CHAPTER II

6. Preliminary Lemmas of Lie Type

Hypothesis 6.1.

(i) p is a prime, \mathfrak{P} is a normal S_p-subgroup of \mathfrak{PU} , and \mathfrak{U} is a non identity cyclic p'-group.

(ii) $C_{11}(\mathfrak{P}) = 1$.

(iii) \mathfrak{P}' is elementary abelian and $\mathfrak{P}' \subseteq Z(\mathfrak{P})$.

(iv) $|\mathfrak{PU}|$ is odd.

Let $\mathfrak{U} = \langle U \rangle$, $|\mathfrak{U}| = u$, and $|\mathfrak{P}: D(\mathfrak{P})| = p^*$. Let \mathscr{L} be the Lie ring associated to \mathfrak{P} ([12] p. 328). Then $\mathscr{L} = \mathscr{L}_1^* \bigoplus \mathscr{L}_1^*$ where \mathscr{L}_1^* and \mathscr{L}_2 correspond to $\mathfrak{P}/\mathfrak{P}'$ and \mathfrak{P}' respectively. Let $\mathscr{L}_1 = \mathscr{L}_1^*/p\mathscr{L}_1^*$. For i = 1, 2, let U_i be the linear transformation induced by U on \mathscr{L}_i .

LEMMA 6.1. Assume that Hypothesis 6.1 is satisfied. Let $\varepsilon_1, \dots, \varepsilon_n$ be the characteristic roots of U_1 . Then the characteristic roots of U_2 are found among the elements $\varepsilon_i \varepsilon_j$ with $1 \leq i < j \leq n$.

Proof. Suppose the field is extended so as to include $\varepsilon_1, \dots, \varepsilon_n$. Since U is a p'-group, it is possible to find a basis x_1, \dots, x_n of \mathscr{L}_1 such that $x_i U_1 = \varepsilon_i x_i$, $1 \leq i \leq n$. Therefore, $x_i U_1 \cdot x_j U_1 = \varepsilon_i \varepsilon_j x_i \cdot x_j$. As U induces an automorphism of \mathscr{L} , this yields that

$$(x_i \cdot x_j) U_1 = x_i U_1 \cdot x_j U_1 = \varepsilon_i \varepsilon_j x_i \cdot x_j$$

Since the vectors $x_i \cdot x_j$ with i < j span \mathcal{L}_2 , the lemma follows.

By using a method which differs from that used below, M. Hall proved a variant of Lemma 6.2. We are indebted to him for showing us his proof.

LEMMA 6.2. Assume that Hypothesis 6.1 is satisfied, and that U_1 acts irreducibly on \mathcal{L}_1 . Assume further that n = q is an odd prime and that U_1 and U_2 have the same characteristic polynomial. Then q > 3 and

 $u < 3^{q/3}$

Proof. Let ε^{p^i} be the characteristic roots of U_1 , $0 \leq i < n$. By Lemma 6.1 there exist integers i, j, k such that $\varepsilon^{p^i}\varepsilon^{p^j} = \varepsilon^{p^k}$. Raising this equation to a suitable power yields the existence of integers aand b with $0 \leq a < b < q$ such that $\varepsilon^{p^a+p^{b-1}} = 1$. By Hypothesis 6.1 (ii), the preceding equality implies $p^a + p^b - 1 \equiv 0 \pmod{u}$. Since U_1 acts irreducibly, we also have $p^q - 1 \equiv 0 \pmod{u}$. Since \mathfrak{U} is a p'-group, $ab \neq 0$. Consequently,

(6.1)
$$p^{a} + p^{b} - 1 \equiv 0 \pmod{u}, \\ p^{q} - 1 \equiv 0 \pmod{u}, \quad 0 < a < b < q.$$

Let d be the resultant of the polynomials $f = x^a + x^b - 1$ and $g = x^q - 1$. Since q is a prime, the two polynomials are relatively prime, so d is a nonzero integer. Also, by a basic property of resultants,

$$(6.2) d = hf + kg$$

for suitable integral polynomials h and k.

Let ε_q be a primitive qth root of unity over \mathcal{Q} , so that we also have

(6.3)
$$d^{2} = \prod_{i=0}^{q-1} \left(\varepsilon_{q}^{ia} + \varepsilon_{q}^{ib} - 1 \right) \prod_{i=0}^{q-1} \left(\varepsilon_{q}^{-ia} + \varepsilon_{q}^{-ib} - 1 \right)$$
$$= \prod_{i=0}^{q-1} \left\{ 3 + \varepsilon_{q}^{i(a-b)} + \varepsilon_{q}^{i(b-a)} - \varepsilon_{q}^{ia} - \varepsilon_{q}^{ib} - \varepsilon_{q}^{-ib} - \varepsilon_{q}^{-ia} \right\}.$$

For q = 3, this yields that $d^2 = (3 - 1 + 1 + 1)^2 = 4^2$, so that $d = \pm 4$. Since u is odd (6.1) and (6.2) imply that u = 1. This is not the case, so q > 3.

Each term on the right hand side of (6.3) is non negative. As the geometric mean of non negative numbers is at most the arithmetic mean, (6.3) implies that

$$d^{2/q} \leq rac{1}{q} \sum_{i=0}^{q-1} \{3 + arepsilon_q^{i(a-b)} + arepsilon_q^{i(b-a)} - arepsilon_q^{ia} - arepsilon_q^{-ia} - arepsilon_q^{ib} - arepsilon_q^{-ib}\}$$

The algebraic trace of a primitive qth root of unity is -1, hence

 $d^{\mathfrak{z}/q} \leq 3$.

Now (6.1) and (6.2) imply that

$$u\leq |d|\leq 3^{q/2}.$$

Since $3^{q/2}$ is irrational, equality cannot hold.

LEMMA 6.3. If \mathfrak{P} is a p-group and $\mathfrak{P}' = D(\mathfrak{P})$, then $C_n(\mathfrak{P})/C_{n+1}(\mathfrak{P})$ is elementary abelian for all n.

Proof. The assertion follows from the congruence

$$[A_1, \cdots, A_n]^p \equiv [A_1, \cdots, A_{n-1}, A_n^p] \pmod{C_{n+1}(\mathfrak{P})},$$

valid for all A_1, \dots, A_n in \mathfrak{P} .

LEMMA 6.4. Suppose that σ is a fixed point free p'-automorphism-

790

of the p-group \mathfrak{P} , $\mathfrak{P}' = D(\mathfrak{P})$ and $A^{\sigma} \equiv A^{\ast} \pmod{\mathfrak{P}'}$ for some integer x independent of A. Then \mathfrak{P} is of exponent p.

Proof. Let $A^{\sigma} = A^{*} \cdot A^{\phi}$ so that A^{ϕ} is in \mathfrak{P}' for all A in \mathfrak{P} . Then

$$[A_1, \cdots, A_n]^{\sigma} = [A_1^{\sigma}, \cdots, A_n^{\sigma}] = [A_1^x \cdot A_1^{\phi}, \cdots, A_n^x \cdot A_n^{\phi}]$$
$$\equiv [A_1^x, \cdots, A_n^x] \equiv [A_1, \cdots, A_n]^{x^n} (\text{mod } C_{n+1}(\mathfrak{P})).$$

Since σ is regular on \mathfrak{P} , σ is also regular on each C_n/C_{n+1} . As the order of σ divides p-1 the above congruences now imply that $\operatorname{cl}(\mathfrak{P}) \leq p-1$ and so \mathfrak{P} is a regular *p*-group. If $\mathcal{O}^1(\mathfrak{P}) \neq 1$, then the mapping $A \longrightarrow A^p$ induces a non zero linear map of $\mathfrak{P}/D(\mathfrak{P})$ to $C_n(\mathfrak{P})/C_{n+1}(\mathfrak{P})$ for suitable *n*. Namely, choose *n* so that $\mathcal{O}^1(\mathfrak{P}) \subseteq C_n(\mathfrak{P})$ but $\mathcal{O}^1(\mathfrak{P}) \not\subseteq C_{n+1}(\mathfrak{P})$, and use the regularity of \mathfrak{P} to guarantee linearity. Notice that $n \geq 2$, since by hypothesis $\mathcal{O}^1(\mathfrak{P}) \subseteq \mathfrak{P}'$. We find that $x \equiv x^n \pmod{p}$, and so $x^{n-1} \equiv 1 \pmod{p}$ and σ has a fixed point on C_{n-1}/C_n , contrary to assumption. Hence, $\mathcal{O}^1(\mathfrak{P}) = 1$.

7. Preliminary Lemmas of Hall-Higman Type

Theorem B of Hall and Higman [21] is used frequently and will be referred to as (B).

LEMMA 7.1. If \mathfrak{X} is a p-solvable linear group of odd order over a field of characteristic p, then $O_p(\mathfrak{X})$ contains every element whose minimal polynomial is $(x-1)^2$.

Proof. Let \mathscr{V} be the space on which \mathfrak{X} acts. The hypotheses of the lemma, together with (B), guarantee that either $O_p(\mathfrak{X}) \neq 1$ or \mathfrak{X} contains no element whose minimal polynomial is $(x-1)^3$.

Let X be an element of \mathfrak{X} with minimal polynomial $(x-1)^3$. Then $O_p(\mathfrak{X}) \neq 1$, and the subspace \mathscr{V}_0 which is elementwise fixed by $O_p(\mathfrak{X})$ is proper and is \mathfrak{X} -invariant. Since $O_p(\mathfrak{X})$ is a p-group, $\mathscr{V}_0 \neq 0$. Let

 $\Re_0 = \ker (\mathfrak{X} \longrightarrow \operatorname{Aut} \mathscr{V}_0), \qquad \Re_1 = \ker (\mathfrak{X} \longrightarrow \operatorname{Aut} (\mathscr{V} / \mathscr{V}_0)).$

By induction on dim \mathcal{V} , $X \in O_p(\mathfrak{X} \mod \mathfrak{R}_i)$, i = 0, 1. Since

 $O_p(\mathfrak{X} \mod \mathfrak{R}_0) \cap O_p(\mathfrak{X} \mod \mathfrak{R}_1)$

is a p-group, the lemma follows.

LEMMA 7.2. Let \mathfrak{X} be a p-solvable group of odd order, and \mathfrak{A} a p-subgroup of \mathfrak{X} . Any one of the following conditions guarantees that $\mathfrak{A} \subseteq O_{p',p}(\mathfrak{X})$:

- 1. A is abelian and $|\mathfrak{X}: N(\mathfrak{A})|$ is prime to p.
- 2. $p \ge 5$ and $[\mathfrak{P}, \mathfrak{A}, \mathfrak{A}, \mathfrak{A}, \mathfrak{A}] = 1$ for some S_p -subgroup \mathfrak{P} of \mathfrak{X} .
- 3. $[\mathfrak{P}, \mathfrak{A}, \mathfrak{A}] = 1$ for some S_p -subgroup \mathfrak{P} of \mathfrak{X} .
- 4. A acts trivially on the factor $O_{p',p,p'}(\mathfrak{X})/O_{p',p}(\mathfrak{X})$.

Proof. Conditions 1, 2, or 3 imply that each element of \mathfrak{A} has a minimal polynomial dividing $(x-1)^{p-1}$ on $O_{p',p}(\mathfrak{X})/\mathfrak{D}$, where $\mathfrak{D} = D(O_{p',p}(\mathfrak{X}) \mod O_{p'}(\mathfrak{X}))$. Thus (B) and the oddness of $|\mathfrak{X}|$ yield 1, 2, and 3. Lemma 1.2.3 of [21] implies 4.

LEMMA 7.3. If \mathfrak{X} is p-solvable, and \mathfrak{P} is a S_p -subgroup of \mathfrak{X} , then $\mathcal{M}(\mathfrak{P})$ is a lattice whose maximal element is $O_p(\mathfrak{X})$.

Proof. Since $O_{p'}(\mathfrak{X}) \triangleleft \mathfrak{X}$ and $\mathfrak{P} \cap O_{p'}(\mathfrak{X}) = 1$, $O_{p'}(\mathfrak{X})$ is in $\mathsf{M}(\mathfrak{P})$. Thus it suffices to show that if $\mathfrak{P} \in \mathsf{M}(\mathfrak{P})$, then $\mathfrak{P} \subseteq O_{p'}(\mathfrak{X})$. Since $\mathfrak{P}\mathfrak{P}$ is a group of order $|\mathfrak{P}| \cdot |\mathfrak{P}|$ and \mathfrak{P} is a S_p -subgroup of \mathfrak{X} , \mathfrak{P} is a p'group, as is $\mathfrak{P}O_{p'}(\mathfrak{X})$. In proving the lemma, we can therefore assume that $O_{p'}(\mathfrak{X}) = 1$, and try to show that $\mathfrak{P} = 1$. In this case, \mathfrak{P} is faithfully represented as automorphisms of $O_p(\mathfrak{X})$, by Lemma 1.2.3 of [21]. Since $O_p(\mathfrak{X}) \subseteq \mathfrak{P}$, we see that $[\mathfrak{P}, O_p(\mathfrak{X})] \subseteq \mathfrak{P} \cap \mathfrak{P}$, and $\mathfrak{P} = 1$ follows.

LEMMA 7.4. Suppose \mathfrak{P} is a S_p -subgroup of \mathfrak{X} and $\mathfrak{A} \in \mathscr{SEN}(\mathfrak{P})$. Then $\mathsf{M}(\mathfrak{A})$ contains only p'-groups. If in addition, \mathfrak{X} is p-solvable, then $\mathsf{M}(\mathfrak{A})$ is a lattice whose maximal element is $O_{p'}(\mathfrak{X})$.

Proof. Suppose \mathfrak{A} normalizes \mathfrak{H} and $\mathfrak{A} \cap \mathfrak{H} = \langle 1 \rangle$. Let \mathfrak{A}^* be a S_p -subgroup of $\mathfrak{A}\mathfrak{H}$ containing \mathfrak{A} . By Sylow's theorem, $\mathfrak{P}_1 = \mathfrak{A}^* \cap \mathfrak{H}$ is a S_p -subgroup of \mathfrak{H} . It is clearly normalized by \mathfrak{A} , and $\mathfrak{A} \cap \mathfrak{P}_1 = \langle 1 \rangle$. If $\mathfrak{P}_1 \neq \langle 1 \rangle$, a basic property of *p*-groups implies that \mathfrak{A} centralizes some non identity element of \mathfrak{P}_1 , contrary to 3.10. Thus, $\mathfrak{P}_1 = \langle 1 \rangle$ and \mathfrak{H} is a *p*'-group. Hence we can assume that \mathfrak{X} is *p*-solvable and that $O_{p'}(\mathfrak{X}) = \langle 1 \rangle$ and try to show that $\mathfrak{H} = \langle 1 \rangle$.

Let $\mathfrak{X}_1 = O_p(\mathfrak{X})\mathfrak{A}\mathfrak{A}$. Then $O_p(\mathfrak{X})\mathfrak{A}$ is a S_p -subgroup of \mathfrak{X}_1 , and $\mathfrak{A} \in \mathscr{SCN}(O_p(\mathfrak{X})\mathfrak{A})$. If $\mathfrak{X}_1 \subset \mathfrak{X}$, then by induction $\mathfrak{P} \subseteq O_{p'}(\mathfrak{X}_1)$ and so $[O_p(\mathfrak{X}), \mathfrak{P}] \subseteq O_p(\mathfrak{X}) \cap O_{p'}(\mathfrak{X}_1) = 1$ and $\mathfrak{P} = 1$. We can suppose that $\mathfrak{X}_1 = \mathfrak{X}$.

If \mathfrak{A} centralizes \mathfrak{H} , then clearly $\mathfrak{A} \triangleleft \mathfrak{X}$, and so ker $(\mathfrak{X} \longrightarrow \operatorname{Aut} \mathfrak{A}) = \mathfrak{A} \times \mathfrak{H}_1$, by 3.10 where $\mathfrak{H} \subseteq \mathfrak{H}_1$. Hence, \mathfrak{H}_1 char $\mathfrak{A} \times \mathfrak{H}_1 \triangleleft \mathfrak{X}$, and $\mathfrak{H}_1 \triangleleft \mathfrak{X}$, so that $\mathfrak{H}_1 = 1$. We suppose that \mathfrak{A} does not centralize \mathfrak{H} , and that \mathfrak{H} is an elementary q-group on which \mathfrak{A} acts irreducibly. Let $\mathfrak{B} = O_p(\mathfrak{X})/D(O_p(\mathfrak{X})) = \mathfrak{B}_1 \times \mathfrak{B}_2$, where $\mathfrak{B}_1 = C_{\mathfrak{B}}(\mathfrak{H})$ and $\mathfrak{B}_2 = [\mathfrak{B}, \mathfrak{H}]$. Let $V \in \mathfrak{B}_2$ and $X \in V$, so that $[X, \mathfrak{A}] \subseteq \mathfrak{A}$. Hence, $[X, \mathfrak{A}]$ maps into \mathfrak{B}_1 , since $[[X, \mathfrak{A}], \mathfrak{H}] \subseteq \mathfrak{H} \cap O_p(\mathfrak{X}) = 1$. But \mathfrak{B}_2 is \mathfrak{X} -invariant, so $[X, \mathfrak{A}]$ maps into $\mathfrak{B}_1 \cap \mathfrak{B}_2 = 1$. Thus, $\mathfrak{A} \subseteq \ker(\mathfrak{X} \longrightarrow \operatorname{Aut} \mathfrak{B}_2)$, and so $[\mathfrak{A}, \mathfrak{H}]$ centralizes $\mathfrak{B}_{\mathfrak{s}}$. As \mathfrak{A} acts irreducibly on \mathfrak{H} , we have $\mathfrak{H} = [\mathfrak{H}, \mathfrak{A}]$, so $\mathfrak{B}_{\mathfrak{s}} = 1$. Thus, \mathfrak{H} centralizes \mathfrak{B} and so centralizes $O_{\mathfrak{p}}(\mathfrak{X})$, so $\mathfrak{H} = 1$, as required.

LEMMA 7.5. Suppose \mathfrak{H} and \mathfrak{H}_1 are $S_{p,q}$ -subgroups of the solvable group \mathfrak{S} . If $\mathfrak{B} \subseteq O_p(\mathfrak{H}_1) \cap \mathfrak{H}$, then $\mathfrak{B} \subseteq O_p(\mathfrak{H})$.

Proof. We proceed by induction on $|\mathfrak{S}|$. We can suppose that \mathfrak{S} has no non identity normal subgroup of order prime to pq. Suppose that \mathfrak{S} possesses a non identity normal *p*-subgroup \mathfrak{F} . Then

$$\mathfrak{J} \subseteq O_p(\mathfrak{H}) \cap O_p(\mathfrak{H}_1) .$$

Let $\overline{\mathfrak{S}} = \mathfrak{S}/\mathfrak{J}, \ \overline{\mathfrak{B}} = \mathfrak{B}\mathfrak{J}/\mathfrak{J}, \ \overline{\mathfrak{S}} = \mathfrak{S}/\mathfrak{J}, \ \overline{\mathfrak{S}} = \mathfrak{S}_1/\mathfrak{J}.$ By induction, $\overline{\mathfrak{B}} \subseteq O_p(\overline{\mathfrak{S}})$, so $\mathfrak{B} \subseteq O_p(\mathfrak{S} \mod \mathfrak{J}) = O_p(\mathfrak{S})$, and we are done. Hence, we can assume that $O_p(\mathfrak{S}) = \langle 1 \rangle$. In this case, $F(\mathfrak{S})$ is a q-group, and $F(\mathfrak{S}) \subseteq \mathfrak{S}_1$. By hypothesis, $\mathfrak{B} \subseteq O_p(\mathfrak{S}_1)$, and so \mathfrak{B} centralizes $F(\mathfrak{S})$. By 3.3, we see that $\mathfrak{B} = \langle 1 \rangle$, so $\mathfrak{B} \subseteq O_p(\mathfrak{S})$ as desired.

The next two lemmas deal with a S_p -subgroup \mathfrak{P} of the *p*-solvable group \mathfrak{X} and with the set

- $\mathcal{S} = \{ \mathfrak{P} | 1. \mathfrak{P} \text{ is a subgroup of } \mathfrak{X} .$
 - **2**. 郛⊑ℌ.
 - 3. The *p*-length of \mathfrak{P} is at most two.
 - 4. $|\mathfrak{P}|$ is not divisible by three distinct primes.}

LEMMA 7.6. $\mathfrak{X} = \langle \mathfrak{H} | \mathfrak{H} \in \mathscr{S} \rangle$.

Proof. Let $\mathfrak{X}_1 = \langle \mathfrak{P} | \mathfrak{P} \in \mathscr{S} \rangle$. It suffices to show that $|\mathfrak{X}_1|_q = |\mathfrak{X}|_q$ for every prime q. This is clear if q = p, so suppose $q \neq p$. Since \mathfrak{X} is p-solvable, \mathfrak{X} satisfies $E_{p,q}$, so we can suppose that \mathfrak{X} is a p, qgroup. By induction, we can suppose that \mathfrak{X}_1 contains every proper subgroup of \mathfrak{X} which contains \mathfrak{P} . Since $\mathfrak{PO}_q(\mathfrak{X}) \in \mathscr{S}$, we see that $O_q(\mathfrak{X}) \subseteq \mathfrak{X}_1$. If $N(\mathfrak{P} \cap O_{q,p}(\mathfrak{X})) \subset \mathfrak{X}$, then $N(\mathfrak{P} \cap O_p(\mathfrak{X})) \subseteq \mathfrak{X}_1$. Since $\mathfrak{X} =$ $O_q(\mathfrak{X}) \cdot N(\mathfrak{P} \cap O_{q,p}(\mathfrak{X}))$, we have $\mathfrak{X} = \mathfrak{X}_1$. Thus, we can assume that $O_p(\mathfrak{X}) = \mathfrak{P} \cap O_{q,p}(\mathfrak{X})$. Since $\mathfrak{PO}_{p,q}(\mathfrak{X}) \in \mathscr{S}$, we see that $O_{p,q}(\mathfrak{X}) \subseteq \mathfrak{X}_1$. If $\mathfrak{PO}_{p,q}(\mathfrak{X}) = \mathfrak{X}$, we are done, so suppose not. Then $N(\mathfrak{P} \cap O_{p,q,p}(\mathfrak{X})) \subset \mathfrak{X}$, so that \mathfrak{X}_1 contains $N(\mathfrak{P} \cap O_{p,q,p}(\mathfrak{X}))O_{p,q}(\mathfrak{X}) = \mathfrak{X}$, as required.

LEMMA 7.7. Suppose $\mathfrak{M}, \mathfrak{N}$ are subgroups of \mathfrak{X} which contain \mathfrak{P} such that $\mathfrak{H} = (\mathfrak{H} \cap \mathfrak{M})(\mathfrak{H} \cap \mathfrak{N})$ for all \mathfrak{H} in \mathscr{S} . Then $\mathfrak{X} = \mathfrak{M}\mathfrak{N}$.

Proof. It suffices to show that $|\mathfrak{M}\mathfrak{N}|_q \ge |\mathfrak{X}|_q$ for every prime q. This is clear if q = p, so suppose $q \neq p$. Let \mathfrak{Q}_1 be a S_q -subgroup of $\mathfrak{M} \cap \mathfrak{N}$ permutable with \mathfrak{P} , which exists by $E_{p,q}$ in $\mathfrak{M} \cap \mathfrak{N}$. Since \mathfrak{X} satisfies $D_{p,q}$, there is a S_q -subgroup \mathfrak{Q} of \mathfrak{X} which contains \mathfrak{Q}_1 and is permutable with \mathfrak{P} , Set $\mathfrak{R} = \mathfrak{PQ}$. We next show that

$$\mathfrak{R} = (\mathfrak{R} \cap \mathfrak{M})(\mathfrak{R} \cap \mathfrak{N})$$
.

If $\Re \in \mathscr{S}$, this is the case by hypothesis, so we can suppose the *p*-length of \Re is at least 3. Let $\mathfrak{P}_1 = \mathfrak{P} \cap O_{p,q,p}(\mathfrak{R})$, and $\mathfrak{L} = N_{\mathfrak{R}}(\mathfrak{P}_1)$. Then \mathfrak{L} is a proper subgroup of \Re so by induction on $|\mathfrak{X}|$, we have $\mathfrak{L} = (\mathfrak{L} \cap \mathfrak{M})(\mathfrak{L} \cap \mathfrak{R})$. Let $\mathfrak{R} = \mathfrak{P} \cdot O_{p,q,p}(\mathfrak{R}) = \mathfrak{P} O_{p,q}(\mathfrak{R})$. Since \mathfrak{R} is in \mathscr{S} , we have $\mathfrak{R} = (\mathfrak{R} \cap \mathfrak{M})(\mathfrak{R} \cap \mathfrak{R})$. Furthermore, by Sylow's theorem, $\mathfrak{R} = \mathfrak{R}\mathfrak{R}$. Let $R \in \mathfrak{R}$. Then R = KL with $K \in \mathfrak{R}$, $L \in \mathfrak{L}$. Then $K = PK_1$, with P in \mathfrak{P} , K_1 in $O_{p,q}(\mathfrak{R})$. Also, L = MN, M in $\mathfrak{L} \cap \mathfrak{M}$, N in $\mathfrak{L} \cap \mathfrak{N}$, and so $R = KL = PK_1MN = PMK_1^{\mathfrak{M}}N$. Since $K_1^{\mathfrak{M}} \in O_{p,q}(\mathfrak{R})$, we have $K_1^{\mathfrak{M}} = M_1N_1$ with M_1 in $\mathfrak{M} \cap \mathfrak{R}$, N_1 in $\mathfrak{N} \cap \mathfrak{R}$. Hence, $R = PMM_1 \cdot N_1N$ with PMM_1 in $\mathfrak{M} \cap \mathfrak{R}$, N_1N in $\mathfrak{N} \cap \mathfrak{R}$.

Since $\Re = (\Re \cap \mathfrak{M})(\Re \cap \mathfrak{N})$, we have

$$|\mathfrak{X}|_{q} = |\mathfrak{R}|_{q} = \frac{|\mathfrak{R} \cap \mathfrak{M}|_{q} \cdot |\mathfrak{R} \cap \mathfrak{N}|_{q}}{|\mathfrak{R} \cap \mathfrak{M} \cap \mathfrak{N}|_{q}}.$$

By construction, $|\Re \cap \mathfrak{M} \cap \mathfrak{N}|_q = |\mathfrak{M} \cap \mathfrak{N}|_q$. Furthermore, $|\Re \cap \mathfrak{M}|_q \le |\mathfrak{M}|_q$ and $|\Re \cap \mathfrak{N}|_q \le |\mathfrak{N}|_q$, so

$$|\mathfrak{M}\mathfrak{N}|_{\mathfrak{q}} = \frac{|\mathfrak{M}|_{\mathfrak{q}}|\mathfrak{N}|_{\mathfrak{q}}}{|\mathfrak{M}\cap\mathfrak{N}|_{\mathfrak{q}}} \geq \frac{|\mathfrak{R}\cap\mathfrak{M}|_{\mathfrak{q}}\cdot|\mathfrak{R}\cap\mathfrak{N}|_{\mathfrak{q}}}{|\mathfrak{R}\cap\mathfrak{M}\cap\mathfrak{N}|_{\mathfrak{q}}} = |\mathfrak{X}|_{\mathfrak{q}},$$

completing the proof.

LEMMA 7.8. Let \mathfrak{X} be a finite group and \mathfrak{F} a p'-subgroup of \mathfrak{X} which is normalized by the p-subgroup \mathfrak{A} of \mathfrak{X} . Set $\mathfrak{A}_1 = C_{\mathfrak{A}}(\mathfrak{F})$. Suppose \mathfrak{X} is a p-solvable subgroup of \mathfrak{X} containing $\mathfrak{A}\mathfrak{F}$ and $\mathfrak{F} \not\subseteq O_{p'}(\mathfrak{K})$. Then there is a p-solvable subgroup \mathfrak{K} of $\mathfrak{A}C_{\mathfrak{X}}(\mathfrak{A}_1)$ which contains $\mathfrak{A}\mathfrak{F}$ and $\mathfrak{F} \not\subseteq O_{p'}(\mathfrak{K})$.

Proof. Let $\mathfrak{F} = O_{p',p}(\mathfrak{V})/O_{p'}(\mathfrak{V})$. Then \mathfrak{V} does not centralize \mathfrak{F} . Let \mathfrak{B} be a subgroup of \mathfrak{F} which is minimal with respect to being $\mathfrak{A}\mathfrak{P}$ -invariant and not centralized by \mathfrak{P} . Then $\mathfrak{B} = [\mathfrak{B}, \mathfrak{P}]$, and $[\mathfrak{B}, \mathfrak{A}_1] \subseteq$ $D(\mathfrak{B})$, while $[D(\mathfrak{B}), \mathfrak{P}] = 1$. Hence, $[\mathfrak{B}, \mathfrak{A}_1, \mathfrak{P}] = [\mathfrak{A}_1, \mathfrak{P}, \mathfrak{B}] = 1$, and so $[\mathfrak{P}, \mathfrak{B}, \mathfrak{A}_1] = 1$. Since $[\mathfrak{P}, \mathfrak{B}] = \mathfrak{B}$, \mathfrak{A}_1 centralizes \mathfrak{B} . Since \mathfrak{B} is a subgroup of \mathfrak{F} , we have $\mathfrak{B} = \mathfrak{L}_0/O_{p'}(\mathfrak{K})$ for suitable \mathfrak{L}_0 . As $O_{p'}(\mathfrak{K})$ is a p'-group and \mathfrak{B} is a p-group, we can find an \mathfrak{A} -invariant p-subgroup \mathfrak{P}_0 of \mathfrak{L}_0 incident with \mathfrak{B} . Hence, \mathfrak{A}_1 centralizes \mathfrak{P}_0 . Set

$$\Re = \langle \mathfrak{A}, \mathfrak{P}_0, \mathfrak{G} \rangle \subseteq \mathfrak{L}$$
.

As \mathfrak{L} is *p*-solvable so is \mathfrak{R} . If $\mathfrak{H} \subseteq O_{p'}(\mathfrak{R})$, then

$$[\mathfrak{P}_0,\mathfrak{P}]\subseteq\mathfrak{L}_0\cap O_{p'}(\mathfrak{R})\subseteq O_{p'}(\mathfrak{R})$$

and \mathfrak{F} centralizes \mathfrak{B} , contrary to construction. Thus, $\mathfrak{F} \not\subseteq O_{p'}(\mathfrak{R})$, as required.

LEMMA 7.9. Let \mathfrak{P} be a p-solvable subgroup of the finite group \mathfrak{X} , and let \mathfrak{P} be a S_p -subgroup of \mathfrak{P} . Assume that one of the following conditions holds:

- (a) $|\mathfrak{X}|$ is odd.
- (b) $p \ge 5$.
- (c) p = 3 and a S_2 -subgroup of \mathfrak{H} is abelian.

Let $\mathfrak{P}_0 = O_{p',p}(\mathfrak{P}) \cap \mathfrak{P}$ and let \mathfrak{P}^* be a p-subgroup of \mathfrak{X} containing \mathfrak{P} . If \mathfrak{P} is a S_p -subgroup of $N_{\mathfrak{X}}(\mathfrak{P}_0)$, then \mathfrak{P}_0 contains every element of $SCN(\mathfrak{P}^*)$.

Proof. Let $\mathfrak{A} \in \mathscr{SCN}(\mathfrak{P}^*)$. By (B) and (a), (b), (c), it follows that $\mathfrak{A} \cap \mathfrak{P} = \mathfrak{A} \cap \mathfrak{P}_0 = \mathfrak{A}_1$, say. If $\mathfrak{A}_1 \subset \mathfrak{A}$, then there is a \mathfrak{P}_0 -invariant subgroup \mathfrak{B} such that $\mathfrak{A}_1 \subset \mathfrak{B} \subseteq \mathfrak{A}$, $|\mathfrak{B} : \mathfrak{A}_1| = p$. Hence, $[\mathfrak{P}_0, \mathfrak{B}] \subseteq \mathfrak{A}_1 \subseteq$ \mathfrak{P}_0 , so $\mathfrak{B} \subseteq N_{\mathfrak{X}}(\mathfrak{P}_0) \cap \mathfrak{P}^*$. Hence, $\langle \mathfrak{B}, \mathfrak{P} \rangle$ is a *p*-subgroup of $N_{\mathfrak{X}}(\mathfrak{P}_0)$, so $\mathfrak{B} \subseteq \mathfrak{P}$. Hence, $\mathfrak{B} \subseteq \mathfrak{A} \cap \mathfrak{P} = \mathfrak{A}_1$, which is not the case, so $\mathfrak{A} = \mathfrak{A}_1$, as required.

8. Miscellaneous Preliminary Lemmas

LEMMA 8.1. If \mathfrak{X} is a π -group, and \mathscr{C} is a chain $\mathfrak{X} = \mathfrak{X}_0 \supseteq \mathfrak{X}_1 \supseteq \cdots \supseteq \mathfrak{X}_n = 1$, then the stability group \mathfrak{A} of \mathscr{C} is a π -group.

Proof. We proceed by induction on n. Let $A \in \mathfrak{A}$. By induction, there is a π -number m such that $B = A^m$ centralizes \mathfrak{X}_1 . Let $X \in \mathfrak{X}$; then $X^B = XY$ with Y in \mathfrak{X}_1 , and by induction, $X^{B^r} = XY^r$. It follows that $B^{|\mathfrak{X}_1|} = 1$.

LEMMA 8.2. If \mathfrak{P} is a p-group, then \mathfrak{P} possesses a characteristic subgroup \mathfrak{C} such that

(i) $\operatorname{cl}(\mathbb{C}) \leq 2$, and $\mathbb{C}/\mathbb{Z}(\mathbb{C})$ is elementary.

(ii) ker (Aut $\mathfrak{P} \xrightarrow{\operatorname{res}}$ Aut \mathfrak{C}) is a p-group. (res is the homomorphism induced by restricting A in Aut \mathfrak{P} to \mathfrak{C} .)

(iii) $[\mathfrak{P}, \mathfrak{C}] \subseteq \mathbb{Z}(\mathfrak{C})$ and $C(\mathfrak{C}) = \mathbb{Z}(\mathfrak{C})$.

Proof. Suppose \mathbb{C} can be found to satisfy (i) and (iii). Let $\Re = \ker$ res. In commutator notation, $[\Re, \mathbb{C}] = 1$, and so $[\Re, \mathbb{C}, \Im] = 1$. Since $[\mathbb{C}, \Im] \subseteq \mathbb{C}$, we also have $[\mathbb{C}, \Im, \Re] = 1$ and 3.1 implies $[\Im, \Re, \mathbb{C}] = 1$, so that $[\Im, \Re] \subseteq \mathbb{Z}(\mathbb{C})$. Thus, \Re stabilizes the chain $\Im \supseteq \mathbb{C} \supseteq 1$ so is a *p*-group by Lemma 8.1. If now some element of $\mathscr{GCN}(\mathfrak{P})$ is characteristic in \mathfrak{P} , then (i) and (iii) are satisfied and we are done. Otherwise, let \mathfrak{A} be a maximal characteristic abelian subgroup of \mathfrak{P} , and let \mathfrak{C} be the group generated by all subgroups \mathfrak{D} of \mathfrak{P} such that $\mathfrak{A} \subset \mathfrak{D}$, $|\mathfrak{D}:\mathfrak{A}| = p$, $\mathfrak{D} \subseteq \mathbb{Z}(\mathfrak{P} \mod \mathfrak{A}), \ \mathfrak{D} \subseteq \mathbb{C}(\mathfrak{A})$. By construction, $\mathfrak{A} \subseteq \mathbb{Z}(\mathfrak{C})$, and \mathfrak{C} is seen to be characteristic. The maximal nature of \mathfrak{A} implies that $\mathfrak{A} = \mathbb{Z}(\mathfrak{C})$. Also by construction $[\mathfrak{P}, \mathfrak{C}] \subseteq \mathfrak{A} = \mathbb{Z}(\mathfrak{C})$, so in particular, $[\mathfrak{C}, \mathfrak{C}] \subseteq \mathbb{Z}(\mathfrak{C})$ and cl $(\mathfrak{C}) \leq 2$. By construction, $\mathfrak{C}/\mathbb{Z}(\mathfrak{C})$ is elementary.

We next show that $C(\mathfrak{C}) = \mathbb{Z}(\mathfrak{C})$. This statement is of course equivalent to the statement that $C(\mathfrak{C}) \subseteq \mathfrak{C}$. Suppose by way of contradiction that $C(\mathfrak{C}) \not\subseteq \mathfrak{C}$. Let \mathfrak{C} be a subgroup of $C(\mathfrak{C})$ of minimal order subject to (a) $\mathfrak{C} \triangleleft \mathfrak{P}$, and (b) $\mathfrak{C} \not\subseteq \mathfrak{C}$. Since $C(\mathfrak{C})$ satisfies (a) and (b), \mathfrak{C} exists. By the minimality of \mathfrak{C} , we see that $[\mathfrak{P}, \mathfrak{C}] \subseteq \mathfrak{C}$ and $D(\mathfrak{C}) \subseteq \mathfrak{C}$. Since \mathfrak{C} centralizes \mathfrak{C} , so do $[\mathfrak{P}, \mathfrak{C}]$ and $D(\mathfrak{C})$, so we have $[\mathfrak{P}, \mathfrak{C}] \subseteq \mathfrak{A}$ and $D(\mathfrak{C}) \subseteq \mathfrak{A}$. The minimal nature of \mathfrak{C} guarantees that $\mathfrak{C}/\mathfrak{C} \cap \mathfrak{C}$ is of order p. Since $\mathfrak{C} \cap \mathfrak{C} = \mathfrak{C} \cap \mathfrak{A}$, $\mathfrak{C}/\mathfrak{C} \cap \mathfrak{A}$ is of order p, so $\mathfrak{CA}/\mathfrak{A}$ is of order p. By construction of \mathfrak{C} , we find $\mathfrak{CA} \subseteq$ \mathfrak{C} , so $\mathfrak{C} \subseteq \mathfrak{C}$, in conflict with (b). Hence, $C(\mathfrak{C}) = \mathbb{Z}(\mathfrak{C})$, and (i) and (iii) are proved.

LEMMA 8.3. Let \mathfrak{X} be a p-group, p odd, and among all elements of $\mathscr{SCN}(\mathfrak{X})$, choose \mathfrak{A} to maximize $m(\mathfrak{A})$. Then $\Omega_1(C(\Omega_1(\mathfrak{A}))) = \Omega_1(\mathfrak{A})$.

REMARK. The oddness of p is required, as the dihedral group of order 16 shows.

Proof. We must show that whenever an element of \mathfrak{X} of order p centralizes $\Omega_1(\mathfrak{A})$, then the element lies in $\Omega_1(\mathfrak{A})$.

If $X \in C(\Omega_1(\mathfrak{A}))$ and $X^p = 1$, let $\mathfrak{B}(X) = \mathfrak{B}_1 = \langle \Omega_1(\mathfrak{A}), X \rangle$, and let $\mathfrak{B}_1 \subset \mathfrak{B}_2 \subset \cdots \subset \mathfrak{B}_n = \langle \mathfrak{A}, X \rangle$ be an ascending chain of subgroups, each of index p in its successor. We wish to show that $\mathfrak{B}_1 \triangleleft \mathfrak{B}_n$. Suppose $\mathfrak{B}_1 \triangleleft \mathfrak{B}_m$ for some $m \leq n-1$. Then \mathfrak{B}_m is generated by its normal abelian subgroups \mathfrak{B}_1 and $\mathfrak{B}_m \cap \mathfrak{A}$, so \mathfrak{B}_m is of class at most two, so is regular. Let $Z \in \mathfrak{B}_m$, Z of order p. Then $Z = X^*A$, A in \mathfrak{A}, k an integer. Since \mathfrak{B}_m is regular, $X^{-k}Z$ is of order 1 or p. Hence, $A \in \Omega_1(\mathfrak{A})$, and $Z \in \mathfrak{B}_1$. Hence, $\mathfrak{B}_1 = \Omega_1(\mathfrak{B}_m) \operatorname{char} \mathfrak{B}_m \triangleleft \mathfrak{B}_{m+1}$, and $\mathfrak{B}_1 \triangleleft \mathfrak{B}_n$ follows. In particular, X stabilizes the chain $\mathfrak{A} \supseteq \Omega_1(\mathfrak{A}) \supseteq \langle 1 \rangle$.

It follows that if $\mathfrak{D} = \mathcal{Q}_1(C(\mathcal{Q}_1(\mathfrak{A})))$, then \mathfrak{D}' centralizes \mathfrak{A} . Since $\mathfrak{A} \in \mathscr{SCN}(\mathfrak{X}), \mathfrak{D}' \subseteq \mathfrak{A}$. We next show that \mathfrak{D} is of exponent p. Since $[\mathfrak{D}, \mathfrak{D}] \subseteq \mathfrak{A}$, we see that $[\mathfrak{D}, \mathfrak{D}, \mathfrak{D}] \subseteq \mathcal{Q}_1(\mathfrak{A})$, and so

$$[\mathfrak{D},\mathfrak{D},\mathfrak{D},\mathfrak{D},\mathfrak{D}]=1$$
 ,

and $cl(\mathfrak{D}) \leq 3$. If $p \geq 5$, then \mathfrak{D} is regular, and being generated by

elements of order p, is of exponent p. It remains to treat the case p = 3, and we must show that the elements of \mathfrak{D} of order at most 3 form a subgroup. Suppose false, and that $\langle X, Y \rangle$ is of minimal order subject to $X^3 = Y^3 = 1$, $(XY)^3 \neq 1$, X and Y being elements of \mathfrak{D} . Since $\langle Y, Y^{I} \rangle \subset \langle X, Y \rangle$, $[Y, X] = Y^{-1}$. $X^{-1}YX$ is of order three. Hence, [X, Y] is in $\mathcal{Q}_1(\mathfrak{A})$, and so [Y, X] is centralized by both X and Y. It follows that $(XY)^3 = X^3Y^3[Y, X]^3 = 1$, so \mathfrak{D} is of exponent p in all cases.

If $\Omega_1(\mathfrak{A}) \subset \mathfrak{D}$, let $\mathfrak{C} \triangleleft \mathfrak{X}$, $\mathfrak{C} \subseteq \mathfrak{D}$, $|\mathfrak{C} : \Omega_1(\mathfrak{A})| = p$. Since $\Omega_1(\mathfrak{A}) \subseteq \mathbb{Z}(\mathfrak{C})$, \mathfrak{C} is abelian. But $m(\mathfrak{C}) = m(\mathfrak{A}) + 1 > m(\mathfrak{A})$, in conflict with the maximal nature of \mathfrak{A} , since \mathfrak{C} is contained in some element of $\mathcal{SEN}(\mathfrak{X})$ by 3.9.

LEMMA 8.4. Suppose p is an odd prime and \mathfrak{X} is a p-group. (i) If $\mathscr{SCN}_{\mathfrak{s}}(\mathfrak{X})$ is empty, then every abelian subgroup of \mathfrak{X} is generated by two elements.

(ii) If $S \in \mathcal{N}_{3}(\mathfrak{X})$ is empty and A is an automorphism of \mathfrak{X} of prime order q, $p \neq q$, then q divides $p^{3} - 1$.

Proof. (i) Suppose \mathfrak{A} is chosen in accordance with Lemma 8.3. Suppose also that \mathfrak{X} contains an elementary subgroup \mathfrak{C} of order p^3 . Let $\mathfrak{C}_1 = C_{\mathfrak{C}}(\mathfrak{Q}_1(\mathfrak{A}))$, so that \mathfrak{C}_1 is of order p^2 at least. But by Lemma 8.3, $\mathfrak{C}_1 \subseteq \mathfrak{Q}_1(\mathfrak{A})$, a group of order at most p^2 , and so $\mathfrak{C}_1 = \mathfrak{Q}_1(\mathfrak{A})$. But now Lemma 8.3 is violated since \mathfrak{C} centralizes \mathfrak{C}_1 .

(ii) Among the A-invariant subgroups of \mathfrak{X} on which A acts non trivially, let \mathfrak{Y} be minimal. By 3.11, \mathfrak{Y} is a special *p*-group. Since p is odd, \mathfrak{Y} is regular, so 3.6 implies that \mathfrak{Y} is of exponent p. By the first part of this lemma, \mathfrak{Y} contains no elementary subgroup of order p^3 . It follows readily that $m(\mathfrak{Y}) \leq 2$, and (ii) follows from the well known fact that q divides $|\operatorname{Aut} \mathfrak{Y}/D(\mathfrak{Y})|$.

LEMMA 8.5. If \mathfrak{X} is a group of odd order, p is the smallest prime in $\pi(\mathfrak{X})$, and if in addition \mathfrak{X} contains no elementary subgroup of order p^3 , then \mathfrak{X} has a normal p-complement.

Proof. Let \mathfrak{P} be a S_p -subgroup of \mathfrak{X} . By hypothesis, if \mathfrak{P} is a subgroup of \mathfrak{P} , then $\mathscr{SCN}_3(\mathfrak{P})$ is empty. Application of Lemma 8.4 (ii) shows that $N_{\mathfrak{X}}(\mathfrak{P})/C_{\mathfrak{X}}(\mathfrak{P})$ is a *p*-group for every subgroup \mathfrak{P} of \mathfrak{P} . We apply Theorem 14.4.7 in [12] to complete the proof.

Application of Lemma 8.5 to a simple group \mathfrak{G} of odd order implies that if p is the smallest prime in $\pi(\mathfrak{G})$, then \mathfrak{G} contains an elementary subgroup of order p^3 . In particular, if $3 \in \pi(\mathfrak{G})$, then \mathfrak{G} contains an elementary subgroup of order 27.

LEMMA 8.6. Let \Re_1 , \Re_2 , \Re_3 be subgroups of a group \mathfrak{X} and suppose that for every permutation σ of $\{1, 2, 3\}$,

$$\mathfrak{N}_{\sigma(1)} \subseteq \mathfrak{N}_{\sigma(2)}\mathfrak{N}_{\sigma(3)}$$

Then $\mathfrak{N}_1\mathfrak{N}_2$ is a subgroup of \mathfrak{X} .

Proof. $\mathfrak{N}_{2}\mathfrak{N}_{1} \subseteq (\mathfrak{N}_{1}\mathfrak{N}_{3})(\mathfrak{N}_{3}\mathfrak{N}_{3}) \subseteq \mathfrak{N}_{1}\mathfrak{N}_{3}\mathfrak{N}_{2} \subseteq \mathfrak{N}_{1}(\mathfrak{N}_{1}\mathfrak{N}_{2})\mathfrak{N}_{3} \subseteq \mathfrak{N}_{1}\mathfrak{N}_{2}$, as required.

LEMMA 8.7. If \mathfrak{A} is a p'-group of automorphisms of the p-group \mathfrak{P} , if \mathfrak{A} has no fixed points on $\mathfrak{P}/D(\mathfrak{P})$, and \mathfrak{A} acts trivially on $D(\mathfrak{P})$, then $D(\mathfrak{P}) \subseteq \mathbb{Z}(\mathfrak{P})$.

Proof. In commutator notation, we are assuming $[\mathfrak{P}, \mathfrak{A}] = \mathfrak{P}$, and $[\mathfrak{A}, D(\mathfrak{P})] = 1$. Hence, $[\mathfrak{A}, D(\mathfrak{P}), \mathfrak{P}] = 1$. Since $[D(\mathfrak{P}), \mathfrak{P}] \subseteq D(\mathfrak{P})$, we also have $[D(\mathfrak{P}), \mathfrak{P}, \mathfrak{A}] = 1$. By the three subgroups lemma, we have $[\mathfrak{P}, \mathfrak{A}, D(\mathfrak{P})] = 1$. Since $[\mathfrak{P}, \mathfrak{A}] = \mathfrak{P}$, the lemma follows.

LEMMA 8.8. Suppose \mathfrak{Q} is a q-group, q is odd, A is an automorphism of \mathfrak{Q} of prime order p, $p \equiv 1 \pmod{q}$, and \mathfrak{Q} contains a subgroup \mathfrak{Q}_0 of index q such that $\mathscr{SCN}_{\mathfrak{s}}(\mathfrak{Q}_0)$ is empty. Then $p = 1 + q + q^2$ and \mathfrak{Q} is elementary of order q^3 .

Proof. Since $p \equiv 1 \pmod{q}$ and q is odd, p does not divide $q^2 - 1$. Since $D(\mathfrak{Q}) \subseteq \mathfrak{Q}_0$, Lemma 8.4 (ii) implies that A acts trivially on $D(\mathfrak{Q})$.

Suppose that A has a non trivial fixed point on $\mathfrak{Q}/D(\mathfrak{Q})$. We can then find an A-invariant subgroup \mathfrak{M} of index q in \mathfrak{Q} such that A acts trivially on $\mathfrak{Q}/\mathfrak{M}$. In this case, A does not act trivially on \mathfrak{M} , and so $\mathfrak{M} \neq \mathfrak{Q}_0$, and $\mathfrak{M} \cap \mathfrak{Q}_0$ is of index q in \mathfrak{M} . By induction, $p = 1 + q + q^2$ and \mathfrak{M} is elementary of order q^3 . Since A acts trivially on $\mathfrak{Q}/\mathfrak{M}$, it follows that \mathfrak{Q} is abelian of order q^4 If \mathfrak{Q} were elementary, \mathfrak{Q}_0 would not exist. But if \mathfrak{Q} were not elementary, then A would have a fixed point on $\mathfrak{Q}_1(\mathfrak{Q}) = \mathfrak{M}$, which is not possible. Hence A has no fixed points on $\mathfrak{Q}/D(\mathfrak{Q})$, so by Lemma 8.7, $D(\mathfrak{Q}) \subseteq Z(\mathfrak{Q})$.

Next, suppose that A does not act irreducibly on $\mathfrak{Q}/D(\mathfrak{Q})$. Let $\mathfrak{N}/D(\mathfrak{Q})$ be an irreducible constituent of A on $\mathfrak{Q}/D(\mathfrak{Q})$. By induction, \mathfrak{N} is of order q^3 , and $p = 1 + q + q^3$. Since $D(\mathfrak{Q}) \subset \mathfrak{N}$, $D(\mathfrak{Q})$ is a proper A-invariant subgroup of \mathfrak{N} . The only possibility is $D(\mathfrak{Q}) = 1$, and $|\mathfrak{Q}| = q^3$ follows from the existence of \mathfrak{Q}_0 .

If $|\mathfrak{Q}| = q^3$, then $p = 1 + q + q^2$ follows from Lemma 5.1. Thus, we can suppose that $|\mathfrak{Q}| > q^3$, and that A acts irreducibly on $\mathfrak{Q}/D(\mathfrak{Q})$, and try to derive a contradiction. We see that \mathfrak{Q} must be non abelian. This implies that $D(\mathfrak{Q}) = Z(\mathfrak{Q})$. Let $|\mathfrak{Q}: D(\mathfrak{Q})| = q^*$. Since $p \equiv 1 \pmod{q}$, and $q^n \equiv 1 \pmod{p}$, $n \ge 3$. Since $D(\mathfrak{Q}) = Z(\mathfrak{Q})$, n is even, $\mathfrak{Q}/Z(\mathfrak{Q})$ possessing a non-singular skew-symmetric inner product over integers mod q which admits A. Namely, let \mathfrak{C} be a subgroup of order q contained in \mathfrak{Q}' and let \mathfrak{C}_1 be a complement for \mathfrak{C} in \mathfrak{Q}' . This complement exists since \mathfrak{Q}' is elementary. Then $Z(\mathfrak{P} \mod \mathfrak{C}_1)$ is A-invariant, proper, and contains $D(\mathfrak{Q})$. Since A acts irreducibly on $\mathfrak{Q}/D(\mathfrak{Q})$, we must have $D(\mathfrak{Q}) = Z(\mathfrak{Q} \mod \mathfrak{C}_1)$, so a non-singular skewsymmetric inner product is available. Now \mathfrak{Q} is regular, since $\mathrm{cl}(\mathfrak{Q}) =$ 2, and q is odd, so $|\mathfrak{Q}_1(\mathfrak{Q})| = |\mathfrak{Q}: \mathcal{O}^1(\mathfrak{Q})|$, by [14]. Since $\mathrm{cl}(\mathfrak{Q}) = 2$, $\mathfrak{Q}_1(\mathfrak{Q})$ is of exponent q. Since

$$|\mathfrak{Q}:\mathcal{O}^1(\mathfrak{Q})|\geq |\mathfrak{Q}:D(\mathfrak{Q})|\geq q^4$$
 ,

we see that $|\Omega_1(\mathfrak{Q})| \ge q^4$. Since \mathfrak{Q}_0 exists, $\Omega_1(\mathfrak{Q})$ is non abelian, of order exactly q^4 , since otherwise $\mathfrak{Q}_0 \cap \Omega_1(\mathfrak{Q})$ would contain an elementary subgroup of order q^3 . It follows readily that A centralizes $\Omega_1(\mathfrak{Q})$, and so centralizes \mathfrak{Q} , by 3.6. This is the desired contradiction.

LEMMA 8.9. If \mathfrak{P} is a p-group, if $\mathcal{SCN}_{\mathfrak{s}}(\mathfrak{P})$ is non empty and \mathfrak{A} is a normal abelian subgroup of \mathfrak{P} of type (p, p), then \mathfrak{A} is contained in some element of $\mathcal{SCN}_{\mathfrak{s}}(\mathfrak{P})$.

Proof. Let \mathfrak{E} be a normal elementary subgroup of \mathfrak{P} of order p^s , and let $\mathfrak{E}_1 = C_{\mathfrak{E}}(\mathfrak{A})$. Then $\mathfrak{E}_1 \triangleleft \mathfrak{P}$, and $\langle \mathfrak{A}, \mathfrak{E}_1 \rangle = \mathfrak{F}$ is abelian. If $|\mathfrak{F}| = p^s$, then $\mathfrak{A} = \mathfrak{E}_1 = \mathfrak{F} \subset \mathfrak{E}$, and we are done, since \mathfrak{E} is contained in an element of $\mathscr{SEN}_3(\mathfrak{P})$. If $|\mathfrak{F}| \ge p^s$, then again we are done, since \mathfrak{F} is contained in an element of $\mathscr{SEN}_3(\mathfrak{P})$.

If \mathfrak{X} and \mathfrak{Y} are groups, we say that \mathfrak{Y} is involved in \mathfrak{X} provided some section of \mathfrak{X} is isomorphic to \mathfrak{Y} [18].

LEMMA 8.10. Let \mathfrak{P} be a S_p -subgroup of the group \mathfrak{X} . Suppose that $Z(\mathfrak{P})$ is cyclic and that for each subgroup \mathfrak{A} in \mathfrak{P} of order p which does not lie in $Z(\mathfrak{P})$, there is an element $X = X(\mathfrak{A})$ of \mathfrak{P} which normalizes but does not centralize $\langle \mathfrak{A}, \Omega_1(Z(\mathfrak{P})) \rangle$. Then either SL(2, p) is involved in \mathfrak{X} or $\Omega_1(Z(\mathfrak{P}))$ is weakly closed in \mathfrak{P} .

Proof. Let $\mathfrak{D} = \mathcal{Q}_1(\mathbb{Z}(\mathfrak{P}))$. Suppose $\mathfrak{E} = \mathfrak{D}^{\mathfrak{G}}$ is a conjugate of \mathfrak{D} contained in \mathfrak{P} , but that $\mathfrak{E} \neq \mathfrak{D}$. Let $\mathfrak{D} = \langle D \rangle$, $\mathfrak{E} = \langle E \rangle$. By hypothesis, we can find an element $X = X(\mathfrak{E})$ in \mathfrak{P} such that X normalizes $\langle E, D \rangle = \mathfrak{F}$, and with respect to the basis (E, D) has the matrix $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$. Enlarge \mathfrak{F} to a S_p -subgroup \mathfrak{P}^* of $C_x(\mathfrak{E})$. Since $\mathfrak{E} = \mathfrak{D}^{\mathfrak{G}}$, $\mathfrak{P}^{\mathfrak{G}} \subseteq C_x(\mathfrak{E})$, so \mathfrak{P}^* is a S_p -subgroup of \mathfrak{X} , and $\mathfrak{E} \subseteq \mathbb{Z}(\mathfrak{P}^*)$. Since $\mathbb{Z}(\mathfrak{P}^*)$ is cyclic by hypothesis, we have $\mathfrak{E} = \mathcal{Q}_1(\mathbb{Z}(\mathfrak{P}^*))$. By hypothesis, there is an element $Y = Y(\mathfrak{D})$ in \mathfrak{P}^* which normalizes \mathfrak{F} and with respect

to the basis (E, D) has the matrix $\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$. Now $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ and $\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$ generate SL(2, p) [6, Sections 262 and 263], so SL(2, p) is involved in $N_x(\mathfrak{F})$, as desired.

LEMMA 8.11. If \mathfrak{A} is a p-subgroup and \mathfrak{B} is a q-subgroup of \mathfrak{X} , $p \neq q$, and \mathfrak{A} normalizes \mathfrak{B} then $[\mathfrak{B}, \mathfrak{A}] = [\mathfrak{B}, \mathfrak{A}, \mathfrak{A}]$.

Proof. By 3.7, $[\mathfrak{A}, \mathfrak{B}] \triangleleft \mathfrak{AB}$. Since $\mathfrak{AB}/[\mathfrak{A}, \mathfrak{B}]$ is nilpotent, we can suppose that $[\mathfrak{A}, \mathfrak{B}]$ is elementary. With this reduction, $[\mathfrak{B}, \mathfrak{A}, \mathfrak{A}] \triangleleft \mathfrak{AB}$, and we can assume that $[\mathfrak{B}, \mathfrak{A}, \mathfrak{A}] = 1$. In this case, \mathfrak{A} stabilizes the chain $\mathfrak{B} \supseteq [\mathfrak{B}, \mathfrak{A}] \supseteq 1$, so $[\mathfrak{B}, \mathfrak{A}] = 1$ follows from Lemma 8.1 and $p \neq q$.

LEMMA 8.12. Let p be an odd prime, and \mathfrak{E} an elementary subgroup of the p-group \mathfrak{P} . Suppose A is a p'-automorphism of \mathfrak{P} which centralizes $\Omega_1(C_{\mathfrak{B}}(\mathfrak{E}))$. Then A = 1.

Proof. Since $\mathfrak{C} \subseteq \mathfrak{Q}_1(C_{\mathfrak{P}}(\mathfrak{C}))$, A centralizes \mathfrak{C} . Since \mathfrak{C} is A-invariant, so is $C_{\mathfrak{P}}(\mathfrak{E})$. By 3.6 A centralizes $C_{\mathfrak{P}}(\mathfrak{E})$, so if $\mathfrak{E} \subseteq \mathbb{Z}(\mathfrak{P})$, we are done. If $C_{\mathfrak{P}}(\mathfrak{E}) \subset \mathfrak{P}$, then $C_{\mathfrak{P}}(\mathfrak{E})D(\mathfrak{P}) \subset \mathfrak{P}$, and by induction A centralizes $D(\mathfrak{P})$. Now $[\mathfrak{P}, \mathfrak{E}] \subseteq D(\mathfrak{P})$ and so $[\mathfrak{P}, \mathfrak{E}, \langle A \rangle] = 1$. Also, $[\mathfrak{E}, \langle A \rangle] = 1$, so that $[\mathfrak{E}, \langle A \rangle, \mathfrak{P}] = 1$. By the three subgroups lemma, we have $[\langle A \rangle, \mathfrak{P}, \mathfrak{E}] = 1$, so that $[\mathfrak{P}, \langle A \rangle] \subseteq C_{\mathfrak{P}}(\mathfrak{E})$, and A stabilizes the chain

LEMMA 8.13. Suppose \mathfrak{P} is a S_p -subgroup of the solvable group \mathfrak{S} , $\mathcal{SCN}_3(\mathfrak{P})$ is empty and \mathfrak{S} is of odd order. Then \mathfrak{S}' centralizes every chief p-factor of \mathfrak{S} .

 $\mathfrak{P} \supseteq C_{\mathfrak{B}}(\mathfrak{G}) \supset 1$. It follows from Lemma 8.1 that A = 1.

Proof. We assume without loss of generality that $O_{p'}(\mathfrak{S}) = 1$. We first show that $\mathfrak{P} \triangleleft \mathfrak{S}$. Let $\mathfrak{H} = O_p(\mathfrak{S})$, and let \mathfrak{C} be a subgroup of \mathfrak{H} chosen in accordance with Lemma 8.2. Let $\mathfrak{W} = \mathcal{Q}_1(\mathfrak{C})$. Since p is odd and $cl(\mathfrak{C}) \leq 2$, \mathfrak{W} is of exponent p.

Since $O_{p'}(\mathfrak{S}) = 1$, Lemma 8.2 implies that ker ($\mathfrak{S} \longrightarrow \operatorname{Aut} \mathfrak{S}$) is a *p*-group. By 3.6, it now follows that ker ($\mathfrak{S} \stackrel{\mathfrak{s}}{\longrightarrow} \operatorname{Aut} \mathfrak{W}$) is a *p*-group. Since \mathfrak{P} has no elementary subgroup of order p^3 , neither does \mathfrak{W} , and so $|\mathfrak{W}: D(\mathfrak{W})| \leq p^2$. Hence no *p*-element of \mathfrak{S} has a minimal polynomial $(x-1)^p$ on $\mathfrak{W}/D(\mathfrak{W})$. Now (*B*) implies that $\mathfrak{P}/\ker \alpha \triangleleft \mathfrak{S}/\ker \alpha$. and so $\mathfrak{P} \triangleleft \mathfrak{S}$, since ker $\alpha \subseteq \mathfrak{P}$.

Since $\mathfrak{P} \triangleleft \mathfrak{S}$, the lemma is equivalent to the assertion that if \mathfrak{L} is a $S_{p'}$ -subgroup of \mathfrak{S} , then $\mathfrak{L}' = 1$. If $\mathfrak{L}' \neq 1$, we can suppose that \mathfrak{L}' centralizes every proper subgroup of \mathfrak{P} which is normal in \mathfrak{S} . Since \mathfrak{L} is completely reducible on $\mathfrak{P}/D(\mathfrak{P})$, we can suppose that $[\mathfrak{P}, \mathfrak{L}'] = \mathfrak{P}$

and $[D(\mathfrak{P}), \mathfrak{L}'] = 1$. By Lemma 8.7 we have $D(\mathfrak{P}) \subseteq \mathbb{Z}(\mathfrak{P})$ and so $\mathcal{Q}_1(\mathfrak{P}) = \mathfrak{R}$ is of exponent p and class at most 2. Since \mathfrak{P} has no elementary subgroup of order p^3 , neither does \mathfrak{R} . If \mathfrak{R} is of order p, \mathfrak{L}' centralizes \mathfrak{R} and so centralizes \mathfrak{P} by 3.6, thus $\mathfrak{L}' = 1$. Otherwise, $|\mathfrak{R}: D(\mathfrak{R})| = p^2$ and \mathfrak{L} is faithfully represented as automorphisms of $\mathfrak{R}/D(\mathfrak{R})$. Since $|\mathfrak{L}|$ is odd, $\mathfrak{L}' = 1$.

LEMMA 8.14. If \mathfrak{S} is a solvable group of odd order, and $\mathcal{SCN}_{3}(\mathfrak{P})$ is empty for every S_{p} -subgroup \mathfrak{P} of \mathfrak{S} and every prime p, then \mathfrak{S}' is nilpotent.

Proof. By the preceding lemma, \mathfrak{S}' centralizes every chief factor of \mathfrak{S} . By 3.2, $\mathfrak{S}' \subseteq F(\mathfrak{S})$, a nilpotent group.

LEMMA 8.15. Let \mathfrak{S} be a solvable group of odd order and suppose that \mathfrak{S} does not contain an elementary subgroup of order p^s for any prime p. Let \mathfrak{P} be a S_p -subgroup of \mathfrak{S} and let \mathfrak{C} be any characteristic subgroup of \mathfrak{P} . Then $\mathfrak{C} \cap \mathfrak{P}' \triangleleft \mathfrak{S}$.

Proof. We can suppose that $\mathbb{C} \subseteq \mathfrak{P}'$, since $\mathbb{C} \cap \mathfrak{P}'$ char \mathfrak{P} . By Lemma 8.14 $F(\mathfrak{S})$ normalizes \mathbb{C} . Since $F(\mathfrak{S})\mathfrak{P} \triangleleft \mathfrak{S}$, we have $\mathfrak{S} = F(\mathfrak{S})N(\mathfrak{P})$. The lemma follows.

The next two lemmas involve a non abelian p-group \mathfrak{P} with the following properties:

(1) p is odd.

(2) \mathfrak{P} contains a subgroup \mathfrak{P}_0 of order p such that

$$C(\mathfrak{P}_0) = \mathfrak{P}_0 \quad \mathfrak{P}_1$$

where \mathfrak{P}_1 is cyclic.

Also, \mathfrak{A} is a p'-group of automorphisms of \mathfrak{P} of odd order.

LEMMA 8.16. With the preceding notation,

(i) A is abelian.

(ii) No element of \mathfrak{A}^{\sharp} centralizes $\Omega_1(C(\mathfrak{P}_0))$.

(iii) If \mathfrak{A} is cyclic, then either $|\mathfrak{A}|$ divides p = 1, or $\mathcal{SCN}_{\mathfrak{s}}(\mathfrak{P})$ is empty.

Proof. (ii) is an immediate consequence of Lemma 8.12.

Let \mathfrak{B} be a subgroup of \mathfrak{P} chosen in accordance with Lemma 8.2, and let $\mathfrak{B} = \mathcal{Q}_1(\mathfrak{B})$ so that \mathfrak{A} is faithfully represented on \mathfrak{B} . If $\mathfrak{P}_0 \not\subseteq$ \mathfrak{B} , then $\mathfrak{P}_0 \mathfrak{B}$ is of maximal class, so that with $\mathfrak{B}_0 = \mathfrak{B}$, $\mathfrak{B}_{i+1} = [\mathfrak{B}_i, \mathfrak{P}]$, we have $|\mathfrak{B}_i:\mathfrak{B}_{i+1}| = p$, $i = 0, 1, \dots, n-1$, $|\mathfrak{B}| = p^n$, and both (i) and (iii) follow. If $\mathfrak{P}_0 \subseteq \mathfrak{B}$, then $m(\mathfrak{B}) = 2$. Since $[\mathfrak{B}, \mathfrak{P}] \subseteq \mathbb{Z}(\mathfrak{B})$, it follows that $\langle \mathfrak{P}_0, \mathbb{Z}(\mathfrak{W}) \rangle \triangleleft \mathfrak{P}$. By Lemma 8.9, $\mathscr{SCN}_{\mathfrak{s}}(\mathfrak{P})$ is empty. The lemma follows readily from 3.4.

LEMMA 8.17. In the preceding notation, assume in addition that $|\mathfrak{A}| = q$ is a prime, that q does not divide p-1, that $\mathfrak{P} = [\mathfrak{P}, \mathfrak{A}]$ and that $C_{\mathfrak{B}}(\mathfrak{A})$ is cyclic. Then $|\mathfrak{P}| = p^s$.

Proof. Since $q \nmid p - 1$, \mathfrak{A} centralizes $Z(\mathfrak{P})$, and so $Z(\mathfrak{P}) \subseteq \mathfrak{P}'$. Since $C_{\mathfrak{P}}(\mathfrak{A})$ is cyclic, $\Omega_1(\mathbb{Z}_2(\mathfrak{P}))$ is not of type (p, p). Hence, $\mathfrak{P}_0 \subseteq \Omega_1(\mathbb{Z}_2(\mathfrak{P}))$. Since every automorphism of $\Omega_1(\mathbb{Z}_2(\mathfrak{P}))$ which is the identity on $\Omega_1(\mathbb{Z}_2(\mathfrak{P}))/\Omega_1(\mathbb{Z}(\mathfrak{P}))$ is inner, it follows that $\mathfrak{P} = \Omega_1(\mathbb{Z}_2(\mathfrak{P})) \cdot \mathfrak{D}$, where $\mathfrak{D} = C_{\mathfrak{P}}(\Omega_1(\mathbb{Z}_2(\mathfrak{P})))$. Since \mathfrak{P}_1 is cyclic, so is \mathfrak{D} , and so $\mathfrak{D} \subseteq \Omega_1(\mathbb{Z}_2(\mathfrak{P}))$, by virtue of $\mathfrak{P} = [\mathfrak{P}, \mathfrak{A}]$ and $q \nmid p - 1$.