CHAPTER II

6. Preliminary Lemmas of Lie Type

Hypothesis 6.1.
(i) p is a prime, \mathfrak{F} is a normal S_{p}-subgroup of $\mathfrak{B u}$, and \mathfrak{U} is a non identity cyclic p^{\prime}-group.
(ii) $C_{\mathfrak{u}}(\mathfrak{P})=1$.
(iii) \mathfrak{S}^{\prime} is elementary abelian and $\mathfrak{F}^{\prime} \cong \boldsymbol{Z}(\mathfrak{F})$.
(iv) $|\mathfrak{F u}|$ is odd.

Let $\mathfrak{u}=\langle U\rangle,|\mathfrak{u}|=u$, and $|\mathfrak{P}: D(\mathfrak{P})|=p^{n}$. Let \mathscr{L} be the Lie ring associated to \mathfrak{P} ([12] p. 328). Then $\mathscr{L}=\mathscr{L}_{1}^{*} \oplus \mathscr{L}_{2}$ where \mathscr{L}_{1}^{*} and \mathscr{L}_{1} correspond to $\mathfrak{F} / \mathfrak{F}^{\prime}$ and \mathfrak{F}^{\prime} respectively. Let $\mathscr{L}_{1}=\mathscr{L}_{1}^{*} / p \mathscr{L}_{1}{ }^{*}$. For $i=1,2$, let U_{i} be the linear transformation induced by U on \mathscr{L}_{i}.

Lemma 6.1. Assume that Hypothesis 6.1 is satisfied. Let ε_{1}, \cdots, ε_{n} be the characteristic roots of U_{1}. Then the characteristic roots of U_{2} are found among the elements $\varepsilon_{i} \varepsilon_{j}$ with $1 \leqq i<j \leqq n$.

Proof. Suppose the field is extended so as to include $\varepsilon_{1}, \cdots, \varepsilon_{n}$. Since \mathfrak{U} is a p^{\prime}-group, it is possible to find a basis x_{1}, \cdots, x_{n} of \mathscr{L}_{1} such that $x_{i} U_{1}=\varepsilon_{i} x_{i}, 1 \leqq i \leqq n$. Therefore, $x_{i} U_{1} \cdot x_{j} U_{1}=\varepsilon_{i} \varepsilon_{j} x_{i} \cdot x_{j}$. As U induces an automorphism of \mathscr{L}, this yields that

$$
\left(x_{i} \cdot x_{j}\right) U_{1}=x_{i} U_{1} \cdot x_{j} U_{1}=\varepsilon_{i} \varepsilon_{j} x_{i} \cdot x_{j} .
$$

Since the vectors $x_{i} \cdot x_{j}$ with $i<j$ span \mathscr{L}_{2}, the lemma follows.
By using a method which differs from that used below, M. Hall proved a variant of Lemma 6.2. We are indebted to him for showing us his proof.

Lemma 6.2. Assume that Hypothesis 6.1 is satisfied, and that U_{1} acts irreducibly on \mathscr{L}_{1}. Assume further that $n=q$ is an odd prime and that U_{1} and U_{2} have the same characteristic polynomial. Then $q>3$ and

$$
u<3^{q / 2}
$$

Proof. Let $\varepsilon^{p^{i}}$ be the characteristic roots of $U_{1}, 0 \leqq i<n$. By Lemma 6.1 there exist integers i, j, k such that $\varepsilon^{p^{i} \varepsilon^{j}}=\varepsilon^{p^{k}}$. Raising this equation to a suitable power yields the existence of integers a and b with $0 \leqq a<b<q$ such that $\varepsilon^{p^{a}+p^{b}-1}=1$. By Hypothesis 6.1 (ii), the preceding equality implies $p^{a}+p^{b}-1 \equiv 0(\bmod u)$. Since U_{1} acts irreducibly, we also have $p^{a}-1 \equiv 0(\bmod u)$. Since \mathfrak{u} is a p^{\prime}-group,
$a b \neq 0$. Consequently,

$$
\begin{align*}
& p^{a}+p^{b}-1 \equiv 0(\bmod u) \\
& p^{q}-1 \equiv 0(\bmod u), 0<a<b<q \tag{6.1}
\end{align*}
$$

Let d be the resultant of the polynomials $f=x^{a}+x^{b}-1$ and $g=$ $x^{q}-1$. Since q is a prime, the two polynomials are relatively prime, so d is a nonzero integer. Also, by a basic property of resultants,

$$
\begin{equation*}
d=h f+k g \tag{6.2}
\end{equation*}
$$

for suitable integral polynomials h and k.
Let ε_{q} be a primitive q th root of unity over \mathscr{Q}, so that we also have

$$
\begin{align*}
d^{2} & =\prod_{i=0}^{q-1}\left(\varepsilon_{q}^{i a}+\varepsilon_{q}^{i b}-1\right) \prod_{i=0}^{q-1}\left(\varepsilon_{q}^{-i a}+\varepsilon_{q}^{-i b}-1\right) \tag{6.3}\\
& =\prod_{i=0}^{q-1}\left\{3+\varepsilon_{q}^{i(a-b)}+\varepsilon_{q}^{i(b-a)}-\varepsilon_{q}^{i a}-\varepsilon_{q}^{i b}-\varepsilon_{q}^{-i b}-\varepsilon_{q}^{-i a}\right\}
\end{align*}
$$

For $q=3$, this yields that $d^{2}=(3-1+1+1)^{2}=4^{2}$, so that $d= \pm 4$. Since u is odd (6.1) and (6.2) imply that $u=1$. This is not the case, so $q>3$.

Each term on the right hand side of (6.3) is non negative. As the geometric mean of non negative numbers is at most the arithmetic mean, (6.3) implies that

$$
d^{2 / q} \leqq \frac{1}{q} \sum_{i=0}^{q-1}\left\{3+\varepsilon_{q}^{i(a-b)}+\varepsilon_{q}^{i(b-a)}-\varepsilon_{q}^{i a}-\varepsilon_{q}^{-i a}-\varepsilon_{q}^{i b}-\varepsilon_{q}^{-i b}\right\} .
$$

The algebraic trace of a primitive q th root of unity is -1 , hence

$$
d^{3 / q} \leqq 3
$$

Now (6.1) and (6.2) imply that

$$
u \leqq|d| \leqq 3^{q / 2}
$$

Since $3^{q / 2}$ is irrational, equality cannot hold.
Lemma 6.3. If \mathfrak{P} is a p-group and $\mathfrak{F}^{\prime}=\boldsymbol{D}(\mathfrak{F})$, then $\boldsymbol{C}_{n}(\mathfrak{P}) / \boldsymbol{C}_{n+1}(\mathfrak{F})$ is elementary abelian for all n.

Proof. The assertion follows from the congruence

$$
\left[A_{1}, \cdots, A_{n}\right]^{p} \equiv\left[A_{1}, \cdots, A_{n-1}, A_{n}^{p}\right]\left(\bmod C_{n+1}(\mathfrak{F})\right),
$$

valid for all A_{1}, \cdots, A_{n} in \Re_{3}.
Lemma 6.4. Suppose that σ is a fixed point free p^{\prime}-automorphism
of the p-group $\mathfrak{F}, \mathfrak{F}^{\prime}=D(\mathfrak{P})$ and $A^{\sigma} \equiv A^{x}\left(\bmod \mathfrak{B}^{\prime}\right)$ for some integer x independent of A. Then \mathfrak{F} is of exponent p.

Proof. Let $A^{\sigma}=A^{x} \cdot A^{\phi}$ so that A^{ϕ} is in \mathfrak{F}^{\prime} for all A in \mathfrak{F}. Then

$$
\begin{aligned}
{\left[A_{1}, \cdots, A_{n}\right]^{\sigma} } & =\left[A_{1}^{\sigma}, \cdots, A_{n}^{\sigma}\right]=\left[A_{1}^{x} \cdot A_{1}^{\phi}, \cdots, A_{n}^{x} \cdot A_{n}^{\phi}\right] \\
& \equiv\left[A_{1}^{x}, \cdots, A_{n}^{x}\right] \equiv\left[A_{1}, \cdots, A_{n}\right]^{n}\left(\bmod C_{n+1}(\mathfrak{P})\right)
\end{aligned}
$$

Since σ is regular on \mathfrak{F}, σ is also regular on each C_{n} / C_{n+1}. As the order of σ divides $p-1$ the above congruences now imply that $\operatorname{cl}(\mathfrak{P}) \leqq$ $p-1$ and so $\mathfrak{\beta}$ is a regular p-group. If $\delta^{1}(\mathfrak{F}) \neq 1$, then the mapping $A \longrightarrow A^{p}$ induces a non zero linear map of $\mathfrak{F} / D(\mathfrak{P})$ to $C_{n}(\mathfrak{B}) / C_{n+1}(\mathfrak{P})$ for suitable n. Namely, choose n so that $\delta^{1}(\mathfrak{F}) \subseteq C_{n}(\mathfrak{F})$ but $\delta^{1}(\mathfrak{F}) \nsubseteq$ $C_{n+1}(\mathfrak{F})$, and use the regularity of \mathfrak{P} to guarantee linearity. Notice that $n \geqq 2$, since by hypothesis $\delta^{1}(\mathfrak{P}) \subseteq \mathfrak{P}^{\prime}$. We find that $x \equiv x^{n}(\bmod p)$, and so $x^{n-1} \equiv 1(\bmod p)$ and σ has a fixed point on C_{n-1} / C_{n}, contrary to assumption. Hence, $\nabla^{1}(\mathfrak{P})=1$.

7. Preliminary Lemmas of Hall-Higman Type

Theorem B of Hall and Higman [21] is used frequently and will be referred to as (B).

Lemma 7.1. If \mathfrak{X} is a p-solvable linear group of odd order over a field of characteristic p, then $O_{p}(\mathfrak{X})$ contains every element whose minimal polynomial is $(x-1)^{2}$.

Proof. Let \mathscr{V} be the space on which \mathfrak{X} acts. The hypotheses of the lemma, together with (B), guarantee that either $O_{p}(X) \neq 1$ or \mathfrak{X} contains no element whose minimal polynomial is $(x-1)^{2}$.

Let X be an element of \mathfrak{X} with minimal polynomial $(x-1)^{2}$. Then $O_{p}(\mathfrak{X}) \neq 1$, and the subspace \mathscr{V}_{0}^{*} which is elementwise fixed by $O_{p}(\mathfrak{X})$ is proper and is \mathfrak{X}-invariant. Since $O_{p}(\mathfrak{X})$ is a p-group, $\mathscr{Y}_{0} \neq 0$. Let

$$
\mathscr{R}_{0}=\operatorname{ker}\left(\mathfrak{X} \longrightarrow \operatorname{Aut} \mathscr{V}_{0}\right), \quad \mathscr{R}_{1}=\operatorname{ker}\left(\mathfrak{X} \longrightarrow \operatorname{Aut}\left(\mathscr{V} \mid \mathscr{V}_{0}\right)\right) .
$$

By induction on $\operatorname{dim} \mathscr{Y}, X \in O_{p}\left(\mathfrak{X} \bmod \mathscr{\Re}_{i}\right), i=0,1$. Since

$$
O_{p}\left(\notin \bmod \Re_{0}\right) \cap O_{p}\left(X \bmod \Re_{1}\right)
$$

is a p-group, the lemma follows.
Lemma 7.2. Let \mathfrak{X} be a p-solvable g'roup of odd order, and \mathfrak{A} a p-subgroup of \mathfrak{X}. Any one of the following conditions guarantees that $\mathfrak{A} \cong O_{p^{\prime}, p}(\mathfrak{X})$:

1. \mathfrak{A} is abelian and $|\mathfrak{x}: N(\mathfrak{A})|$ is prime to p.
2. $p \geqq 5$ and $[\mathfrak{F}, \mathfrak{Y}, \mathfrak{\mathscr { X }}, \mathfrak{X}, \mathfrak{X}]=1$ for some S_{p}-subgroup \mathfrak{P} of \mathfrak{X}.
3. $[\mathfrak{P}, \mathfrak{Q}, \mathfrak{X}]=1$ for some S_{p}-subgroup \mathfrak{P} of \mathfrak{X}.
4. \mathfrak{A} acts trivially on the factor $O_{p^{\prime}, p, p}(\mathfrak{X}) / O_{p^{\prime}, p}(\mathfrak{X})$.

Proof. Conditions 1, 2, or 3 imply that each element of \mathfrak{y} has a minimal polynomial dividing $(x-1)^{p-1}$ on $O_{p^{\prime}, p}(\mathcal{X}) / \mathfrak{D}$, where $\mathfrak{D}=$ $D\left(O_{p^{\prime}, p}(\mathfrak{X}) \bmod O_{p^{\prime}}(\mathfrak{X})\right.$). Thus (B) and the oddness of $|\mathfrak{X}|$ yield 1,2 , and 3. Lemma 1.2 .3 of [21] implies 4.

Lemma 7.3. If \mathfrak{X} is p-solvable, and \mathfrak{F} is a S_{p}-subgroup of \mathfrak{X}, then $\boldsymbol{U (F)}$ is a lattice whose maximal element is $\boldsymbol{O}_{p^{\prime}}(\mathfrak{X})$.

Proof. Since $\boldsymbol{O}_{p^{\prime}}(\mathfrak{X}) \triangleleft \mathfrak{X}$ and $\mathfrak{P} \cap \boldsymbol{O}_{p^{\prime}}(\mathfrak{X})=1, \boldsymbol{O}_{\boldsymbol{p}^{\prime}}(\mathfrak{X})$ is in $\boldsymbol{U}(\mathfrak{P})$.
 is a group of order $|\mathfrak{F}| \cdot|\mathfrak{|}|$ and \mathfrak{P} is a S_{p}-subgroup of \mathfrak{x}, \mathfrak{g} is a p^{\prime} group, as is $\mathfrak{O} O_{p^{\prime}}(\mathcal{X})$. In proving the lemma, we can therefore assume that $O_{p^{\prime}}(\mathfrak{X})=1$, and try to show that $\mathfrak{Q}=1$. In this case, \mathfrak{W} is faithfully represented as automorphisms of $O_{p}(x)$, by Lemma 1.2.3 of [21]. Since $O_{p}(\mathfrak{X}) \subseteq \mathfrak{F}$, we see that $\left[\mathfrak{Q}, \boldsymbol{O}_{p}(\mathfrak{X})\right] \subseteq \mathfrak{Y} \cap \mathfrak{F}$, and $\mathfrak{Q}=1$ follows.

Lemma 7.4. Suppose \mathfrak{F} is $a S_{p}$-subgroup of \mathfrak{X} and $\mathfrak{A} \in \mathscr{S}^{\mathcal{P}} \mathscr{C} \mathcal{N}(\mathfrak{F})$. Then $И(\mathfrak{H})$ contains only p^{\prime}-groups. If in addition, \mathfrak{X} is p-solvable, then $\boldsymbol{U}(\mathfrak{A})$ is a lattice whose maximal element is $O_{p^{\prime}}(\mathfrak{x})$.

Proof. Suppose \mathfrak{A} normalizes \mathfrak{E} and $\mathfrak{\Re} \cap \mathfrak{G}=\langle 1\rangle$. Let \mathfrak{U}^{*} be a $S_{\mathcal{P}}$-subgroup of $\mathfrak{Y} \mathfrak{E}$ containing $\mathfrak{\Re}$. By Sylow's theorem, $\mathfrak{B}_{1}=\mathfrak{Y}^{*} \cap \mathfrak{Y}$ is a S_{p}-subgroup of \mathfrak{g}. It is clearly normalized by \mathfrak{A}, and $\mathfrak{A} \cap \mathfrak{F}_{1}=\langle 1\rangle$. If $\mathfrak{P}_{1} \neq\langle 1\rangle$, a basic property of p-groups implies that \mathfrak{A} centralizes some non identity element of \mathfrak{F}_{1}, contrary to 3.10 . Thus, $\mathfrak{F}_{1}=\langle 1\rangle$ and \mathfrak{f} is a p^{\prime}-group. Hence we can assume that \mathfrak{X} is p-solvable and that $O_{p^{\prime}}(\mathfrak{X})=\langle 1\rangle$ and try to show that $\mathfrak{G}=\langle 1\rangle$.

Let $\mathfrak{X}_{1}=\boldsymbol{O}_{p}(\mathfrak{X}) \mathfrak{E}$. Then $\boldsymbol{O}_{p}(\mathfrak{X}) \mathfrak{A}$ is a S_{p}-subgroup of \mathfrak{X}_{1}, and
 $\left[O_{p}(\mathfrak{X}), \mathfrak{E}\right] \subseteq O_{p}(\mathfrak{X}) \cap O_{p}\left(\mathfrak{X}_{1}\right)=1$ and $\mathfrak{E}=1$. We can suppose that $\mathfrak{X}_{1}=$ モ.
 $\mathfrak{A} \times \mathfrak{F}_{1}$, by 3.10 where $\mathfrak{E} \subseteq \mathfrak{E}_{1}$. Hence, \mathfrak{E}_{1} char $\mathfrak{A} \times \mathfrak{g}_{1} \triangleleft \mathfrak{X}$, and $\mathfrak{Y}_{1} \triangleleft \mathfrak{X}$, so that $\mathfrak{Y}_{1}=1$. We suppose that \mathfrak{N} does not centralize \mathfrak{G}, and that \mathfrak{G} is an elementary q-group on which \mathfrak{A} acts irreducibly. Let $\mathfrak{B}=\boldsymbol{O}_{\mathfrak{p}}(\mathfrak{X}) / \boldsymbol{D}\left(\boldsymbol{O}_{\mathfrak{p}}(\mathfrak{X})\right)=\mathfrak{B}_{1} \times \mathfrak{B}_{2}$, where $\mathfrak{B}_{1}=\boldsymbol{C}_{\mathfrak{B}}(\mathfrak{F})$ and $\mathfrak{B}_{2}=[\mathfrak{B}, \mathfrak{\mathfrak { l }}]$. Let $V \in \mathfrak{B}$, and $X \in V$, so that $[X, \mathfrak{2}] \subseteq \mathfrak{R}$. Hence, $[X, \mathfrak{T}]$ maps into \mathfrak{F}_{1}, since $[[X, \mathfrak{X}], \mathfrak{G}] \subseteq \oint \cap O_{p}(\mathfrak{X})=1$. But \mathfrak{B}_{2} is \mathfrak{X}-invariant, so $[X, \mathfrak{X}]$ maps into $\mathfrak{B}_{1} \cap \mathfrak{B}_{2}=1$. Thus, $\mathfrak{A} \cong \operatorname{ker}\left(\mathfrak{X} \longrightarrow \operatorname{Aut} \mathfrak{B}_{2}\right)$, and so $[\mathfrak{U}, \mathfrak{\mathfrak { b }}]$
centralizes \mathfrak{B}_{2}. As \mathfrak{N} acts irreducibly on \mathfrak{E}, we have $\mathfrak{K}=[\mathfrak{G}, \mathfrak{X}]$, so $\mathfrak{B}_{2}=1$. Thus, \mathfrak{g} centralizes \mathfrak{B} and so centralizes $O_{p}(\mathfrak{X})$, so $\mathfrak{G}=1$, as required.

Lemma 7.5. Suppose \mathfrak{Q} and $\mathfrak{\xi}_{1}$ are $S_{p, 0}$-subgroups of the solvable group \mathfrak{C}. If $\mathfrak{B} \subseteq O_{p}\left(\mathfrak{G}_{\mathfrak{1}}\right) \cap \mathfrak{G}$, then $\mathfrak{B} \subseteq O_{p}(\mathfrak{G})$.

Proof. We proceed by induction on |§|. We can suppose that \mathfrak{C} has no non identity normal subgroup of order prime to $p q$. Suppose that \mathfrak{C} possesses a non identity normal p-subgroup \mathfrak{J}. Then

$$
\mathfrak{F} \subseteq O_{p}(\mathfrak{(}) \cap O_{p}\left(\mathfrak{Y}_{1}\right) .
$$

Let $\overline{\mathfrak{S}}=\mathfrak{S} / \mathfrak{Y}, \overline{\mathfrak{B}}=\mathfrak{B} \mathfrak{Y} / \mathfrak{Y}, \overline{\mathfrak{E}}=\mathfrak{£} / \mathfrak{Y}, \overline{\mathfrak{Y}}_{1}=\mathfrak{Y}_{2} / \mathfrak{Y} . \quad$ By induction, $\overline{\mathfrak{B}} \subseteq \mathrm{O}_{p}(\overline{\mathfrak{\xi}})$, so $\mathfrak{B} \subseteq \boldsymbol{O}_{\boldsymbol{p}}(\mathfrak{g} \bmod \mathfrak{Y})=\boldsymbol{O}_{p}(\mathfrak{Q})$, and we are done. Hence, we can assume that $O_{p}(\mathfrak{G})=\langle 1\rangle$. In this case, $\boldsymbol{F}(\mathfrak{C})$ is a q-group, and $\boldsymbol{F}(\mathfrak{S}) \subseteq \mathfrak{g}_{1}$. By hypothesis, $\mathfrak{B} \cong O_{p}\left(\mathfrak{\xi}_{1}\right)$, and so \mathfrak{B} centralizes $\boldsymbol{F}(\mathbb{C})$. By 3.3, we see that $\mathfrak{B}=\langle 1\rangle$, so $\mathfrak{B} \cong \boldsymbol{O}_{p}(\mathfrak{(})$ as desired.

The next two lemmas deal with a S_{p}-subgroup \mathfrak{P} of the p-solvable group \mathfrak{X} and with the set

$$
\begin{aligned}
& \mathscr{S}=\{\mathfrak{K} \mid 1 . \mathfrak{Q} \text { is a subgroup of } \mathfrak{X} . \\
& \text { 2. } \mathfrak{B \subseteq} \subseteq \mathfrak{G} . \\
& \text { 3. The } p \text {-length of } \mathfrak{Y} \text { is at most two . } \\
&\text { 4. }|\mathfrak{X}| \text { is not divisible by three distinct primes . }\}
\end{aligned}
$$

Lemma 7.6. $\mathfrak{X}=\langle\mathfrak{F} \mid \mathfrak{F} \in \mathscr{S}\rangle$.
Proof. Let $\mathfrak{X}_{1}=\langle\mathfrak{Y} \mid \mathfrak{Đ} \in \mathscr{S}\rangle$. It suffices to show that $\left|\mathfrak{X}_{1}\right|_{\varrho}=|\mathfrak{X}|_{\varrho}$ for every prime q. This is clear if $q=p$, so suppose $q \neq p$. Since \mathfrak{X} is p-solvable, \mathfrak{X} satisfies $E_{p q}$, so we can suppose that \mathfrak{X} is a p, q group. By induction, we can suppose that \mathfrak{X}_{1} contains every proper subgroup of \mathfrak{X} which contains \mathfrak{P}. Since $\mathfrak{F} O_{q}(\mathfrak{X}) \in \mathscr{S}$, we see that $\boldsymbol{O}_{q}(\mathfrak{X}) \subseteq \mathfrak{X}_{1}$. If $\boldsymbol{N}\left(\mathfrak{B} \cap \boldsymbol{O}_{\boldsymbol{q}}(\mathfrak{X})\right) \subset \mathfrak{X}$, then $\boldsymbol{N}\left(\mathfrak{P} \cap \boldsymbol{O}_{\boldsymbol{p}}(\mathfrak{X})\right) \cong \mathfrak{X}_{1}$. Since $\mathfrak{X}=$ $O_{q}(\mathfrak{X}) \cdot N\left(\mathfrak{F} \cap O_{q}(\mathfrak{X})\right)$, we have $\mathfrak{X}=\mathfrak{X}_{1}$. Thus, we can assume that $\left.\boldsymbol{O}_{\boldsymbol{p}}(\mathfrak{X})=\mathfrak{P} \cap \boldsymbol{O}_{q} \boldsymbol{p} \mathfrak{X}\right)$. Since $\mathfrak{F} \boldsymbol{O}_{p, q}(\mathfrak{X}) \in \mathscr{S}$, we see that $\boldsymbol{O}_{p, 9}(\mathfrak{X}) \subseteq \mathfrak{X}_{1}$. If $\mathfrak{F} \boldsymbol{O}_{\boldsymbol{p}}(\mathfrak{X})=\mathfrak{X}$, we are done, so suppose not. Then $\boldsymbol{N}\left(\mathfrak{F} \cap \boldsymbol{O}_{p, q} \mathfrak{p}(\mathfrak{X})\right) \subset \mathfrak{X}$, so that \mathfrak{X}_{1} contains $\boldsymbol{N}\left(\mathfrak{F} \cap \boldsymbol{O}_{p, q} \boldsymbol{p}(\mathfrak{X})\right) \boldsymbol{O}_{\boldsymbol{p}}(\mathfrak{X})=\mathfrak{X}$, as required.

Lemma 7.7. Suppose $\mathfrak{M}, \mathfrak{R}$ are subgroups of \mathfrak{x} which contain \mathfrak{P} such that $\mathfrak{Q}=(\mathfrak{(} \cap \mathfrak{M})(\mathfrak{S} \cap \mathfrak{R})$ for all \mathfrak{Q} in \mathscr{S}. Then $\mathfrak{X}=\mathfrak{M}$.

Proof. It suffices to show that $|\mathfrak{M R}|_{q} \geqq|\mathfrak{X}|_{q}$ for every prime q. This is clear if $q=p$, so suppose $q \neq p$. Let \mathfrak{Q}_{1} be a S_{q}-subgroup of
$\mathfrak{M} \cap \mathfrak{R}$ permutable with \mathfrak{P}, which exists by $E_{p, q}$ in $\mathfrak{R} \cap \mathfrak{R}$. Since \mathfrak{X} satisfies $D_{p q}$, there is a S_{q}-subgroup \mathfrak{Q} of \mathfrak{X} which contains \mathfrak{Q}_{1} and is permutable with $\mathfrak{B}, \operatorname{Set} \mathfrak{R}=\mathfrak{B} \mathfrak{Q}$. We next show that

$$
\mathfrak{F}=(\mathfrak{R} \cap \mathfrak{M})(\mathfrak{R} \cap \mathfrak{R}) .
$$

If $\mathfrak{R \in S}$, this is the case by hypothesis, so we can suppose the p length of \mathfrak{R} is at least 3. Let $\mathfrak{F}_{1}=\mathfrak{B} \cap O_{p, q, p}(\mathfrak{R})$, and $\mathcal{R}=\boldsymbol{N}_{\mathfrak{R}}\left(\mathfrak{F}_{1}\right)$. Then \mathfrak{R} is a proper subgroup of \mathfrak{R} so by induction on $|\mathfrak{x}|$, we have $\mathfrak{R}=(\mathbb{R} \cap \mathfrak{R l})(\mathbb{R} \cap \mathfrak{R})$. Let $\mathfrak{R}=\mathfrak{\beta} \cdot \boldsymbol{O}_{p, q}(\mathfrak{R})=\mathfrak{F} O_{p, q}(\mathfrak{R})$. Since Ω is in \mathscr{S}, we have $\mathscr{\Omega}=(\mathfrak{\Re} \cap \mathfrak{P l})(\Omega \cap \mathfrak{R})$. Furthermore, by Sylow's theorem, $\Re=\Re$. Let $R \in \Re$. Then $R=K L$ with $K \in \Omega, L \in \Omega$. Then $K=P K_{1}$, with P in \mathfrak{B}, K_{1} in $O_{p, q}(\mathfrak{R})$. Also, $L=M N, M$ in $\& \cap \mathfrak{R}, N$ in $\mathbb{R} \cap$, and so $R=K L=P K_{1} M N=P M K_{1}{ }^{\underline{M}} N$. Since $K_{1}^{\underline{u}} \in O_{p, q}(\mathcal{R})$, we have $K_{1}^{\mathbb{s}}=M_{1} N_{1}$ with M_{1} in $\mathfrak{M} \cap \mathfrak{R}, N_{1}$ in $\mathfrak{\Re} \cap \mathfrak{\Re}$. Hence, $R=P M M_{1} \cdot N_{1} N$ with $P M M_{1}$ in $\mathfrak{M} \cap \Re, N_{1} N$ in $\mathfrak{R} \cap \Re$.

Since $\Re=(\Re \cap \mathfrak{M})(\Re \cap \mathfrak{R})$, we have

$$
|\mathfrak{X}|_{\mathscr{q}}=|\mathfrak{R}|_{\mathscr{q}}=\frac{|\mathfrak{M} \cap \mathfrak{M}|_{\bullet} \cdot|\mathfrak{M \cap} \cap \mathfrak{R}|_{\mathscr{g}}}{|\mathfrak{F} \cap \mathfrak{M} \cap \mathfrak{M}|_{q}} .
$$

By construction, $|\mathfrak{M} \cap \mathfrak{M} \cap \mathfrak{R}|_{q}=|\mathfrak{R} \cap \mathfrak{R}|_{q} . \quad$ Furthermore, $|\mathfrak{R} \cap \mathfrak{M}|_{q} \leqq$ $|\mathfrak{M}|_{q}$ and $|\mathfrak{M} \cap \mathfrak{M}|_{q} \leqq|\mathfrak{M}|_{q}$, so

$$
|\mathfrak{M R}|_{q}=\frac{|\mathfrak{M}|_{q}|\mathfrak{R}|_{q}}{|\mathfrak{M} \cap \mathfrak{R}|_{q}} \geqq \frac{|\mathfrak{R} \cap \mathfrak{M}|_{\bullet} \cdot|\mathfrak{R} \cap \mathfrak{R}|_{q}}{|\mathfrak{M} \cap \mathfrak{M} \cap \mathfrak{R}|_{q}}=|\mathfrak{X}|_{q},
$$

completing the proof.
Lemma 7.8. Let \mathfrak{X} be a finite group and $\mathfrak{9}$ a p^{\prime}-subgroup of \mathfrak{X} which is normalized by the p-subgroup \mathfrak{U} of \mathfrak{X}. Set $\mathfrak{U}_{1}=\boldsymbol{C}_{\mathfrak{Y}}(\mathfrak{(})$. Suppose \mathbb{Z} is a p-solvable subgroup of \mathfrak{X} containing $\mathfrak{U}\left(\right.$ and $\mathfrak{Q} \ddagger \boldsymbol{O}_{p}(\mathfrak{Z})$. Then there is a p-solvable subgroup $\mathfrak{\Re}$ of $\mathfrak{A} C_{\mathfrak{z}}\left(\mathfrak{H}_{1}\right)$ which contains \mathfrak{U}_{\S} and $\mathfrak{E} \nsubseteq \boldsymbol{O}_{\boldsymbol{p}}(\mathbb{(\Omega)}$.

Proof. Let $\mathfrak{F}=\boldsymbol{O}_{p^{\prime}, \mathfrak{p}}(\mathfrak{Z}) / \boldsymbol{O}_{\boldsymbol{p}^{\prime}}(\mathfrak{Z})$. Then \mathfrak{g} does not centralize \mathfrak{F}. Let \mathfrak{B} be a subgroup of \mathfrak{F} which is minimal with respect to being $\mathfrak{A} \mathfrak{G}$-invariant and not centralized by \mathfrak{G}. Then $\mathfrak{B}=[\mathfrak{B}, \mathfrak{y}]$, and $\left[\mathfrak{B}, \mathfrak{Y}_{1}\right] \subseteq$ $D(\mathfrak{B})$, while $[\boldsymbol{D}(\mathfrak{B}), \mathfrak{\mathfrak { G }}]=1$. Hence, $\left[\mathfrak{F}, \mathfrak{N}_{1}, \mathfrak{\mathfrak { y }}\right]=\left[\mathfrak{H}_{1}, \mathfrak{E}, \mathfrak{O}\right]=1$, and so $\left[\mathfrak{E}, \mathfrak{Y}, \mathfrak{Y}_{1}\right]=1$. Since $[\mathfrak{B}, \mathfrak{O}]=\mathfrak{B}$, \mathfrak{X}_{1} centralizes \mathfrak{B}. Since \mathfrak{B} is a subgroup of \mathfrak{F}, we have $\mathfrak{B}=\mathcal{R}_{0} / O_{p^{\prime}}(\mathcal{Z})$ for suitable \mathfrak{R}_{0}. As $O_{p^{\prime}}(\mathfrak{R})$ is a p^{\prime}-group and \mathfrak{B} is a p-group, we can find an \mathfrak{n}-invariant p-subgroup \mathfrak{F}_{0} of \mathfrak{Z}_{0} incident with \mathfrak{B}. Hence, \mathfrak{M}_{1} centralizes \mathfrak{P}_{0}. Set

$$
\mathfrak{\Omega}=\left\langle\mathfrak{N}, \mathfrak{P}_{0}, \mathfrak{Q}\right\rangle \subseteq \mathfrak{R} .
$$

As \mathcal{R} is p-solvable so is Ω. If $\mathfrak{E} \subseteq \boldsymbol{O}_{\boldsymbol{p}}(\mathbb{\Omega})$, then

$$
\left[\mathfrak{P}_{0}, \mathfrak{G}\right] \leqq \mathfrak{B}_{0} \cap O_{p^{\prime}}(\mathfrak{I}) \subseteq O_{p^{\prime}}(\mathfrak{R})
$$

and \mathfrak{G} centralizes \mathfrak{O}, contrary to construction. Thus, $\mathfrak{Z} \nsubseteq O_{p}(\mathfrak{X})$, as required.

Lemma 7.9. Let \mathfrak{S} be a p-solvable subgroup of the finite group \mathfrak{X}, and let \mathfrak{P} be a S_{p}-subgroup of \mathfrak{Q}. Assume that one of the following conditions holds:
(a) $|\mathfrak{X}|$ is odd.
(b) $p \geqq 5$.
(c) $p=3$ and a S_{2}-subgroup of \mathscr{S} is abelian.

Let $\mathfrak{F}_{0}=\boldsymbol{O}_{p^{\prime}, p}(\mathfrak{G}) \cap \mathfrak{P}$ and let \mathfrak{P}^{*} be a p-subgroup of \mathfrak{X} containing \mathfrak{P}. If \mathfrak{F} is a S_{p}-subgroup of $N_{\mathfrak{X}}\left(\mathfrak{F}_{0}\right)$, then \mathfrak{F}_{0} contains every element of

Proof. Let $\mathfrak{A} \in \mathscr{S C} \mathscr{N}\left(\mathfrak{B}^{*}\right)$. By (B) and (a), (b), (c), it follows that $\mathfrak{A} \cap \mathfrak{P}=\mathfrak{A} \cap \mathfrak{F}_{0}=\mathfrak{N}_{1}$, say. If $\mathfrak{N}_{1} \subset \mathfrak{A}$, then there is a \mathfrak{B}_{0}-invariant subgroup \mathfrak{B} such that $\mathfrak{N}_{1} \subset \mathfrak{B} \subseteq \mathfrak{N},\left|\mathfrak{O}: \mathfrak{U}_{1}\right|=p$. Hence, $\left[\mathfrak{F}_{0}, \mathfrak{O}\right] \subseteq \mathfrak{N}_{1} \subseteq$ \mathfrak{P}_{0}, so $\mathfrak{B} \subseteq \boldsymbol{N}_{\mathfrak{X}}\left(\mathfrak{F}_{0}\right) \cap \mathfrak{P}^{*}$. Hence, $\langle\mathfrak{B}, \mathfrak{P}\rangle$ is a p-subgroup of $\boldsymbol{N}_{\mathfrak{X}}\left(\mathfrak{F}_{0}\right)$, so $\mathfrak{B} \cong \mathfrak{P}$. Hence, $\mathfrak{B} \subseteq \mathfrak{A} \cap \mathfrak{P}=\mathfrak{A}_{1}$, which is not the case, so $\mathfrak{H}=\mathfrak{A}_{1}$, as required.

8. Miscellaneous Preliminary Lemmas

Lemma 8.1. If \mathfrak{X} is a π-group, and \mathscr{C} is a chain $\mathfrak{X}=\mathfrak{X}_{0} \supseteq$ $\mathfrak{X}_{1} \supseteq \cdots \supseteq \mathfrak{X}_{n}=1$, then the stability group \mathfrak{M} of \mathscr{C} is a π-group.

Proof. We proceed by induction on n. Let $A \in \mathfrak{A}$. By induction, there is a π-number m such that $B=A^{m}$ centralizes \mathfrak{X}_{1}. Let $X \in \mathfrak{X}$; then $X^{s}=X Y$ with Y in \mathfrak{X}_{1}, and by induction, $X^{B^{r}}=X Y^{r}$. It follows that $B^{\left|\mathfrak{x}_{1}\right|}=1$.

Lemma 8.2. If \mathfrak{P} is a p-group, then \mathfrak{P} possesses a characteristic subgroup © such that
(i) $\mathrm{cl}(\mathbb{C}) \leqq 2$, and $\mathbb{C} / Z(\mathbb{(})$ is elementary.
(ii) ker (Aut $\mathfrak{P} \xrightarrow{\text { res }}$ Aut (5) is a p-group. (res is the homomorphism induced by restricting A in Aut \mathfrak{P} to ($\mathbb{S}^{(}$.)
(iii) $[\mathfrak{P}, \mathbb{C}] \subseteq \boldsymbol{Z}(\mathbb{C})$ and $C(\mathbb{C})=\boldsymbol{Z}(\mathbb{C})$.

Proof. Suppose © can be found to satisfy (i) and (iii). Let $\Re=$ ker res. In commutator notation, $[\Omega, \mathfrak{C}]=1$, and so $[\Re, \mathfrak{C}, \mathfrak{F}]=1$. Since $[\mathfrak{C}, \mathfrak{P}] \subseteq \Subset$, we also have $[\mathfrak{C}, \mathfrak{F}, \mathfrak{R}]=1$ and 3.1 implies $[\mathfrak{B}, \Re, \mathfrak{C}]=$ 1, so that $[\mathfrak{\beta}, \mathfrak{\Re}] \subseteq Z(\mathbb{C})$. Thus, \mathfrak{K} stabilizes the chain $\mathfrak{F} \supseteq \mathbb{C} \supseteq 1$ so is a p-group by Lemma 8.1.

If now some element of $\mathscr{P} \mathscr{C} \mathscr{N}(\mathfrak{P})$ is characteristic in \mathfrak{P}, then (i) and (iii) are satisfied and we are done. Otherwise, let \mathfrak{A} be a maximal characteristic abelian subgroup of \mathfrak{F}, and let \mathbb{C} be the group generated by all subgroups \mathfrak{D} of \mathfrak{P} such that $\mathfrak{A} \subset \mathfrak{D},|\mathfrak{D}: \mathfrak{N}|=p$, $\mathfrak{D} \subseteq Z(\mathfrak{P} \bmod \mathfrak{H}), \mathfrak{D} \subseteq C(\mathfrak{A})$. By construction, $\mathfrak{A} \subseteq Z(\mathbb{C})$, and \mathbb{C} is seen to be characteristic. The maximal nature of \mathfrak{A} implies that $\mathfrak{A}=\boldsymbol{Z}(\mathbb{C})$. Also by construction $[\mathfrak{P}, \mathfrak{C}] \subseteq \mathfrak{A}=\boldsymbol{Z}(\mathbb{C})$, so in particular, $[\mathfrak{C}, \mathfrak{C}] \subseteq \boldsymbol{Z}(\mathbb{C})$ and $\mathrm{cl}(\mathbb{C}) \leqq 2$. By construction, $\mathbb{C} / \boldsymbol{Z}(\mathbb{C})$ is elementary.

We next show that $\boldsymbol{C}(\mathbb{C})=\boldsymbol{Z}(\mathbb{C})$. This statement is of course equivalent to the statement that $\boldsymbol{C}(\mathbb{C}) \subseteq \mathbb{C}$. Suppose by way of contradiction that $\boldsymbol{C}(\mathbb{C}) \nsubseteq \mathbb{(G}$. Let \mathbb{C} be a subgroup of $\boldsymbol{C}(\mathbb{C})$ of minimal order subject to (a) $\mathbb{C} \triangleleft \mathfrak{s}$, and (b) ๔ $\nsubseteq \mathbb{C}$. Since $C(\mathbb{C})$ satisfies (a) and (b), © exists. By the minimality of \mathbb{F}, we see that $[\mathfrak{F}, \mathfrak{C}] \subseteq \mathbb{C}$ and $D(\mathfrak{F}) \subseteq \mathbb{E}$. Since (F) centralizes © \mathfrak{G}, so do $[\mathfrak{F}, \mathfrak{F}]$ and $D(\mathfrak{F})$, so we have $[\mathfrak{F}, \mathbb{F}] \subseteq \mathfrak{A}$ and $D(\mathbb{F}) \subseteq \mathfrak{A}$. The minimal nature of \mathbb{F} guarantees that $\mathbb{C} / \mathbb{C} \cap \mathbb{C}$ is of order p. Since $\mathbb{C} \cap \mathbb{C}=\mathbb{F} \cap \mathfrak{A}$, $\mathbb{C} / \mathbb{C} \cap \mathfrak{A}$ is of order p, so ๔્M/A is of order p. By construction of \mathbb{C}, we find $\mathbb{A} \subseteq$ \mathfrak{C}, so $\mathbb{E} \subseteq \mathbb{C}$, in conflict with (b). Hence, $\boldsymbol{C}(\mathbb{C})=\boldsymbol{Z}(\mathbb{C})$, and (i) and (iii) are proved.

Lemma 8.3. Let \mathfrak{X} be a p-group, p odd, and among all elements of $\mathscr{P} \mathscr{E} \mathscr{N}(\mathfrak{X})$, choose \mathfrak{H} to maximize $m(\mathfrak{H})$. Then $\Omega_{1}\left(C\left(\Omega_{1}(\mathfrak{H})\right)\right)=\Omega_{1}(\mathfrak{H})$.

Remark. The oddness of p is required, as the dihedral group of order 16 shows.

Proof. We must show that whenever an element of \mathfrak{X} of order p centralizes $\Omega_{1}(\mathfrak{H})$, then the element lies in $\Omega_{1}(\mathfrak{U})$.

If $X \in C\left(\Omega_{1}(\mathfrak{H})\right)$ and $X^{p}=1$, let $\mathfrak{B}(X)=\mathfrak{B}_{1}=\left\langle\Omega_{1}(\mathfrak{P}), X\right\rangle$, and let $\mathfrak{B}_{1} \subset \mathfrak{B}_{2} \subset \cdots \subset \mathfrak{B}_{n}=\langle\mathfrak{K}, X\rangle$ be an ascending chain of subgroups, each of index p in its successor. We wish to show that $\mathfrak{B}_{1} \triangleleft \mathfrak{B}_{n}$. Suppose $\mathfrak{B}_{1} \triangleleft \mathfrak{B}_{m}$ for some $m \leqq n-1$. Then \mathfrak{B}_{m} is generated by its normal abelian subgroups \mathfrak{B}_{1} and $\mathfrak{F}_{m} \cap \mathfrak{X}$, so \mathfrak{B}_{m} is of class at most two, so is regular. Let $Z \in \mathfrak{B}_{m}, Z$ of order p. Then $Z=X^{k} A, A$ in \mathfrak{A}, k an integer. Since \mathfrak{B}_{m} is regular, $X^{-k} Z$ is of order 1 or p. Hence, $A \in \Omega_{1}(\mathfrak{P})$, and $Z \in \mathfrak{B}_{1}$. Hence, $\mathfrak{B}_{1}=\Omega_{1}\left(\mathfrak{B}_{m}\right)$ char $\mathfrak{B}_{m} \triangleleft \mathfrak{B}_{m+1}$, and $\mathfrak{B}_{1} \triangleleft \mathfrak{B}_{n}$ follows. In particular, X stabilizes the chain $\mathfrak{A} \supseteq \Omega_{1}(\mathfrak{X}) \supseteq\langle 1\rangle$.

It follows that if $\mathfrak{D}=\Omega_{1}\left(C\left(\Omega_{1}(\mathfrak{H})\right)\right)$, then \mathfrak{D}^{\prime} centralizes \mathfrak{A}. Since $\mathfrak{A} \in \mathscr{P} \mathscr{C} \mathscr{N}(\mathfrak{X}), \mathfrak{D}^{\prime} \subseteq \mathfrak{A}$. We next show that \mathfrak{D} is of exponent p. Since $[\mathfrak{D}, \mathfrak{D}] \subseteq \mathfrak{N}$, we see that $[\mathfrak{D}, \mathfrak{D}, \mathfrak{D}] \subseteq \Omega_{1}(\mathfrak{Y})$, and so

$$
[\mathfrak{D}, \mathfrak{D}, \mathfrak{D}, \mathfrak{D}]=1
$$

and $\mathrm{cl}(\mathfrak{D}) \leqq 3$. If $p \geqq 5$, then \mathfrak{D} is regular, and being generated by
elements of order p ，is of exponent p ．It remains to treat the case $p=3$ ，and we must show that the elements of \mathfrak{D} of order at most 3 form a subgroup．Suppose false，and that $\langle X, Y\rangle$ is of minimal order subject to $X^{3}=Y^{3}=1,(X Y)^{3} \neq 1, X$ and Y being elements of \mathfrak{D} ．Since $\left\langle Y, Y^{\boldsymbol{x}}\right\rangle \subset\langle X, Y\rangle,[Y, X]=Y^{-1} . X^{-1} Y X$ is of order three．Hence，$[X, Y]$ is in $\Omega_{1}(\mathfrak{Z})$ ，and so $[Y, X]$ is centralized by both X and Y ．It follows that $(X Y)^{3}=X^{3} Y^{3}[Y, X]^{3}=1$ ，so \mathfrak{D} is of exponent p in all cases．

If $\Omega_{1}(\mathfrak{X}) \subset \mathfrak{D}$ ，let $\mathfrak{F} \triangleleft \mathfrak{X}$ ， $\mathfrak{F} \subseteq \mathfrak{D},\left|\mathfrak{F}: \Omega_{1}(\mathfrak{X})\right|=p$ ．Since $\Omega_{1}(\mathfrak{H}) \subseteq$ $\boldsymbol{Z}(\mathbb{G})$ ，© is abelian．But $m(\mathbb{G})=m(\mathfrak{N})+1>m(\mathfrak{X})$ ，in conflict with the maximal nature of \mathfrak{A} ，since \mathcal{F} is contained in some element of $\operatorname{SPC} \mathscr{N}(\mathfrak{X})$ by 3．9．

Lemma 8．4．Suppose p is an odd prime and \mathfrak{X} is a p－group．
（i）If $\mathscr{S}_{\mathscr{C}}^{(1)}(\mathfrak{X})$ is empty，then every abelian subgroup of \mathfrak{X} is generated by two elements．
（ii）If $\mathscr{S}_{\mathscr{C}} \mathscr{N}_{3}(\mathfrak{X})$ is empty and A is an automorphism of \mathfrak{X} of prime order $q, p \neq q$ ，then q divides $p^{2}-1$ ．

Proof．（i）Suppose \mathfrak{A} is chosen in accordance with Lemma 8．3． Suppose also that \mathfrak{X} contains an elementary subgroup \mathfrak{E} of order p^{3} ． Let $\mathfrak{F}_{1}=C_{⿷ 匚}^{⿷}\left(\Omega_{1}(\mathfrak{P})\right)$ ，so that \mathfrak{F}_{1} is of order p^{2} at least．But by Lemma 8．3， $\mathfrak{F}_{1} \subseteq \Omega_{1}(\mathfrak{H})$ ，a group of order at most p^{2} ，and so $\mathfrak{F}_{1}=\Omega_{1}(\mathfrak{H})$ ．But now Lemma 8.3 is violated since \mathbb{F} centralizes \mathbb{F}_{1} ．
（ii）Among the A－invariant subgroups of \mathfrak{X} on which A acts non trivially，let \mathfrak{S} be minimal．By $3.11, \mathfrak{G}$ is a special p－group．Since p is odd， \mathfrak{G} is regular，so 3.6 implies that \mathfrak{G} is of exponent p ．By the first part of this lemma， \mathfrak{F} contains no elementary subgroup of order p^{3} ．It follows readily that $m(\mathfrak{Y}) \leqq 2$ ，and（ii）follows from the well known fact that q divides \mid Aut $\mathfrak{g} / \boldsymbol{D}(\mathfrak{G}) \mid$ ．

Lemma 8．5．If \mathfrak{X} is a group of odd order，p is the smallest prime in $\pi(\mathfrak{X})$ ，and if in addition \mathfrak{X} contains no elementary subgroup of order p^{3} ，then \mathfrak{X} has a normal p－complement．

Proof．Let \mathfrak{B} be a S_{p}－subgroup of \mathfrak{X} ．By hypothesis，if \mathfrak{S} is a subgroup of \mathfrak{P} ，then $\mathscr{S}_{\mathscr{C}} \mathscr{N}_{3}(\mathfrak{Q})$ is empty．Application of Lemma 8.4 （ii）shows that $N_{\mathfrak{X}}(\mathfrak{G}) / C_{\mathfrak{X}}(\mathfrak{W})$ is a p－group for every subgroup \mathfrak{G} of $\mathfrak{\beta}$ ． We apply Theorem 14．4．7 in［12］to complete the proof．

Application of Lemma 8.5 to a simple group（S）of odd order im－ plies that if p is the smallest prime in $\pi(\mathbb{S})$ ，then © contains an elementary subgroup of order p^{3} ．In particular，if $3 \in \pi(\mathbb{S})$ ，then（G） contains an elementary subgroup of order 27.

Lemma 8.6. Let $\mathfrak{R}_{1}, \mathfrak{R}_{2}, \mathfrak{R}_{3}$ be subgroups of a group \mathfrak{X} and suppose that for every permutation σ of $\{1,2,3\}$,

$$
\mathfrak{R}_{\sigma(1)} \subseteq \mathfrak{N}_{\sigma(3)} \mathfrak{N}_{\sigma(3)}
$$

Then $\mathfrak{R}_{1} \mathfrak{N}_{2}$ is a subgroup of \mathfrak{X}.
Proof. $\quad \mathfrak{R}_{2} \mathfrak{R}_{1} \subseteq\left(\mathfrak{R}_{1} \mathfrak{R}_{3}\right)\left(\mathfrak{R}_{3} \mathfrak{R}_{2}\right) \subseteq \mathfrak{N}_{1} \mathfrak{R}_{3} \mathfrak{R}_{2} \subseteq \mathfrak{N}_{1}\left(\mathfrak{R}_{1} \mathfrak{N}_{3}\right) \mathfrak{R}_{2} \subseteq \mathfrak{R}_{1} \mathfrak{R}_{2}$, as required.

Lemma 8.7. If \mathfrak{A} is a p^{\prime}-group of automorphisms of the p-group \mathfrak{F}, if \mathfrak{A} has no fixed points on $\mathfrak{P} / \boldsymbol{D}(\mathfrak{P})$, and \mathfrak{A} acts trivially on $D(\mathfrak{P})$, then $\boldsymbol{D}(\mathfrak{F}) \subseteq \boldsymbol{Z}(\mathfrak{F})$.

Proof. In commutator notation, we are assuming $[\mathfrak{P}, \mathfrak{A}]=\mathfrak{P}$, and $[\mathfrak{N}, D(\mathfrak{P})]=1$. Hence, $[\mathfrak{A}, D(\mathfrak{P}), \mathfrak{P}]=1$. Since $[D(\mathfrak{P}), \mathfrak{P}] \subseteq D(\mathfrak{P})$, we also have $[D(\mathfrak{P}), \mathfrak{F}, \mathfrak{X}]=1$. By the three subgroups lemma, we have $[\mathfrak{P}, \mathfrak{X}, \boldsymbol{D}(\mathfrak{P})]=1$. Since $[\mathfrak{F}, \mathfrak{A}]=\mathfrak{F}$, the lemma follows.

Lemma 8.8. Suppose \mathfrak{Q} is a q-group, q is odd, A is an automorphism of \mathfrak{Q} of prime order $p, p \equiv 1(\bmod q)$, and \mathfrak{Q} contains a subgroup \mathfrak{R}_{0} of index q such that $\mathscr{S} \mathscr{C} \mathscr{N}_{3}\left(\mathfrak{R}_{0}\right)$ is empty. Then $p=$ $1+q+q^{2}$ and \mathfrak{Q} is elementary of order q^{3}.

Proof. Since $p \equiv 1(\bmod q)$ and q is odd, p does not divide $q^{2}-1$. Since $D(\mathfrak{Q}) \subseteq \mathfrak{Q}_{0}$, Lemma 8.4 (ii) implies that A acts trivially on $D(\mathfrak{Q})$.

Suppose that A has a non trivial fixed point on $\mathfrak{Q} / \boldsymbol{D}(\mathfrak{Q})$. We can then find an A-invariant subgroup \mathfrak{l} of index q in \mathfrak{Q} such that A acts trivially on $\mathfrak{Q} / \mathfrak{M}$. In this case, A does not act trivially on \mathfrak{M}, and so $\mathfrak{M} \neq \mathfrak{Q}_{0}$, and $\mathfrak{M} \cap \mathfrak{Q}_{0}$ is of index q in \mathfrak{M}. By induction, $p=$ $1+q+q^{2}$ and \mathfrak{M} is elementary of order q^{3}. Since A acts trivially on $\mathfrak{Q} / \mathfrak{M}$, it follows that \mathfrak{Q} is abelian of order q^{4} If \mathfrak{Q} were elementary, \mathfrak{Q}_{0} would not exist. But if \mathfrak{Q} were not elementary, then A would have a fixed point on $\Omega_{1}(\mathfrak{Q})=\mathfrak{M}$, which is not possible. Hence A has no fixed points on $\mathfrak{Q} / D(\mathfrak{Q})$, so by Lemma $8.7, D(\mathfrak{Q}) \subseteq Z(\mathfrak{Q})$.

Next, suppose that A does not act irreducibly on $\mathfrak{Q} / \boldsymbol{D}(\mathfrak{Q})$. Let $\mathfrak{N} / D(\mathfrak{Q})$ be an irreducible constituent of A on $\mathfrak{Q} / D(\mathfrak{Q})$. By induction, \mathfrak{R} is of order q^{3}, and $p=1+q+q^{2}$. Since $D(\mathfrak{Q}) \subset \mathfrak{N}, D(\mathfrak{Q})$ is a proper A-invariant subgroup of \mathfrak{R}. The only possibility is $D(\mathfrak{Q})=1$, and $|\mathfrak{Q}|=q^{3}$ follows from the existence of \mathfrak{Q}_{0}.

If $|\mathfrak{Q}|=q^{3}$, then $p=1+q+q^{2}$ follows from Lemma 5.1. Thus, we can suppose that $|\mathfrak{Q}|>q^{3}$, and that A acts irreducibly on $\mathfrak{Q} / D(\mathbb{Q})$, and try to derive a contradiction. We see that \mathfrak{Q} must be non abelian. This implies that $D(\mathfrak{Q})=\boldsymbol{Z}(\mathfrak{Q})$. Let $|\mathfrak{Q}: D(\mathfrak{Q})|=q^{n}$. Since
$p \equiv 1(\bmod q)$, and $q^{n} \equiv 1(\bmod p), n \geqq 3$. Since $D(\mathfrak{Q})=Z(\mathfrak{Q}), n$ is even, $\mathfrak{Q} / \boldsymbol{Z}(\mathfrak{Q})$ possessing a non singular skew-symmetric inner product over integers $\bmod q$ which admits A. Namely, let © be a subgroup of order q contained in \mathfrak{Q}^{\prime} and let \mathfrak{C}_{1} be a complement for \mathbb{C} in $\mathfrak{\Omega}^{\prime}$. This complement exists since \mathfrak{Z}^{\prime} is elementary. Then $\boldsymbol{Z}\left(\mathfrak{F} \bmod \mathfrak{C}_{1}\right)$ is A-invariant, proper, and contains $D(\mathfrak{\Omega})$. Since A acts irreducibly on $\mathfrak{Q} / \boldsymbol{D}(\mathfrak{Q})$, we must have $\boldsymbol{D}(\mathfrak{Q})=\boldsymbol{Z}\left(\mathfrak{Q} \bmod \left(\mathfrak{F}_{1}\right)\right.$, so a non singular skewsymmetric inner product is available. Now \mathfrak{Q} is regular, since $\mathrm{cl}(\mathfrak{Q})=$ 2, and q is odd, so $\left|\Omega_{1}(\mathfrak{Q})\right|=\left|\mathfrak{Q}: \nabla^{1}(\mathfrak{Q})\right|$, by [14]. Since $c l(\mathfrak{Q})=2$, $\Omega_{1}(\mathfrak{Q})$ is of exponent q. Since

$$
\left|\mathfrak{Q}: \delta^{1}(\mathfrak{Q})\right| \geqq|\Omega: D(\Omega)| \geqq q^{4},
$$

we see that $\left|\Omega_{1}(\mathfrak{\Omega})\right| \geqq q^{4}$. Since Ω_{0} exists, $\Omega_{1}(\Omega)$ is non abelian, of order exactly q^{4}, since otherwise $\mathfrak{\Omega}_{0} \cap \Omega_{1}(\mathfrak{Q})$ would contain an elementary subgroup of order q^{3}. It follows readily that A centralizes $\Omega_{1}(\Omega)$, and so centralizes \mathfrak{Q}, by 3.6 . This is the desired contradiction.

Lemma 8.9. If \mathfrak{P} is a p-group, if $\operatorname{SOC}_{\mathfrak{N}}(\mathfrak{P})$ is non empty and \mathfrak{A} is a normal abelian subgroup of $\mathfrak{\beta}$ of type (p, p), then \mathfrak{A} is contained in some element of $\operatorname{SPCN}_{3}(\mathfrak{P})$.

Proof. Let © be a normal elementary subgroup of \mathfrak{F} of order p^{3}, and let $\mathfrak{F}_{1}=C_{\mathscr{F}}(\mathfrak{U})$. Then $\mathfrak{F}_{1} \triangleleft \mathfrak{F}$, and $\left\langle\mathfrak{N}, \mathfrak{F}_{1}\right\rangle=\mathfrak{F}$ is abelian. If $|\mathfrak{F}|=p^{2}$, then $\mathfrak{A}=\mathfrak{F}_{1}=\mathfrak{F} \subset \mathfrak{F}$, and we are done, since \mathfrak{F} is contained in an element of $\mathscr{S} \mathscr{C} \mathscr{N}_{s}(\mathfrak{F})$. If $|\mathfrak{F}| \geqq p^{3}$, then again we are done, since \mathfrak{F} is contained in an element of $\operatorname{SPCN}_{3}(\mathfrak{F})$.

If \mathfrak{X} and \mathfrak{Y} are groups, we say that \mathfrak{Y} is involved in \mathfrak{X} provided some section of \mathfrak{X} is isomorphic to \mathfrak{Y} [18].

Lemma 8.10. Let \mathfrak{F} be a S_{p}-subgroup of the group \mathfrak{X}. Suppose that $Z(\mathfrak{P})$ is cyclic and that for each subgroup \mathfrak{A} in \mathfrak{P} of order p which does not lie in $Z(\mathfrak{P})$, there is an element $X=X(\mathfrak{H})$ of \mathfrak{F} which normalizes but does not centralize 〈श, $\left.\Omega_{1}(Z(\mathfrak{F}))\right\rangle$. Then either $S L(2, p)$ is involved in \mathfrak{X} or $\Omega_{1}(Z(\mathfrak{P})$) is weakly closed in \mathfrak{P}.

Proof. Let $\mathfrak{D}=\Omega_{1}(Z(\mathfrak{F}))$. Suppose $\mathfrak{F}=\mathfrak{D}^{\mathscr{A}}$ is a conjugate of \mathfrak{D} contained in \mathfrak{F}, but that $\mathfrak{F} \neq \mathfrak{D}$. Let $\mathfrak{D}=\langle D\rangle$, $\mathfrak{F}=\langle E\rangle$. By hypothesis, we can find an element $X=X(\mathbb{F})$ in \mathfrak{F} such that X normalizes $\langle E, D\rangle=F$, and with respect to the basis (E, D) has the matrix $\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$. Enlarge \mathfrak{F} to a S_{p}-subgroup \mathfrak{F}^{*} of $C_{\mathfrak{x}}(\mathfrak{F})$. Since $\mathfrak{F}=\mathfrak{D}^{\boldsymbol{A}}$, $\mathfrak{Y}^{\boldsymbol{\beta}} \subseteq C_{\mathfrak{X}}(\mathbb{E})$, so \mathfrak{F}^{*} is a $S_{p^{\prime}}$-subgroup of \mathfrak{X}, and $\mathfrak{F} \subseteq \boldsymbol{Z}\left(\mathfrak{P}^{*}\right)$. Since $\boldsymbol{Z}\left(\mathfrak{F}^{*}\right)$ is cyclic by hypothesis, we have $\mathbb{F}=\Omega_{1}\left(Z\left(\mathfrak{B}^{*}\right)\right)$. By hypothesis, there is an element $Y=Y(\mathfrak{D})$ in \mathfrak{F}^{*} which normalizes \mathfrak{F}_{5} and with respect
to the basis (E, D) has the matrix $\left(\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right)$. Now $\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$ and $\left(\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right)$ generate $S L(2, p)$ [6, Sections 262 and 263], so $S L(2, p)$ is involved in $\boldsymbol{N}_{\mathfrak{X}}(\mathfrak{F})$, as desired.

Lemma 8.11. If \mathfrak{A} is a p-subgroup and \mathfrak{B} is a q-subgroup of \mathfrak{X}, $p \neq q$, and \mathfrak{A} normalizes \mathfrak{B} then $[\mathfrak{B}, \mathfrak{X}]=[\mathfrak{B}, \mathfrak{X}, \mathfrak{N}]$.

Proof. By 3.7, [श, $\mathfrak{B}] \triangleleft \mathfrak{A B}$. Since $\mathfrak{Y} \mathfrak{Z} /[\mathfrak{Y}, \mathfrak{B}]$ is nilpotent, we can suppose that $[\mathfrak{A}, \mathfrak{B}]$ is elementary. With this reduction, $[\mathfrak{B}, \mathfrak{Y}, \mathfrak{N}] \triangleleft$ $\mathfrak{Y} \mathfrak{B}$, and we can assume that $[\mathfrak{B}, \mathfrak{Y}, \mathfrak{Q}]=1$. In this case, \mathfrak{U} stabilizes the chain $\mathfrak{B} \supseteq[\mathfrak{F}, \mathfrak{X}] \supseteq 1$, so $[\mathfrak{F}, \mathfrak{X}]=1$ follows from Lemma 8.1 and $p \neq q$.

Lemma 8.12. Let p be an odd prime, and \& an elementary subgroup of the p-group \mathfrak{P}. Suppose A is a p^{\prime}-automorphism of \mathfrak{F} which centralizes $\Omega_{1}\left(C_{\mathfrak{B}}(\mathfrak{F})\right)$. Then $A=1$.

Proof. Since $\mathfrak{G} \subseteq \Omega_{1}\left(C_{\mathfrak{F}}(\mathbb{F})\right), A$ centralizes \mathbb{F}. Since \mathbb{F} is A-invariant, so is $C_{\mathfrak{B}}(\mathfrak{G})$. By $3.6 A$ centralizes $\boldsymbol{C}_{\mathfrak{F}}(\mathfrak{F})$, so if $\mathfrak{F} \subseteq \boldsymbol{Z}(\mathfrak{F})$, we are done.

If $\boldsymbol{C}_{\mathfrak{P}}(\mathfrak{F}) \subset \mathfrak{P}$, then $\boldsymbol{C}_{\mathfrak{P}}(\mathfrak{F}) \boldsymbol{D}(\mathfrak{F}) \subset \mathfrak{P}$, and by induction A centralizes $\boldsymbol{D}(\mathfrak{F})$. Now $[\mathfrak{F}, \mathfrak{F}] \subseteq \boldsymbol{D}(\mathfrak{F})$ and so $[\mathfrak{F}, \mathfrak{F},\langle A\rangle]=1$. Also, $[\mathscr{F},\langle A\rangle]=1$, so that $[\mathfrak{F},\langle A\rangle, \mathfrak{P}]=1$. By the three subgroups lemma, we have $[\langle\mathrm{A}\rangle, \mathfrak{P}, \mathfrak{F}]=1$, so that $[\mathfrak{P},\langle A\rangle] \cong C_{\mathfrak{F}}(\mathcal{F})$, and A stabilizes the chain $\mathfrak{F} \supseteq \boldsymbol{C}_{\mathfrak{F}}(\mathfrak{F}) \supset 1$. It follows from Lemma 8.1 that $A=1$.

Lemma 8.13. Suppose \mathfrak{F} is a S_{p}-subgroup of the solvable group $\mathfrak{G}, \operatorname{SPC}_{3}(\mathfrak{P})$ is empty and \mathfrak{S} is of odd order. Then \mathbb{S}^{\prime} centralizes every chief p-factor of \mathfrak{S}.

Proof. We assume without loss of generality that $O_{p}(\mathbb{S})=1$. We first show that $\mathfrak{P} \triangleleft \mathfrak{S}$. Let $\mathfrak{y}=O_{p}(\mathfrak{S})$, and let \mathfrak{C} be a subgroup of \mathfrak{F} chosen in accordance with Lemma 8.2. Let $\mathfrak{W}=\Omega_{1}(\mathbb{C})$. Since p is odd and $\mathrm{cl}(\mathfrak{C}) \leqq 2, \mathfrak{W}$ is of exponent p.

Since $O_{p^{\prime}}(\mathbb{S})=1$, Lemma 8.2 implies that $\operatorname{ker}(\mathbb{S} \longrightarrow$ Aut $\mathbb{C})$ is a p-group. By 3.6, it now follows that $\operatorname{ker}(\mathbb{S} \xrightarrow{\infty}$ Aut \mathfrak{B}) is a p-group. Since \mathfrak{P} has no elementary subgroup of order p^{3}, neither does \mathfrak{M}, and so $|\mathfrak{W}: \boldsymbol{D}(\mathfrak{W})| \leqq p^{2}$. Hence no p-element of \mathfrak{S} has a minimal polynomial $(x-1)^{p}$ on $\mathfrak{W} / \boldsymbol{D}(\mathfrak{W})$. Now (B) implies that $\mathfrak{F} / \operatorname{ker} \alpha \triangleleft \mathbb{S} / \operatorname{ker} \alpha$. and so $\mathfrak{F} \triangleleft \mathfrak{S}$, since $\operatorname{ker} \alpha \subseteq \mathfrak{F}$.

Since $\mathfrak{B} \triangleleft \mathfrak{S}$, the lemma is equivalent to the assertion that if \mathbb{Z} is a S_{p}-subgroup of \mathbb{S}, then $\mathbb{Z}^{\prime}=1$. If $\mathbb{Q}^{\prime} \neq 1$, we can suppose that \mathfrak{E}^{\prime} centralizes every proper subgroup of \mathfrak{F} which is normal in \mathcal{S}. Since \mathbb{Z} is completely reducible on $\mathfrak{P} / D(\mathfrak{F})$, we can suppose that $\left[\mathfrak{F}, \mathbb{R}^{\prime}\right]=\mathfrak{B}$
and $\left[D(\mathfrak{P}), \mathfrak{R}^{\prime}\right]=1$. By Lemma 8.7 we have $D(\mathfrak{F}) \subseteq Z(\mathfrak{F})$ and so $\Omega_{1}(\mathfrak{F})=\Re$ is of exponent p and class at most 2 . Since \mathfrak{F} has no elementary subgroup of order p^{3}, neither does Ω. If Ω is of order p, \mathfrak{R}^{\prime} centralizes \Re and so centralizes \mathfrak{B} by 3.6 , thus $\mathfrak{Z}^{\prime}=1$. Otherwise, $|\mathfrak{R}: D(\Re)|=p^{2}$ and \mathfrak{B} is faithfully represented as automorphisms of $\mathscr{R} / D(\Re)$. Since $|\mathfrak{Z}|$ is odd, $\mathbb{Z}^{\prime}=1$.

Lemma 8.14. If \mathfrak{S} is a solvable group of odd order, and $\operatorname{SOC}_{\mathscr{S}}(\mathfrak{F})$ is empty for every S_{p}-subgroup \mathfrak{B} of \mathfrak{S} and every prime p, then \mathfrak{S}^{\prime} is nilpotent.

Proof. By the preceding lemma, \mathfrak{S}^{\prime} centralizes every chief factor of \mathfrak{S}. By 3.2, $\mathfrak{S}^{\prime} \subseteq \boldsymbol{F}(\mathfrak{S})$, a nilpotent group.

Lemma 8.15. Let \mathfrak{S} be a solvable group of odd order and suppose that \mathfrak{S} does not contain an elementary subgroup of order p^{3} for any prime p. Let \mathfrak{F} be a S_{p}-subgroup of \mathfrak{S} and let \mathbb{C} be any characteristic subgroup of \mathfrak{F}. Then $\mathfrak{C} \cap \mathfrak{F}^{\prime} \triangleleft \subseteq$.

Proof. We can suppose that $\mathbb{C} \subseteq \mathfrak{F}^{\prime}$, since $\mathbb{C} \cap \mathfrak{F}^{\prime}$ char \mathfrak{F}. By Lemma $8.14 \boldsymbol{F}(\mathfrak{S})$ normalizes \mathfrak{C}. Since $\boldsymbol{F}(\mathfrak{S}) \mathfrak{F} \triangleleft \mathfrak{S}$, we have $\mathfrak{S}=$ $\boldsymbol{F}(\mathfrak{S}) \boldsymbol{N}(\mathfrak{P})$. The lemma follows.

The next two lemmas involve a non abelian p-group \mathfrak{P} with the following properties:
(1) p is odd.
(2) \mathfrak{F} contains a subgroup \mathfrak{F}_{0} of order p such that

$$
C\left(\mathfrak{B}_{0}\right)=\mathfrak{F}_{0} \quad \mathfrak{F}_{1},
$$

where \mathfrak{B}_{1} is cyclic.
Also, \mathfrak{A} is a p^{\prime}-group of automorphisms of \mathfrak{P} of odd order.
Lemma 8.16. With the preceding notation,
(i) \mathfrak{A} is abelian.
(ii) No element of $\mathfrak{R}^{(1)}$ centralizes $\Omega_{1}\left(C\left(\Re_{0}\right)\right)$.
 is empty.

Proof. (ii) is an immediate consequence of Lemma 8.12.
Let \mathfrak{F} be a subgroup of \mathfrak{F} chosen in accordance with Lemma 8.2, and let $\mathfrak{W}=\Omega_{1}(\mathfrak{F})$ so that \mathfrak{A} is faithfully represented on \mathfrak{W}. If $\mathfrak{\Re}_{0} \not{ }_{\underline{\prime}}$ \mathfrak{W}, then $\mathfrak{F}_{0} \mathfrak{W}$ is of maximal class, so that with $\mathfrak{W}_{0}=\mathfrak{W}, \mathfrak{W}_{i+1}=\left[\mathfrak{M}_{i}, \mathfrak{F}\right]$, we have $\left|\mathfrak{W}_{i}: \mathfrak{W}_{i+1}\right|=p, i=0,1, \cdots, n-1,|\mathfrak{W}|=p^{n}$, and both (i) and (iii) follow. If $\mathfrak{F}_{0} \subseteq \mathfrak{W}$, then $m(\mathfrak{W})=2$. Since $[\mathfrak{W}, \mathfrak{F}] \subseteq Z(\mathfrak{W})$,
it follows that $\left\langle\mathfrak{F}_{0}, \boldsymbol{Z}(\mathfrak{W})\right\rangle \triangleleft \mathfrak{F}$. By Lemma $8.9, \mathscr{S}_{\mathscr{C}} \mathscr{N}_{s}(\mathfrak{F})$ is empty. The lemma follows readily from 3.4.

Lemma 8.17. In the preceding notation, assume in addition that $|\mathfrak{Y}|=q$ is a prime, that q does not divide $p-1$, that $\mathfrak{F}=[\mathfrak{P}, \mathfrak{X}]$ and that $\boldsymbol{C}_{\mathfrak{\beta}}(\mathfrak{U})$ is cyclic. Then $|\mathfrak{F}|=p^{3}$.

Proof. Since $q \nmid p-1$, \mathfrak{A} centralizes $Z(\mathfrak{F})$, and so $Z(\mathfrak{F}) \subseteq \mathfrak{F}^{\prime}$. Since $C_{\mathfrak{F}}\left(\mathfrak{R}^{2}\right)$ is cyclic, $\Omega_{1}\left(Z_{2}(\mathfrak{P})\right.$) is not of type (p, p). Hence, $\mathfrak{F}_{0} \subseteq$ $\Omega_{1}\left(Z_{2}(\mathfrak{P})\right)$. Since every automorphism of $\Omega_{1}\left(Z_{2}(\mathfrak{F})\right)$ which is the identity on $\Omega_{1}\left(Z_{2}(\mathfrak{P})\right) / \Omega_{1}(\boldsymbol{Z}(\mathfrak{P}))$ is inner, it follows that $\mathfrak{P}=\Omega_{1}\left(Z_{2}(\mathfrak{F})\right) \cdot \mathfrak{D}$, where $\mathfrak{D}=\boldsymbol{C}_{\mathfrak{F}}\left(\Omega_{1}\left(Z_{3}(\mathfrak{F})\right)\right.$). Since \mathfrak{F}_{1} is cyclic, so is \mathfrak{D}, and so $\mathfrak{D} \subseteq \Omega_{1}\left(\boldsymbol{Z}_{2}(\mathfrak{P})\right)$, by virtue of $\mathfrak{F}=[\mathfrak{F}, \mathfrak{X}]$ and $q \nmid p-1$.

