
PACIFIC JOURNAL OF MATHEMATICS
Vol 75, No 2, 1978

COHOMOLOGY OF DEGREE 1 AND 2 OF
THE SUZUKI GROUPS

GREGORY W. BELL

Let Vbe the standard 4-dimensional module for Sz(q), the
Suzuki group based on the field of q = 22n+1 elements. In this
paper we determine H2(Sz(q), V). This is usually (q ^ 32) of
dimension one (otherwise zero) and is generated by a cocycle
which is the restriction of a generator of H2(Sp4(q), V). In
addition, the well known groups H2(Sz(q),GF(q)) and
H\Sz(q), V) are calculated. The proof involves the use of the
Hochschild-Serre spectral sequence to determine the cohomol-
ogy of the normalizer of a Sylow 2-subgroup acting on the
various one-dimensional modules involved.

Let K = GF(q), q =22n+\ let Sz(q) (2B2(q)) be the Suzuki group
based on the field K and let B be a normalizer of a Sylow 2-subgroup of
Sz(q). In this paper we use the Hochschild-Serre spectral sequence to
determine Hl(B, V) i = 1,2, where V is a one dimensional JO-module,
in terms of the solutions to certain equations in End(K*). These
equations are solved when V is trivial or involved in K4, the standard
four dimensional module for KSz(q). Using this information we deter-
mine H2(Sz(q), K4) as well as the previously known groups H2(Sz(q), K)
and H1(Sz(q),K4). These may be viewed as results concerning conju-
gacy classes in semi-direct products and concerning exact sequences of
groups using the well known group-theoretic interpretation of cohomol-
ogy of degree 1 and 2 [6].

We will assume all cocycles are normalized, i.e. vanish when any one
of their arguments is the identity. When [/] E H2(G, V), where G is a
group and V is a left G-module, let E(f) denote the extension of V by G
using /, that is, E(f) = {(u, g)\v E V, g G G} with multiplication
(vu gi)(v2, gi) = (i?i + gi(v2) + f(gu g2), g1g2).

We use the explicit description of Sz{q) given in [9]. Let Ko be the
prime subfield of K, r = Gal(K/K0) and 0 E T defined by
0: x

(a,u) =
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where h = h(a,u)= ue+l+ a and g = g(a, u)= u2e+1+ uea + a26. Set
U = {(a,u)\a,ueK}, T = {T(t)\t E X*}, B = UT so Sz(q) =
(B, /> CSLt(q) (in [9], UJ is used in place of 17). Then X4 (columns) is
the standard module on which Sz(q) acts as multiplication on the
left. In fact Sz(q) is contained in the Symplectic group defined by /.

Since U is a Sylow 2-subgroup of Sz(q) which is a T. I. set with
normalizer JB, the Cartan-Eilenberg stability theorem tells us that if V is
a KSz (q)-module then the restriction maps
Hl(Sz(q), V)-*Hl(B, V)~*Hl(U, V)T are isomorphisms for i >0.
Thus (after the case q = 2) we shall replace Sz{q) by B. Furthermore
these isomorphisms show that when giving explicit cocycles it is sufficient
to give their restrictions to U and show they are T-stable.

Assume first q = 2. Then Sz(q) is a group of order 20. Its Sylow
5-subgroup is cyclic, normal and a generator acts fixed-point-freely on
X4. This implies H'(Sz(2),X4) = 0 for i > 0 [7]. Henceforth we as-
sume q ^ 8.

Throughout we assume a, j8, u, v E K and t E K*. We identify T
with K* via T(t)^L It is seen that (a, w)(/3, v) = (a + j3 + MU0, M + U)
and (a, u)T(r) = T(t)(a, u)T{t)~l = (ta, te'u) where 0' = 2 - 26. Also Z =
{(a, 0)} is the center and derived subgroup of U. Set A = U/Z and
X = B/Z so X is the semidirect product AT.

When V is a XT-module and *>EEnd(K*) we say T acts with
weight v on V provided T{t)v = tvv for all t E K*, v E V. The above
formulas show Z and A are XT-modules of weight 1 and 0'
respectively. Observe End(X*) — Z/(q - 1)Z and so is a commutative
ring.

When V and W are (finite dimensional) K-modules Hom(W, V) =
0(rerHCT(W, V) where Ha(W, V) are the cr-semilinear maps from W to
V. If additionally V and W are XT-modules of weight v and a> then
^ ( W , V) is a XT-module of weight v - cocr.

Now fix V, a one dimensional XB -module on which U acts trivially
and T acts with weight v. We shall often identify V with X. From the

(nonsplit) exact sequence of groups 1 —> Z —> B —> X —> 1 the
Hochschild-Serre spectral sequence gives us the exact sequences of
X-modules

Res

0 -> H2(B, V)o ̂  ff2(B, V) > ff2(Z, V)x

0 -> Jf X(X, V) -* H 1 ^ , V) -> Hl(Z, V)x -> H2(X, V)

-* J/2(B, V ^ - ^ H ^ H ^ Z , V))^H3(X, V).

Our aim is to determine H2(B, V). In Lemmas 1, 2 and 3 we determine
most of the other terms in (*) and study the maps Res and <&.
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LEMMA 1. Let W and V (each identified with K) be one dimen-
sional KT-modules of weight co and v respectively and regard V as a trivial
W-module. For cr, rGF define ha: W-* V by ha(w)=war and
/ W WxW^Vby /(<r,T): (wl9 w2)^ w?wj.

(a) {[K] | v = coo-} a G T is a K-base for Hl(W, V)T.
(b) {[f(aj \v = a>(<r + T)}{*, T}CT is a K-base for H2(W, V)T.

Proof (a) This statement is immediate since H\W, V)T =
Hom(W, V)T^@Ha{W, V)T and T acts on Ha(W9V)=Kha with
weight v - o)cr.

(b) Since W is abelian and trivial on V we have an exact sequence

of XT-modules 0^>H2
ab(W, V)^H2(W, V)^>Alt2(W, V ) ^ 0 where

Alt2(W, V) is the group of alternate 2-forms: WxW-*V
and V[f]:(wl,w2)^>f(wl9w2)-f(w29wl). Furthermore H2

ab(W,V)~
Hom(W, V). See [7] for the proofs of these statements. Taking
T-cohomology of the above sequence gives the exact sequence of
K-modules 0 ̂  Horn (W, V)T -> H\ W, V)T - • Alt2( W, V)T -+ 0 =
Hl{T,nom{W, V)). We have seen dimK Hom(W, V)T = # {a G T| v =
coa} and it can be seen that when v = coa then f(a/2,a/2) is a corresponding
cocycle in H2

ab{ W, V)T - Hom( W, V)T.
In [5] it is shown that Alt2( W9 V) = © -KF{a;Tj where we sum over all

sets {a, T } C F , o-/ r and F{crT}: (wl5 w2)-» wfwj - wfwj. Since T acts
with weight V~Q)((T+T) on XF{<r,T}, we have A\t\W,V)T = @KFM

summed over those {a*, r} such that v = o)(or + r). For such {er, T} it can
be seen that [f{a,T)]E H2(W,V)T with ¥[/(a.T)] = F w . Note
L/W)] + [/(r.cr)] = 0 since f^ + U,*) = Sg where g(w) = w*+T. This com-
pletes the proof.

Using Lemma 1 and the Cartan-Eilenberg stability theorem we can
determine the terms of (*). We have H\X, V ) - H\A, V)T =
Horn (A, V)T - Hom(f/5 V)T = H\U, V)T - H 1 ^ , V) has K-dimension
# {cj G r | i/ = 0V}. Also H\X, H\Z, V)) - © //.(A, HT(Z5 V))T (sum-
med over (a, r)ErxT) has JK-dimension # {(cr, r) G T x T | y = ad' + r}
and ff 2(X, V) - if 2(A, V)T has K-dimension # {{cr, T} C T | I/ =
0'(O- + T)}. Since A acts trivially on Z and V we have H'(Z, V)x ^
Hl(Z, V)T has K-dimension # {a G T| i/ = a} when i = 1, and
# {{cr, T} C T| v = cr + T} when i = 2.

LEMMA 2. If v = ar+ r for some cr, r G F assume v is invertible in
End(K*). Then Res = 0 in (*).

Proof. First we claim dimKH2(Z,V)x ^1. By the previous re-
marks this is evident if we show cr + r = <p + p in End(K*), where
a-, T,cp,pE T, implies {or, T} = {<p, p}. For this apply both sides to (x + 1),
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expand, cancel and see the same equality holds in End(K+). The claim
follows from Dedekind's lemma.

Thus if H2(Z, V)x/0 it is generated by some / of the form
/((a, 0), (ft 0)) = a apT with v = a + T. If Res / 0 we can find
/EZ 2 (B , V) with R e s / = / , that is, /(a,0, j3,0)= aafir (we use
/(a, u, j8, v) for /((a, w), (j8, u))). Let JS = £(/) , the extension using /,
and let U be its Sylow 2-subgroup. We show U is a Suzuki 2-group of
exponent 8 contradicting a theorem of G. Higman [3]. A Suzuki
2-group is a non-abelian 2-group with more than one involution and an
automorphism cp with (<p) transitive on the involutions.

Writing (a,a,u) for (a,(a,u))EU we see (0,0,0) = (a, a, uf =
(f(a, M, a, u), ud+1,0) implies u = 0. Now /(a, w, a, w) = aa+T = 0 implies
a = 0. Thus V* = {(a, 0,0)| a G JC*} is the set of involutions. There
are q - 1 > 1 of them. It is easily seen that (a, a, u) is of exponent 8
when M / 0 .

Choose f with (t) = K*. Since *> is invertible in End(K*), we have
(l,0,0)<r(r)> = {(rv,0,0)|rGX*}= V*. Thus T(r)E Aut(U) will serve as
the required automorphism showing U is a Suzuki 2-group. This
completes the proof.

LEMMA 3. In (*) the map $ is a surjection » H!(X, H\Z, V)) = 0.

First we give the description of O as found in [7]. Choose a
set splitting S :X->B with TTS = lx, S ( l ) = l . For /6Z 2 (B ,V) 0 =
{/ E Z2(B, V)\f\Z x Z = 0} define * / E C\X, Z\Z, V)) by */(jc)(a) =
/(S(JC), a*'1)-/(a, S(x)). Now $ induces a well defined map <E> on the
classes (this uses only the fact that Z is abelian).

Now assume Im$ = H\X, Hl(Z, V))/ 0 and choose a nonzero
[d]GH1(X,ff1(Z,V))-©H<r(A,HT(Z,V))T of the form d(u)(a) =
uaaT where M E A , a G Z , ( r , T G r . Find [/] E H2(B, V)o with $[/] =
[d]. We no longer need the action of T so replace / by f\ U x [/. We
use S defined by S(M) = (0,M). Since J B ^ H ^ Z , V)) = 0 we may
assume 4>/ = d, that is

(1) /(0, M, a, 0) + /(a, 0,0, u ) = u "a \

Let E = E(f) = {(a, a, M)| a, a, w E X}, the extension of V by [/
using /, and let Z = {(a, a, 0)}. Then Z < E and Z is abelian since
/ | Z x Z = 0. We have an exact sequence of groups
1 - > Z - > E J > A - > 1 . Define p:A-^E by p(w) = (0,0,w) and let
gEZ2(A,Z) be the corresponding cocycle, that is, g(u,v) =
p(u)p(v)p(u 4- v)~l. All multiplication in E can be performed in terms
of / and it can be computed that g = (gi, g2,0) where gi(u, u) =
/(MU°, U + u, (M + u)0+1, M + u) and g2(«, u) = uve.
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Similarly it can be computed that (b, a, 0)p(u) =
(b + /(0, u, a, 0) + /(0, II, u e+\ u ) + / (a , a, U f+1, u), a, 0). Since / G
Z2([/, V) we have 0 = S/((a,0),(0, ii),(iif+1, u)) = / (a , 0,0, II) +
/(a,M,M0+1,M) + /(O,w,w0+1,M) + /(a,O,O,O). Now use / (a ,0 ,0 ,0) = 0,
equation (1) and the above expression for (fc, a, 0)p(u) to obtain

Using this expression for the action of A on Z the first slot of the
equation 0 = Sg(u, v,w) implies

0 = g!(w, v) + gi(« + v, w) + g,(v, w)+ uag2(v9 w)r + g^u, v + w).

Take M = v = w = 1 and use the fact that gi vanishes when either of its
arguments is 0 to obtain 0 = Ig2(l91)T = 1, a contradiction. This com-
pletes the proof.

Let {et}9 i = 1,2,3,4 be the standard base for KA (columns) and put
V, = (eu - • •, et)/(ei9 • • •, e,-i) as KB-module. Then Vt is a XB-module
on which U acts trivially and T acts with weight vx where vx = d,
v2 = 1 - 6, v3 - 0 - 1, i>4 = - 0. For convenience we set v0 = 0. In the
following lemma we determine the terms occuring in (*) when v — vn

i = 0,1,2,3,4 by solving the equations following Lemma 1.

LEMMA 4. The solutions are as indicated when q > 2 and
i £{0,1,2,3,4}.

(a) vt = 6'a: (i, q, a) = (2, q, 1/2); (4,8,1).
(b) V| = cr:(i,9 ,cr) = (l,q,fl); (3,8,1).
(c) vx = *0' + T: (f, (?, cr, T) = (0,8, cr, 2cr) (any a G T);

(1,^,0/2,1/2); (2,8,1,1); (3,8,4,2); (4,8,2,2); (4,32,2,8);
(4,32,1,2).

(d) vt = 6'(<T + T ) : (i, q, {cr, r}) = (1, <?, {1/2, 0}); (2, 9 , {1/4});
(3,8, {1,2}); (4,8, {1/2}).

(e) vt = * + r: (i, q,{a, r}) = (1, q, {0/2}); (2,8, {2,3}); (3,8, {4});
(3,32, {2,1}); (4,8, {1,4}).

The following will be useful for solving these equations.

LEMMA 5. Let <pt G T ^ End(K*) i = 1,2, • • •, m. The following is
arithmetic in End(K*).

(a) If <px + <p2 = <p3 + <p4 tfierc {<Pi, <Pi} = {<p3, <p4}-
(b) If the <p,'s are distinct then 2^=i <p, ̂  F.
(c) If 2 r = i ^ = 0 r/ien m g | r | , a n d m = |T| « {q>t}?ml = T.

Proof of Lemma 5. (a) A proof is included in the proof of
Lemma 2.

For (b) and (c) write <pt: x -> x2"1 for 0 g n, < | F|.
(b) Here we assume the n,'s are distinct. Then £<p, G F implies
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for all x G K we have (xs<p'+ 1) = (x + If** = n(xv' +1) = Xx1""' where
we sum over all / C {1,2, • • •, m}. Cancelling the terms on the left with
the corresponding terms on the right there remains a polynomial of
degree less than 2|r| with 2|r| = \K\ solutions.

(c) Assume m is minimal with 2<p, = 0. Then the <p,'s are distinct
since <pl + <pl = 2<pt G T. Then 2<p, = 0 implies (q - l)|S2n". Thus
( ? - l = 2 | r | - l = Sirio2'g2r=i2"' implying m = |T| and{<p,} = r .

We now indicate a proof of Lemma 4. Observe first that from their
definitions we have 0/1, 202 = 1, 0'(0 + 1) = 1. Thus 0', 0 + 1, 1 - 0 =
072 are invertible in End(K*). Using these facts the equations can be
manipulated to take advantage of Lemma 5 and reduce the problem to a
few case by case investigations. We illustrate with the solution of
Vx = (T0'+T.

i = 0: 0 = ( T 8 ' + T 4 > ral= -~0' = 2 0 - 2 ^ 20 = 2+ro-"1. Now
Lemma 5 (b) says 2 = ra'1 so 0 = 2, q = 8, r = 2o\

i = 1: 0 = cr0' + T = 2a - 2a0 + T =£> 0 + 2<r0 = 2<r + r and Lemma
5 (a) implies {0,2o-0} = {2a, r}. Now 0^ 1 => (a, r) = (0/2, 02) =
(0/2,1/2).

i = 2: Multiplying by 1 + 0 we obtain 1/2 = a + r0 + r and Lemma 5
(b) says a, r0, T are not distinct. 0^ 1 => r 0 ^ T. cr = T0 =̂> 1/2 =
2r0 + T => 20 = 1 => 1 = 202 = 0, a contradiction. <r = r => 1/2 =
2r + 20 ^ 2 = 0, g = 8 and it may be seen a = r = 1.

i = 3: Since v3 = — 2̂ we obtain 0 = 1/2 + cr + r0 + r and Lemma 5
(c) implies |T| S4. Thus q = 8, o- = r = 1.

i = 4: Since 4̂ = — v2 we obtain 2cr0 = 2a + 0 + r implying 2a", 0, r
are not distinct. 2<r = 0 =̂> 02 = 20 + r => 20 = T ^ 02 = 40, 0 = 4 ,
g = 32, (a-, T) = (2,8). 2o- = r => 2cr0 = 4a + 0 z> 4cr = 0, 0 = 4, q =
32, (a-,r)=(l,2). r = 0 >̂ 2a-0 = 2a + 20 >̂ o- = 0, 0 = 2, g = 8,
(CT,T) = (2,2) .

LEMMA 6. W/ien i G {1,2,3,4} we have

(1 (i,q) = (2,q);(4,8)
dimKH\B,V,)=\

I 0 otherwise,

|
1 (i,q) = (2,qy,(4,8);(4,32)

0 otherwise.
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Proof. The first statement is immediate from Lemma 4 and the
remarks following Lemma 1. For the second observe vx G {± 0, ± d'/2}
and so vx is invertible in End(K*). Now Lemmas 1, 2, 3 and 4 may be
used to determine the relevant terms of sequences (*) when v = vt. These
considerations prove the claim except to show H2(B, VA) / 0 when
q = 32. In this case it may be seen that (a, u),(/3, u)-> w2j38+ M/32 +
u V + w V gives a nonzero class in H2(U, VA)T - H\B, V4).

We are now ready to proceed to the main results of this paper.

THEOREM 1. Let K be the trivial module for Sz(q), q^8. Then
dimK H2(Sz(q), K) is 0 if q >8, and is 2 if q = 8 with generators (on a
Sylow 2-subgroup) any two of fa: (a, u\(ft u)~>(a2v + u2p4)a, aET.

Proof We use B in place of Sz(q) and sequences (*) with v = 0 and
V = K According to Lemma 4 we have H2(Z, V)x = H2(X, V) = 0 and
dimK Hl{X, W(Z, V)) is 0 if q > 8, and | T | = 3 if q = 8. Now sequences
(*) with Lemma 3 give the upperbound. For the lowerbound it is easily
checked that fa as given is a T-stable cocycle and when or/ T, <!>[/<,] and

are independent in Hl(A,H\Z, V)f ^ Hl(X, W(Z, V)).

THEOREM 2. Assume q^8 and K4 is the standard module for
Sz(q). Then Hl(Sz(q)j K4) is of dimension one and is generated by the
restriction of a generator of Hl(SpA(q), K4).

Proof Define [d] G H\U,K4)T - H\B,K4) by d(a,u) =
(a6, w1/2,0,0)* (* denotes transpose). It can be checked explicitly that d
is a nontrivial T-stable cocycle defined on U giving the claimed
lowerbound. Furthermore it can be seen that if v G K4, x G [/, then
v*x*Jd(x) = (v*Jov + v*x**Joxv)m where Jo is the 4 x 4 matrix with all
entries 0 except (/0)4i = (̂ 0)32 = 1- This means d is the restriction of
Dickson's derivation which generates H\SpA(q), K4) [8].

For the upperbound we use Lemma 6 to conclude dimjcH^B, K4) ^
X=i dimKH\B, Vt) = 1 if q > 8, and 2 if q = 8. We are done at q > 8
and continue at q = 8.

Define V12 = (eue2), V3A
:= K4/V12. We obtain the exact sequence

of iC-modules

0 ^ H \ B , V12)-» Hl{B, K4)^»W(B, V3A)

(2)

->/ i (25, VU)-*H (B,K ) >ti (&, v34>)-».

The given cocycle shows dim* Jf ^B, Vl2) = 1 so it suffices to see
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0. Lemma 6 implies &imKHl(B, V34)^ 1. It can be seen that
(a, w)—»(_,_, a + w3, w)* is a nontrivial T-fixed cocycle in zl{U, V34)

T so
its class generates Hl(U, V34)

T =* H\B, V34). If (TT^/0 we can find
f<EZl{U,K4) of the form /(a, u) = (/j(a, ii),/2(a, w),a + w3, w)*. The
e2 coordinate of the equation 5/((a, w), (j3, v)) = 0 gives the equation
/2(a +j3 + M U > + u) = /2(a, w) + /2(j3, u)+w(j3 + u3)+au. Set M = u =
0 to obtain /2(a + ft 0) = /2(a, 0) + /2(j3,0); and set (a,u) = (ft u) to obtain
/ 2 ( M \ 0 ) = M4, that is, /2(M, 0)= W6. This is a contradiction as M —> u6 is
not an additive function.

THEOREM 3. Let KA be the standard module for Sz(q). Then
H\Sz(q), K4) is zero ifq =8, and is of dimension one ifq>8 generated
by a cocycle which is the restriction of a generator of H2(Sp(q),K4).

Proof Landazuri (see [7]) has explicitly constructed (on a Sylow
2-subgroup) a nontrivial cocycle in Z2(Sp4(2

m), GF(2mf) and further (see
[5]) has shown H2(Sp4(2

m%(GF(2m))4) is of dimension one when
m > 1. Restricting his cocycle gives

((aeuev1/2+ a9pd + ue(3 + u V + 1 + udp6vm)1/2,(uv)l/4,0,0)*.

We will see / is a coboundary only at q - 8. McLaughlin [7] has given a
somewhat different argument to see Res(Sz(g), Sp4(q)) is nonzero when
q > 8 using the sufficient condition of Griess [2].

Consider now sequence (2). We have seen (T^)* = 0 and
dimK 1^(2?, V34) = 0 if q>8, and 1 if q = 8. Next we show
dim* liF2(B, Vn) = 1. The upper bound follows from Lemma 6 and the
lower bound follows from the displayed cocycle /. Also from Lemma
(6), H2(B, V34) = 0 when q > 32. Using sequence (2) the proof is now
complete when q > 32. Furthermore, the cases q = 8, 32 follow if we
show there is no / E Z2(J5, K4) which has a nontrivial projection onto V4.

Assuming we have such an /, a contradiction is obtained by using the
following: Let L = K4IVX as KB-module.

(a) IP{Z,LY - K generated by (a, j3)->(_, a2j34,0,0)* when q =
8 and by (a, j3)-H>(_,0,aj32,0)* when q = 32.

(b) H\X,LZ) - X generated by (w, u ) ^ (_, («t;)1/4,0,0)*.

We now assume (a), (b), (c). From the exact sequence of groups
1—>Z—>B —>X —> 1 the Hochschild-Serre spectral sequence gives the
exact sequences

0 -> H2(B, L)o^ H2(B, L) - ^ > H2(Z, L )x

-> H2(X, L z ) ^ H2(B, L)o^ H\X, H\Z, L))->.
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In general when we have a function whose range is K4 let the subscript i
denote its projection onto Vt. Thus / = (fu /2, /3, /4)*. We are assuming
0^[/4]eH2(B,V4). Let / denote the projection of / onto L. We
write this as / = (_,/2,/3,/4). Thus / E Z2(B, L).

Assume first Res[/] = 0. Then using (c) and the above sequences /
is cohomologous to the image under the inflation map of a generator of
H2(X,LZ% i.e. there is a gEC\B,L) with ( / - Sf)((a, II),(A v)) =
(_, (uv)y\ 0,0)*. Using the fact that (a, u) is an upper triangular matrix
it is easily seen that this equation implies /4 = Sg4 E JB2(B, V4), contradict-
ing present assumptions.

Now we assume Res[ / ]^0. Let / = Res(/) so
[/] E H\Z, KA)X. Assume first q = 8. Now (a) tells us we may assume
/(a,j8) = (/1(a,i8),a2

J8
4

J0,0)*. Let u = (0,1)E U. T h e n ( M - l ) . / =
Sg for some g E C\Z,KA). Apply both sides to (a, j8) and obtain

1 0 a a4

1 0 a

1 0

1

0

0

0

gi(« + /3)

g2(« + /3)

gs(« + P)

*<« + * )

+ gtf)

g4(j8)

The third and fourth rows tell us g3 and g4 are additive; a = j8 in the
second row tells us 0 = agA(a) implying g4 = 0; a = /3 in the first row tells
us a5 = g3(a), contradicting the additivity of g3.

Assume now q = 32. Here (a) tells us we may assume f(arfi) =
(fx{a, j3)L0, a(i\ 0)*. Now, with u = (0,1) E U, the equation
(M - 1). / = Sg implies (aj82, a/32,0,0)* = 8g(a, j3). As before g3 and g4

are additive. Set a = /3. The second coordinate implies g4(a)= a2;
the first implies a2 = g3(a) + a2e+l; these imply a —> a20+I = a9 is additive,
a contradiction.

We now prove (a), (b), (c). Note that if x is an involution in some
group and d and / are 1 and 2-cocycles from that group to some module
then Sd(x, x) = 0 and 8/(JC, JC, JC) = 0 imply d(x) = - xd(x) and /(JC, JC) =
X/(JC, JC). Regard L = K3 (columns) = (e2, e3, e4) on which (a, u) acts as
multiplication by

1 u

1

a

u

1

(a) Take [f]EH2(Z,L)x and using our convention we have / =
iih)*- Since [f4] E H2(Z, V4)

T, by Lemma 4 (e) we may assume
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/4(a, j3) = aj84fc4 and fc4 = 0 when q = 32. The relation /(a, a) =
af(a,a) implies fc4 = 0. Now [f3]EH2(Z,V3)

T and we may assume
f3(a,p) = atTpTk3 where {<r,r} = {4} if q = 8 and {<T,T} = {2,1} if q =
32. Set u = (0,1) G U. Then (w - 1). / = Sg for g G CJ(Z, L). In the
usual way this equation implies g3 and g4 are additive. Setting a = /3
we obtain aa+Tk3 = ag4(a) implying fc3 = 0 or a —> aff+T~1 is additive. At
q = 8 the latter is false implying fc3 = 0.

Since fc4 = 0 it follows that [f2] G H2(Z, V2)
r and by Lemma 4 (e) we

may assume /2(a, j3) = a2j34fc2 with fc2 = 0 when q = 32. This proves (a).
(b) We see Lz = (e2, e3) = K2 (columns) on which (0, u)

(-:U-*U/Z) acts as multiplication by ( "V Take [/] G

JF/2(X, K2). By Lemma 4 (d) we may assume /3(w, v) = wu2fc3 with fc3 = 0
when q = 32. Now the relation w/(w, M) = /(M, U) implies /3 = 0. Thus
f2EZ2(X, V2) and (b) follows from Lemma 4 (d).

(c) Take / G Z\Z,L). Then / (a) = a/(a) implies the image of /
lies in La = Lz = (e2, e3). Thus /4 = 0. Taking Z-cohomology of the
exact sequence 0-»L z-»L-»V4-->0 gives the exact sequence of KX-

modules 0-* VA^Hl{Z,Lz)^H\Z,L)^H\Z, VA)->. We have
just seen TT* = 0. Set V23=Lz . It is easily seen that ImS* =
Horn*(Z, V2) C HomK (Z, V23) C Horn(Z,LZ) = H\Z, Lz) showing
W(Z,L) = eTlM HT(Z, V2 3)0H where

ff = HomK(Z, V23)/HomK(Z, V2)« HomK(Z? V3).

Now Jf X(X, H) = © //.(A, Hom*(Z, V3))
T = 0 since by Lemma 4 (c)

there is no a G F with v3= cr0r +1. Finally, we show
H\X, HT(Z, V23)) = 0 when r/ 1. Take [/] G JT(A, ffT(Z, V23))

r. Tak-
ing u = v in the cocycle condition on / we see 0 = uf3(u)(a) showing
f3 = 0. Thus

H\X, Hr(Z, V23)) - H\X, HT(Z, V2)) = © Ht,(A, HT(Z, V2))
T = 0

since by Lemma 4 (c) there is no or G F with v2 = O'er + r when r ^ 1.
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