Hh where we may assume that / be
minimal in the sense that there are no relations of the form (11), (12) with
all P, in less than / hyperplanes. If / = 1 the plane Hi can be interpreted
as Ed~l and one obtains a contradiction to our_ induction
assumption. Thus, / > 1. If we define polytopes P, by P, = P, D Hh

then it follows from (11) that S^pJP? = 0 and therefore, using again the
induction assumption, 2r=ip,A(P,) = 0. Hence, we obtain from (11) and
(12)

(13) | ^ : - ^ ) = o

and

(14) 2 P . ( A ( P , ) - A ( P I ) ) ^ 0 .

Since P, CH, implies P, = P, the terms p,(Pf - P*) and p,(A(P,)- A(P,))
may be deleted from (13) and (14) whenever P, CH,. These deletions
yield relations of the form (11), (12) where all the remaining polytopes
are contained in the planes Hu H2, • • • H/.j. This however is impossible
since / was assumed to be minimal.

We consider now the case k g 1. It can be assumed that dimP, = d
for 1 g i ^ k, and dim P, < d for k < i S m. Let H be a hyperplane that
contains a ((d - l)-dimensional) face of P2 and let us assume that the
notation of the half-spaces H+, H", has been selected so that PiCH+.
(11) implies obviously

(15) XpI(PinH-)* = 0
i=i

and

(16) Sp.(P.n
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Because of P 1 C// + the half-space H~ contains at • most k - 1 poly topes
P, PI H" of dimension d, and it follows therefore from (15) and the minimal
property of k that

(17)

Also, from (16) and the induction assumption we obtain

(18) 2

If (10) is applied to each P, it follows from (12), (17) and (18) that

(19) 2 p ^ ( P , n H + ) ^ 0 .
i = i

We note also that (11) implies

(20) Sp,(P.n/f+)* = o.
1 = 1

Hence, from the relations (11) and (12) one can derive an analogous pair
(19), (20). If this procedure is repeated for all the other hyperplanes that
contain faces of Px one obtains

(21) 2 AA (P, n PO ̂  o, S p, (/> n pxy = o.
i = i i = i

If one of the poly topes P, D Px (i = 1,2, • • • k ) is less than d -dimensional we
have reached a contradiction to the minimal property of k. If all these
polytopes are again d-dimensional we may start with (21) and repeat the
same arguments with Pi n P2 accepting the role of Plm This leads to
relations of the same kind as (21) with P, n Px replaced by P, D Px n P2, and
again either one has reached a contradiction or the process can be
repeated. If one continues in this way, and if the polytope D =
Px PI P2 n • • • n Pk is less than d -dimensional one will meet after a suitable
number of repetitions a contradiction to the minimal property of k. If
dimD = d one arrives at the following relations (setting S.^p, = c):

(22) J p,A(P, nD) = cA(D)+
I

(23) 2 p.(P. nD)* = cD* + 2 p.(P, nD)* = o.
1=1 i>k
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Because of dimD = d and dim(P4 D D)< d (i> k), there is a point x with
JCGD, x £ P , n D (i>k). Consequently, D*(x)=l , (P, n D)*(x) = 0
(i > fc) and it follows from (23) that c = 0. Hence, in (22) and (23) there
appear only polytopes of dimension less than d and this has already been
shown to be impossible.

Since general additivity implies additivity we can state the following
corollary to Theorem 2. It has also been noted by Sallee [12].

COROLLARY 1. If X is a weakly additive vector valued function on P
then A is additive.

In this context it is not necessary to assume that A(0) = 0; if A(0) =
c ̂  0 one can apply Theorem 2 to the function A - c.

Instead of ^ we consider now the larger class 3if, i.e. the compact
convex subsets of Ed. Under a kind of continuity assumption it will be
possible to prove an analogue of Theorem 2. Let A be a mapping of 3ff
into a topological (Hausdorff) vector space T (over the real numbers). We
shall say that A is continuous if for every decreasing sequence of convex
bodies A, one can infer that l i m ^ A (A,) = A (Dr=i A,). If A is continuous
in the usual sense with respect to the Hausdorff-Blaschke topology in %
and the given topology in T, then it is also continuous in the sense just
mentioned.

THEOREM 3. Let A be a continuous function that maps % into a
topological vector space so that A (0) = 0. Then the statements (i)-(iv) °f
Theorem 1 are true if and only if A is weakly additive.

Proof. We note that it is not possible to deduce this theorem from
Theorem 2 and known approximation properties of polytopes, since a
relation of the form 2 xtX* = 0 with Xt E % does not imply a corresponding
relation for the approximating polytopes.

As in the proof of Theorem 2 it suffices to show that the above
assumptions on A imply that (i') holds. To prove this by contradiction we
assume that (i') is not true for some weakly additive continuous function
A. This means that there exist sets Ku K2," Km in % and real numbers
ku k2? • • • km so that

(24) 2 fcJCT = 0,

(25) J fc.A (Kt) = a, where a / 0.
1 = 1

We may assume that m is the smallest number with the property that there
are relations of the form (24), (25). Obviously, m ^ 2. Let H be a
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hyperplane in Ed so that K1CintH+. Then, it follows from (24) that

(26) Jfc I(K inH-)* = 05
1 = 1

(27) tk,(K,

Because of Kx n H~ = 0 and Kx C\ H = 0 these two sums have at most
m — 1 nonzero terms. Therefore, it follows from the minimal property of
m (together with A(0) = O) that

(28) J

(29) $
i = l

If (10) is applied to each set K, it follows from (25), (28), and (29) that

(30) 5 felA(^,nff+)=a.
1=1

We also note that (24) implies

(31) V k (K n ff+)* = 0

Instead of one plane we consider now an infinite sequence Hu H2, • • • of
hyperplanes in Ed with the property that ICxCintH+ and

w z; ^i - M ti].

The existence of such a sequence of planes is an immediate consequence of
well-known approximation properties of convex bodies (see Bonnesen-
Fenchel [1] or Hadwiger [7]). If the procedure that led from (24), (25) to
(30), (31) is repeated n times one obtains

(33) Sfc
,=i

(32) and the continuity of A imply that for every fixed i
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.n n Hr) = \(KlnK1).
; = 1 /

From this relation and (33) we obtain therefore

(34) Sk,A(JK;njs:1) = fl.
1 = 1

Also, from (24) we get the corresponding equation

(35) Sfc,(KinK1)* = 0.
1 = 1

The process which enabled us to derive (34) and (35) from (24) and (25) can
now be repeated using successively the sets Kn Kt H Ku Kt n JK̂  fl
K2, --Kt n ^ n ^ n ••• nKm. If we write kx + fc2+ • • • + km = b,
Kx n K2 n • • • n Km = L, and note that Kt n L = L we arrive at the rela-
tions

Because of a / 0, and since the second of these equations implies that b = 0
or L = 0 we have reached a contradiction, and the proof of the theorem is
finished.

Similarly as in the case regarding convex polytopes we can state the
relationship between additivity and weak additivity as a corollary.

COROLLARY 2. If k is a weakly additive continuous function that maps
3fc into a topological vector space, then A is additive.

It is possible to construct examples which show that Theorem 3 and
Corollary 2 are not valid without the assumption of continuity.

4. Examples. One of the most simple continuous additive func-
tionals on % is defined by x(K) =HfK^0, and #(0) = 0. According to
Theorem 3 there is a unique additive extension of A to U(JC) and a unique
linear extension to V^lfC). This extended functional is called the Euler
characteristic on U(JC) or V(3£). Various other geometric methods have
been developed to define the Euler characteristic on these structures, and
even more such methods exist for the smaller classes U{$P) and

The pertinent literature is cited in [2], [3], [7], and [8].
The Euler characteristic, along with volume and surface area, are
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(aside from constant factors) special cases of the Minkowskian projection
integrals (Quermassintegrale). These projection integrals are easily seen
to be additive and continuous, and are zero on the empty set (see [1] or
[7]). Consequently, Theorem 3 shows that the projection intervals have
unique additive extensions to U{3K) and unique linear extensions to
V{3{). More special methods that can be used for the construction of
these extensions are described in [2], [7] and [8].

As an example of a function that maps % into a d -dimensional vector
space one may take the Steiner point of a convex body. It can be proved
that this function is continuous (with respect to the usual topology of Ed)
and additive, and can be defined to be zero on the empty set. Theorem 3
enables one again to infer the existence of a unique additive extension to
U{JK) and a unique linear extension to V(JC). For particular proofs of
these facts see [13] and [11].

The following examples show that in some cases the class V(3if) rather
than U(JC) is the domain of principal interest.

Let H be a hyperplane in Ed and let p denote the orthogonal
projection of the sets from % onto H. If %M denotes the class of compact
convex subsets of H then p can also be viewed as a mapping of JC onto 3if £,
i.e. the class {Y*;YE&H}. It is easily seen that p is additive and
continuous (with respect to the topology induced by pointwise convergence
of the functions from V(JCH)). Also, p(0) = O. Hence, Theorem 3 can
be applied. The resulting extension of p to U(3£) maps [/(3if) into V(3CH)
so that to each X E C/($f) and x E H there corresponds a certain multiplic-
ity p(x), determined by the number of intervals o f X D L where L is a line
through x that is orthogonal to H. Since many applications that involve
projections use induction with respect to dimension it is usually advantage-
ous to work with the extension of p that maps V(3if) into V(3CH). This
generalization of the concept of a projection has been introduced by more
special methods in [2], and can be used as a basis for a theory of projection
integrals of nonconvex sets. Obviously, Theorem 2 can also be applied to
projections onto general k-flats (instead of hyperplanes) and to arbitrary
parallel (instead of orthogonal) projections.

As another application of this type we consider the Minkowski sum
K + L = {x + y :x E.K, y E L} of two compact convex sets. The same
definition of K + L can be used if K, L are not convex bodies, but then
many desirable properties, particularly those that are essential for the
development of the theory of mixed volumes, are lost. The following
extension procedure is more useful in this respect. For a fixed set L E 3if
and a n y X G f let us define a function A by A (X, L) = (X + L)*. Then A
as a function of X maps $f into the vector space V(3if). It is easily proved
that this mapping is additive, continuous (with respect to the topology in
V(JC) that is induced by pointwise convergence of the functions in V(3if)),
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and that A(0, L) = 0. Hence, by Theorem 3 there is a unique additive
extension to U(3£) and a unique linear extension to V{JC). For any fixed
function v in V(3£) (or any T E U{3C)) the same procedure can be repeated
for X(v, Y) (or A(T, Y)) as a function in Y. The final result is that the
Minkowski sum, originally defined on JC x 3if, has a unique bilinear exten-
sion to V(3£) x V{JC) (and a unique "biadditive" extension to U(3C) x
U(3£)). By the use of the Euler characteristic and more special methods
this result has been proved in [5], where further details can be found.

Similarly as for Minkowski sums it is possible to extend the mixed
volumes. If v^-^K, L) denotes the mixed volume V(K, • • • K, L, • • • L)
(where K appears i times and L n- i times) one can consider first
uI>n-,(X, L) as a continuous additive function of X and extend to
V{JC). Then this process can be repeated for vhn-t(u, Y) as a fuction in Y
(for any fixed u G V(JC)). The result of these two extensions is a bilinear
function on V(3£) x V(&). Another approach and a more detailed pre-
sentation of results on mixed volumes of nonconvex sets can be found in [5]
and, regarding integral geometric aspect, in [6].

5. Spherically convex sets. Let Sn denote the n -dimensional
unit sphere, and let C be the class of spherically compact convex subsets of
Sn (in the restricted sense that every C E ^ is contained in an open
semisphere). ^ is obviously intersectional and Theorem 1 applies if & is
taken to be %. Theorems 2 and 3 do not immediately apply to ^, but the
proofs of these theorems are still valid for spherically convex sets if
hyperplanes are replaced by (n - l)-dimensional unit spheres on Sn, and
closed half-spaces by closed semispheres. Consequently, those functionals
of the preceding section which have analogues for spherically convex sets
have corresponding extension properties. For example, one can use this
approach for the introduction of the Euler characteristic for sets on the
sphere. For other geometric possibilities to define this functional on the
sphere see Hadwiger and Mani [9], and Groemer [3], [4].
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