
PACIFIC JOURNAL OF MATHEMATICS
Vol. 75, No. 2, 1978

THE STRUCTURE OF A SPECIAL CLASS OF
WEIGHTED TRANSLATION SEMIGROUPS

M A R Y R. EMBRY AND A L A N LAMBERT

A special class of weighted translation semigroups {£,} on
«S?2(S?+) is studied. The weakly closed algebra sd generated by
the semigroup is maximal abelian and the spectra of elements of
$& are studied. It is shown that each densely defined linear
transformation commuting with s& is closable and that every
transitive algebra containing si is weakly dense in the full
algebra of operators on L2(8fo+).

1. Introduction. A weighted translation semigroup {SJ with
symbol 0 is defined on L2(&t+) by

for O^t^

0 for t > x

where <f> is a continuous, complex-valued function on J%+ such that
0(x) 7̂  0 for x in 9t+. These semigroups were studied in [2] and [3]. In
[3] strongly continuous subnormal weighted translation semigroups are
characterized as those for wfiich <\>2 is a Laplace-Stieltjes Transform of a
probability measure. In [4] a more general type of weighted translation
semigroup is studied.

To insure the strong continuity of {St} we assume that
supxe^ | <j)(x + t)l<f>(x)\ ^ Mem for all t and some constants M and w [2,
Lemma 2.1]. Two weighted translation semigroups with symbols $ and
p are unitarily equivalent if and only if \<t>lp\ is constant [2, Theorem
2.5]. Thus without loss of generality we assume that </> is positive-
valued and that 0(0) = 1.

Throughout the paper unless otherwise indicated we shall assume

further that ($(jc)/<£(f)$(x - t))2dt is bounded and shall say that <f> is
Jo

of bounded kernel type. For such a <f> and for each / in L2(S?+) we define

(1) A, = f"
Jo

MM.
359
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In §2 we show that {Af: /GL2(S?+)} is a subalgebra of B(L% the full
algebra of operators on L2(&t+). We denote {Af: f E L2(0t+)} by si0 and
its closure in the weak operator topology by si. In Theorem 2.6 we
show that si is a maximal abelian algebra and that si0 is a proper
ideal of si.

In §3 we establish a basic relation between the multiplicative linear
functionals on M and the elements of L2(S?+) of the form eKtl<\>(t). This
relation enables us in Theorem 3.5 to determine completely the spectrum
of each element of si0. In §4 it is shown that any densely defined linear
transformation commuting with si is closable. This result enables us to
apply Arveson's Density Theorem to show that if eKt l<f>{t)E:L2{$l+) for
some A, then any transitive subalgebra of B(L2) which contains si is
weakly dense in J3(L2). Finally in §5 certain function theoretic consid-
erations related to (f> are investigated. It is shown in Corollary 5.5 that if
the associated semigroup is hyponormal then <f> is not of bounded
kernel type.

Throughout the paper the following notation is used: H =
{\:eV<f>(t)<EL2(m+)h E = {g: g(t) = eA7<M0,A G H} and «(<£) =
sup {Re A : A E H} where a($) = - oo if H is empty. G will denote the
infinitesimal generator of the semigroup {St}.

2. Basic facts about sd. In this section we shall show that
each Af is a bounded linear operator on L2(5£+), that the mapping / -> Af

of L\9t+) onto si0 is a continuous linear mapping, that si0 is an algebra,
and that si is a maximal abelian algebra.

LEMMA 2.1. \\Af\\ S p ||/|| for all f in L\m+) where

t)J

Proof. Let g G L2(£%+). To see that Af is well-defined we note
that

(2)

and the integral exists since / and g are square integrable and <f> is
continuous and nonzero. We note further that
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Therefore

P
2 f f |/(r)g(x -OPArfx =P2II/Il2llg||

Jo Jo

so that Af is a bounded linear operator on L2(9?+) and

LEMMA 2.2. (i) Aaf+Pg = «A/ + /3Ag,
(ii) A,g = A / , and
(iii) A,Ag = AAfg

for all f and g in L2(&t+) and all complex numbers a and j8.

Proof, (i) and (ii) follow immediately from equation (2). To prove
(iii) we let f,g,h G L\0l+) and note that

= L

) ... ("

- ' - » ) (

- t)
5(5 -

L [L

Thus (iii) holds for all / and g.

It now follows immediately from Lemma 2.2 that sd0 is a commuta-
tive algebra and from Lemma 2.1 that the mapping f->Af is
continuous. An easy computation shows that this mapping is one-to-
one. We state these results in the following theorem.
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THEOREM 2.3. s&Q is a commutative algebra of operators on L2(9t+)
and the mapping f^Af is a continuous, one-to-one, linear mapping of
L2{31+) onto siQ.

It follows from the Open Mapping Theorem and Theorem 2.3 that
si0 is closed in the uniform topology if and only if the mapping f->sdf is
bicontinuous. It is an open question whether or not si0 is closed in the
uniform operator topology.

LEMMA 2.4. If T is an operator on L 2(5ft+) which is in the commutant
of si0, then TAf = ATf for each f in L\$l+).

Proof Let / and g be elements of L2(&1+). Then TAfg = TAJ =
AgTf = ATfg. Consequently TAf = ATf as desired.

LEMMA 2.5. {St}Csd-sdQ.

Proof. Let fn = n(f)if/[r, r + 1/n] where if/[a, b] is the characteristic
rr+l/n

function of [a, 6]. Then /„ G L2(0t+) and Afn = n\ Stdt which, be-
cause of the strong continuity of St, converges strongly to
Sr. Consequently Sr E s£. To see that Sr £ s£Q we assume the contrary:

Sr = f" (f(t)/<j>(t))Stdt for some / in L2(3ft+). Consequently, S%g/(/)) =
00 (f(t)/<l>(t))S*t(g/4>)dt for each g in L2(3£+) of compact support. Thus

J° r
g(x + r) = f (f(t)/4>(t))g(x + t)dt. If we define K(y, s) =

Jo
(f(s - y + r)l<j){s - y + r)) for y ^ r and 0 otherwise, we arrive at the
integral equation g(y)= K(y, s)g(s)ds. Since the identity is not an

Jo
integral operator on L2(0t+) [5, p. 87], we arrive at a contradiction and
our proof is complete.

An immediate consequence of Lemma 2.5 is that the weakly closed
algebra s£x generated by {St} is a subalgebra of si. Since each element of
s£Q is obviously in siu we see that s&x = si\ that is, the weakly closed
algebra generated by the semigroup {St} is the same as the weakly closed
algebra generated by {Af}.

THEOREM 2.6. sd is a maximal abelain algebra and s£Q is a proper
ideal of si.

Proof. That si is abelian follows from the fact that si0 is
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abelian. Thus by Lemma 2.4 if T &s$, then TAf = ATf E s$0, proving
that s&o is an ideal of si. Lemma 2.5 assures us that si0 is proper and that
I E:M. Choose a net gA such that AgA converges weakly to the identity
operator /. Then since TAgx = ATgx, we have r = limATgA and hence
T E sd, proving that each element of the commutant of si is an element
of si. The proof that si is maximal abelian is complete.

We observe that no Af is invertible since s£0 is a proper ideal of the
maximal abelian algebra si. We shall study in more detail the spectral
properties of elements of siQ in the next section.

3. Spectral properties of sd. In this section we first charac-
terize certain multiplicative linear functional on si and then use this
information to study the spectra of elements of si. In particular we are
able to show in Corollary 3.4 that whenever gA E L2(3ft+) where g\(x) =
eAj7<£(*)> then g is an eigenvector for each element of s$*. For an
element Af of siQ we then show in Theorem 3.5 that the eigenvalues
corresponding to the gA together with the real number 0 make up the
entire spectrum of A*.

THEOREM 3.1. Ifm is a multiplicative linear functional on si, then
there exists a unique g in L2(£%+) such that

(i) m(Af) = (f,g)and
(ii) A*f§ = {gJ)gforallfinL2{®.+).
Conversely, if m and g satisfy (i) and (ii) and g^O, then
(iii) A*g = «g, Ag)l||g||2)g for all A in si

and m can be extended to a multiplicative linear functional K on si such
that

(iv) K{A) = {Ag,g)l\\gf for all A in si.

Proof. Assume that m is a multiplicative linear functional on si
and define L(f) = m (Af) for each / in L2(£%+). It follows from Theorem
2.3 that L is a continuous linear functional on L2($k+). By the Riesz
Representation Theorem there exists a unique element g of L2(3ft+) such
that L(f) = (f,g) for all /. Consequently m(Af) = (f,g) for all /
in L2(^+).

Assuming now that m is multiplicative, we have for all / and h in
L2(3S+) (K(gJ)g) = (f,g)(Kg)= m(Af)m(Ah)= m(AfAh)= m(AAfh) =
(Ajh,g) = (h,A*fg). Consequently A*fg =(gj)g as desired.

Assume now that m and g satisfy (i) and (ii) and that
g^O. Reversing the computation in the preceding paragraph, we
conclude that m is a multiplicative linear functional on si0. We shall
construct a multiplicative linear extension of m on si0. Let A E si
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and A A -»A weakly. Then (g,Ag) = Urn(g,Aug) = lim<A *fxg,g) =
lim<g,/A)||g||2 by (ii). Consequently lim<g,/,) = <g, Ag >/||g||2 and
for each h in L\9t+), <g, Ah> = lim(g, Ahh> = lim«g, fk >g, ft > =
<g,ft)<g,Ag>/||g||2. Thus A*g = «g,Ag>/||g||2)g, proving the final
assertion. We now define K(A) = ((Ag, g>/||g ||2) for each A in si. A
straightforward computation shows that X is a multiplicative linear
functional on si and that K is an extension of m.

We have shown that to each multiplicative linear functional on si
there corresponds a unique element g of L2(0t+) which is a common
eigenvector for the elements of si*, provided g ^ 0. In Theorem 3.3 we
shall show that each such function g is necessarily of the form eAt/<f>(t) for
some complex number A.

LEMMA 3.2. If G is the generator of {St} and A is sufficiently large,
then Af = (A - G)~l where f(t) = e~kt^{t).

Proof, Since {St} is strongly continuous, there exist constants M
and w so that supx | <f>{x + t)/(f)(x)\ = \\St || ̂  Mewt [2, Lemma 2.1]. Thus
<t>(t) ^ Mewt and for A sufficiently large f(t) = e~A'<£(0 e L2(^+). Then

A = f" (f(t)/<l>(t))Stdt = P e-AfSrdr = (A - G)"\ [6, p. 344].
Jo Jo

THEOREM 3.3. If m is a multiplicative linear functional on si and g
satisfies

(i) m(Af) = (f,g)and
(ii) A)g=(g,f)gforallfinL\9t+),

then either g =0 or there exists a complex number A such that g(x) =
eXx/(f)(x). Conversely, if g(x)= eKx/<f>(x) and gEL2(0l+), then g
satisfies (ii).

Proof. Let g satisfy (i) and (ii). By Lemma 3.2 (A*- G*)-1g =
(g,f)g where f{t) = e~kt<f>(t) G L2(<%+). If (g,f) = 0, then g = 0. Assume
that <g,/> ̂  0. Since A*fg= (gj)g, we have

(3) <ft/>*(*) = ̂ [ ^ « < 0 * . a.e.

Let h(x) = <f)(x)g(x)/e*x and note that hGL\Sk+) since ^ ( x ) / ^ E

L2(S?+) and g G L2(3fc+). We now have (g,f)h(x) = f' h(t)dt

a.e. Since ft is integrable and (g ? / )^ 0, we can conclude first that ft is
continuous and secondly that ft is differentiable. Thus (g,f)h'(x) =
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-h{x) and h(x) = Aefix or equivalently g(x) = Aeix+p)x/(f)(x). It

follows from (3) that (gJ)g(O) = (1/0(0)) £" (<Ht)g(t)/ek')dt =

(l/0(O))<g,/>. Thus g(0) = 1/0(0), so that A = 1 and°g(*) = e^)x/<f>(x),
as desired. A straightforward computation shows that if g is of this
form, then g satisfies (ii).

As an immediate consequence of Theorems 3.3 and 3.1 we have:

COROLLARY 3.4. If gk(t) = eKtl<f>{t) E L2(0t), then A *gA =

In the remainder of the paper we let H = {A: eA7<£(0 6 L2(5£+)} and
E = {g: g{t) = eA7<£(0>A E **}• W e shall show that both sets are either
empty or large: more precisely, either H is empty or H is a closed
half-plane and at the same time either E is empty or its linear span is
dense in L2(3ft+).

THEOREM 3.5. a{Af) = {</, g): g E E) U {0}.

Froo/. In our comments following Theorem 2.6 we observed that
0Eor^(A/) whenever /EL2(S?+). By Theorem 2.6 sd is a maximal
abelian algebra and hence for each A in jrf, cr(A) = cr^(A) = {m(A): m
a multiplicative linear functional on si). By Theorems 3.1 and 3.3,
m (Af) = (/, g) for some g in E provided m is not identically zero on $£Q,
completing the proof.

We observed in the proof of Theorem 3.5 that cr(A) = {m(A): m a
multiplicative linear functional on M) which implies that a(A)D
{(Ag, g)/1|g ||2: g E E} U {mo(A)} where m0 is identically zero on siQ. It
is not known whether this set is the entire spectrum of A ; equivalently, it
is not known if m0 is unique.

COROLLARY 3.6. Among the conditions
(i) si contains a nonzero quasinilpotent element;
(ii) o-((/3 - G)~l) = {0} for some j3 such that (/3 - G)~l is bounded;
(iii) <r(Af) = {0} for all f in L2(3fc+);
(iv) E = 0 ;
(v) the linear span of E is not dense in L2(3R+% the following

implications hold: (i) =̂  (ii) « (iii) <^ (iv) <£> (v).

Proof (i) ^> (v). If o-(A) = {0}, then by Theorem 3.1(iii) A *g = 0
for each g in E. Thus if A is nonzero, the linear span of E is not dense
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in L\0l+) and (v) holds, (v) z> (ii). If <r((j3 - G)"!)^{0} for suffi-
ciently large /3, then by Theorem 3.5 there exist g(t) = ext/<f>(t) E E. If
the linear span of E is not dense in L2(0t+), then there exists a nonzero /
such that

f
= Zf\ f(t)dt whenever Re z ^ Re A

\ elxt ^jQQ dt for z = A + ix, x real.= e'

Thus the Fourier coefficients of the Ll(0l+) function eA'/(O/0(O a r e zero,
implying that / = 0 a.e. This contradiction completes the proof that
(v) => (ii). (ii) 4> (iii) => (iv) by Theorem 3.5; (iv) >̂ (v) trivially.

The following two examples demonstrate the two different types of
symbols <j>: in the first example a(<£) > - °° and H is a half plane and in
the second example ot{<t>) = — °° and H is empty. Thus in the second
example each Af is quasinilpotent.

EXAMPLE 1. Let $(JC) = JC + 1. We shall show that <£> is of
bounded kernel type and a(<j)) = 0.

f
Jo

±1*1f d t = 2(x + IV p g ( ) +

o <t>(tf<!>(x - tf M Z{X + L) I (x+ 3)3 +(x+ 2f(x

1
which is bounded on 91+. To see that a(<f>) = 0 we note that

Kx/(x + l)\2dx converges for ReA^O and diverges for Re A >

0. Thus by Corollary 3.6 no element of si is quasinilpotent and by
Corollary 3.4 g is a common eigenvector for A* whenever g(x) =
eXx/<f>(x), Re A ^ 0 .

EXAMPLE 2. Let <t>(x) = e~x2/2. We shall show that <f> is of
bounded kernel type and a ( $ ) = — <». Obviously for each complex
number A eAt/<t>(t) & L2 so that a(<f>)= - « . To see that <f> is of
bounded kernel type we compute as follows

(' ( <t>(x) y _ f" e-*>
Jo U(0*(x-0/ Jo e^e-
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= e-'212 f1 e(x-2t

Jo
-2tfndt

2/2{ e^ds.
Jo

Thus by l'Hopital's Rule

-^ fX e*dx
v f t <t>(x) \2 j v dx o e

 nhm JL/^X1!/ —IT ^ = lim f = 0.

Consequently since {$(x)l<l){t)<i)(x - t))2dx is continuous and van-
Jo

ishes at o°, it is bounded.
We note also for this example that since \\S?\\1/n = e~nt2/2, each

St(t^O) is quasinilpotent. The fact that each Af is quasinilpotent
follows from Corollary 3.6.

Although it appears difficult in general to determine which symbols
<f> are of bounded kernel type, in certain cases one can use information
about the set H to show that <f) is not of bounded kernel type. More
precisely, if <\> is of bounded kernel type, then H is a closed half
plane. To see this we argue as follows. Assume A G E Then

f (e2ReXx/<l>(x)2)dx = fX \eXx/(f>(x)\2dx<oo. Consequently if R e z ^
Jo Jo
Re A, then z E H, proving that H is a half plane. Now choose j8 so that
f(t) = e~(it<l)(t)EL2(gi+) and (/3 - G)"1 is bounded. By Lemma 3.2
and Theorem 3.5 a((p - G)~l) = {l/(/3 - A): A G H} U {0}. Thus
{l/(/3 - A): A E H} U {0} is compact and it easily follows that H is closed.

In [3] it was shown that <f)(x) = (x + l)~1/2 is the symbol for a

subnormal weighted translation semigroup. Since \ext/(f>(t)\2dt con-
Jo

verges for Re A < 0 and diverges otherwise we see that H is not closed
and hence (f> is not of bounded kernel type. At the end of §5 we shall
see that no subnormal weighted translation semigroup has symbol of
bounded kernel type. Indeed a stronger conclusion is obtained: if {St} is
hyponormal (S*St > StS* for each t), then the symbol <j> of {St} is not of
bounded kernel type.
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4. Transitivity. For clarity in this section we* shall let s&+
denote the weakly closed algebra generated by {SJ, where <t> is the
symbol of {SJ and <j> is of bounded kernel type.

Let T be a linear transformation with domain D(T)CX. We say
that Tcommutes with A in B{X) if AD(T)C D(T) and ATx = TAx for
each x in D(T). Also, T commutes with a set of operators 5 if it
commutes with each operator in 5. T is said to be closable if T has a
closed extension.

THEOREM 4.1. If T is a densely defined linear transformation com-
muting with sdt, then T is closable and TAh is bounded for every h in D (T).

Proof. To prove that T is closable we must show that if {hn} is a
sequence in D(T) converging to 0 and {Thn} converges to some vector /,
then / = 0. Note that if u is in D(T) and v is in L2(^+), then Auv = Avu
is in D(T). Let g be in D(T). Then

TAhng=AhnTg~*0.

But TAhng = TAghn = AgThn -+ A/ . Thus for every g in D(T), AJ =
0. But since D(T) is dense in L2(^+), {Ag: g in D(V)} is weakly dense
in s&+. Since I is in si^ we have / = 0. Hence T is closable.

Now suppose h is in D(T). Since TAh commutes with si^ TAh is
closable. But TAh is everywhere defined, so TAh is in B(L2). In fact,
since TAJ = TAfh = AfTh = Anfy we have TAh = An.

Note that with T as in the above theorem and h in D(T), (TAh)* is,
of course, bounded. Explicitly, (TAh)* = T*A {. To see this let / also
be in D(T) and let g be in L2(S?+). Then

= (f,(TAh)*g)

so that Atg is in D(T*) and (TAh)*g = T*A*hg.
The properties of transformations commuting with the algebra s&+

just developed are nicely applicable to the theory of transitive
algebras. An algebra 2T of operators on X is transitive if the only closed
subspaces of X invariant under all the operators in 5" are {0} and X. For
general discussions of transitive algebras see [1] and [7, Chapter 8]. The
following result is an immediate corollary to Arveson's density theorem.

PROPOSITION. (Arveson). If ST is a transitive algebra with the



WEIGHTED TRANSLATION SEMIGROUPS 369

property that every linear transformation commuting with 3~ is a multiple of
the identity, then 9~ is weakly dense in B{X).

Now if T is a closed densely defined linear transformation commut-
ing with the transitive algebra 3~ and either T or T* has an eigenvector
(other than 0), then T is a multiple of the identity. Since T* commutes
with 2T* - {A *: A in 3~) and J"* is transitive if and only if ST is, it suffices
to justify the above remark in the case Tx = Ax, JC/O. But then for
every A in 3~, TAx = ATx = XAx so T - XI = 0 on {Ax: A in 3~} which
is dense in X. But one sees easily that a closed transformation agreeing
with a bounded operator on a dense set is in fact that bounded operator,
and so T = XL

We now apply these remarks to certain algebras of the form

st+ Recall that a(4>) = sup f A in SI: f" (e2KxI<t>\x))dx <ooj .

THEOREM 4.2. If <f> is of bounded kernel type and a ($) > - o°, then
every transitive algebra containing sd^ is weakly dense in B(L2).

Proof. We have seen that every densely defined linear transforma-
tion commuting with si+ is closable. It is easy to show that the minimal
closed extension of a closable transformation L commutes with all the
operators commuting with L. Let T be a closed linear transformation
commuting with si+. Then for each h in D(T), we have seen that T*A *
is in si%. Let g(x) = ea{*)xl<f>{x). Then g is in L\0l+) and A *fg =
(gj)g for each / in L2(<%+). Now T*A *h = (TAh)* = A *Tlh so

Thus g is an eigenvector for T* ((g, h) cannot be 0 for all h in the dense
set D(T)). It follows from the proposition preceding this theorem that
every transitive algebra containing st+ is dense.

Question. What about transitivity considerations in the case
a (4

5. Functional properties of <f>. We now concentrate on
some properties of the function <^->a(c^). Throughout the following
discussion we assume that <j> is in C !([a,»)) for some a g O and that
$(JC) / 0 for all x g 0. Note that Theorem 5.2 is not dependent upon <f>
being of bounded kernel type. Define
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i (<]>) = liminf

LEMMA 5.1. / / $ is of bounded kernel type, then a{<f>) <

Proof. We have seen that for Re A ̂  a(<£>) gA(*) = ekx l<j){x) is in

L2(S«+) and for every / in L\9l+) (/, gK) = f" {ekx l<f>{x))f{x)dx which is
Jo

the Laplace transform of //<£, L/, evaluated at - A. Thus if a(<£) = °°, Lf
is entire for each / in L2(&t+). But (/, gA-) is in the spectrum of Af so L/ is
bounded and entire. By Liouville's Theorem Lf is constant for every /
in L2. But then f/<f> = 0 and / = 0. Thus a((f>) < oo.

THEOREM 5.2. 1/0 is m C2[a, oo) for some a^O andcj>(x)/ 0 /or all
x then i(cl>)^ a(cf))^()

Proof. We prove only the inequality i(<£)Sa(0), the other
inequality's validity being quite similarly (and symmetrically)
ascertained. If i(<£) = - oo the inequality holds. Assume first that i(<f))
is finite. Let e > 0 and let A = i(<f>) - e. Then since <£'/$ is continuous
for t^a we have ^ ' ( 0 / 0 ( 0 > A + (e/2) f o r a11 ^ = «• Let /(JC) =
e2kxl<t>\x). Then f\x)lf{x) = 2(A - (<£'(*)/<£(*)))< ~ € for all JC § a
hence f(x)^ f{a)e~€{x~a) for all JC ̂  a. Since / is continuous on [0, a], /
is in Ll{$l+). Thus / ( 0 ) - e ^ <*(<£) for all e > 0 and so i(<f>)^a((f>).

Now, if i((/))= +°° then we have Yimt^aa{$
!{t)l<t>(t))= +oo. But

then we easily see that for any A in £% the function / defined above is in
L' and so a ($)= +°°.

COROLLARY 5.3. 1/ limr_a,($'(0/^(0)

In order to see that strict inequalities in the above Theorem 5.2 are
possible, even for <£ of bounded kernel type, note that if h and l//i are
bounded continuous functions on 3#+ and <£ is of bounded kernel type,
then h<f) also is of bounded kernel type. Moreover, one easily verifies
that a (0) = a(h(f)). However (assuming h is in C\[a^))) for p = h<f),
p'lp =(Ji7fc) + (cJ!>74>). If, for example, we let ${x) = x + 1 and h(x) =
2 + sin x then all requirements above are satisfied, limf_^Oo(<^/(/)/0(O) = 0,
liminf,— {h'it)lh(t)) = - V3/3, limsup^(fc'(0/*(0) = ^3/3 , and so
i(p)= - V3/3, a(p) = 0, and s(p)= V3/3.

We conclude the paper by showing that the class of weighted
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translation semigroups with symbol of bounded kernel type is disjoint
from a rather large class of weighted translation semigroups, including
the hyponormal (and of course subnormal) ones.

LEMMA 5.4. For <\> of bounded kernel type in Cl([a, °°)) for some
a>0, a

Proof. We have already seen that a((f>)<™ so the case s = o° is
obvious. Suppose then that s<°°. Then for t^a, $'(0/<K0 = 5 s o

(f)(t)/(f)(a)^esit-a) and hence l/<f>2(t) ^ (l/4>2(fl))e2s(fl~0. We then have

e2sa.

Thus a($)<s, for otherwise the last integral diverges.
COROLLARY 5.5. // {St} is a hyponormal weighted translation

semigroup with symbol <\> in C^t ,̂ °°)) for some a^O, then $ is not of
bounded kernel type.

Proof. In [2] we showed that {SJ is hyponormal if and only if
log <f> is convex. Thus $ 7 $ is an increasing function and so
lim ôo(<£XO/<lKO) = suP^o (4>'(O/0(0)- BY Corollary 5.3 and Lemma 5.4
<£ cannot be of bounded kernel type.

Note that if {5J is subnormal, the condition of <f> being in Cl([a, o°))

holds automatically since <f) has the form (f>2(x) = eax \ e~txdp(t) where p
Jo

is a probability measure.
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