
ON THE Lp THEORY OF HANKEL TRANSFORMS

G. M. W I N G

l Introduction. Under suitable restrictions on f(x) and vy the Hankel trans-

form g(t) of f(x) is defined by the relation

ω g ( t ) = $* {χ

The inverse is then given formally by

(2) / ( * ) = J f (xtY/2Jv(xt)g(t)dt.

These integrals represent generalizations of the Fourier sine and cosine trans-

forms to which they reduce when V = i: 1/2. The L p theory for the Fourier case

has been studied in considerable detail. In this note we present some results con-

cerning the inversion formula (2) in the Lp

a case.

It is clear that if f(x) £ L and H(v) > —1/2 then the integral in (1) exists.

It has been shown [3,6] that if f{x) ζlLp,l<p<2, then

converges strongly to a function g (t) in L p . For this case Kober has obtained the

inversion formula,

/(«) ==
 ..-1/2-V A.

dx
v+1/2 ί

«, (xt)1/2 Jv+t(xt)

which holds for almost all x In her investigation of Watson transforms, Busbridge

[ l ] has given analogous results for more general kernels. Except when p = 2

the question of the strong convergence of the inversion integral has apparently

been considered only in the Fourier case [2] . We now investigate this problem
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for the Hankel transforms. We assume throughout that R(v) > —1/2.

2. Theorem. We shall establish the following result.

THEOREM 1. Let fix) G Lp

9 1 < p < 2 , and let git) be the limit in

mean of gait), git) = l.i.m. gait), where gait) is defined by (3). //

/ . G O - so

a (χtr>jv{χt)g{t)dt,

then

fa(x) G Lp and /(*) = Li.m. fa (x) .

Proo/. Write

/.(* .* )= / o

α (χt)1/2

(xu)1/2f(u)dufo

aJv(ut)jv(xt)tdt.

Since gbit) converges in the mean to git) it follows that lim^o, faix$b) = fai
χ)

Hence

where [9]

(5) ίT(x,ufα)= Jfα Jv{ut)Jv(xt)tdt

An integral very similar to (4) has been studied in a previous paper [lO] . The

same methods may be used here to show that || /a(*)||p < Λίp|| /(#)||p Our theorem

will now follow in the usual way if we can prove it for step functions which vanish

outside a finite interval. Let φix) be a step function, φix) = 0 for x > A, and

let φaix) correspond to it as in (4). Choose ξ > 2A9 a > A, to get

Jg* \Φa(x) -Φ{x)\pdx = •// dx )// φ(u)(χUy* K(x,u,a) da \".
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From the relations

(6) xin Jv{x) = (2/π)1/2 {cos (* + K) + x~lAv sin (* + K)\ + θ{x~2)

(«-•»)..

where

Av = (l - 4v2)/8 , K =-(2v+ l )τr/4,

and

(7) Jv{x) = O(xvi) (* —» 0 ) ,

where 1^ = R (v), it is easy to see that

so that we have

/ / \Φa(x) -φ

for ξ sufficiently large. Now

As α —» 00 the integral goes to zero by the L2 theory for Hankel transforms

(see [7, Chapter 8J ). This completes the proof.

3 The case p — 1. Theorem 1 fails to hold in the case p = 1. The proof,

similar to that given by Hille and Tamarkin in the Fourier case [2] , will only be

sketched*

THEOREM 2. There exists a function h(t), the Hankel transform of a function

φ{x) £ Lysuch that if

(8) Ψa(x)= fo

a ( * 0 1 / 2 Ju(xt)h(t) dt

then l.i.m. ψa(x) fails to exist.
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Proof. Let h(t) = tί/2 /v(ί)/log(ί + 2). Two integrations of (8) by parts and

use of formulas (5), (6), and (7) yield

( 9 ) ^ α W ( 2 Λ\ Ί

U^-l) log
for large Λ; .

Now define ι//(#) = limα-co ψaix). It is evident from (8) that i/>(x) is con-

tinuous except perhaps at Λ; = 1, while (9) shows that ψix) = 0 ( # " 2 ) . To show

that ι//(#) C L it suffices to consider the neighborhood of x = 1. Formula (6)

yields, after some calculation,

/ \ /•<» cos (1 — x) t , x
Ψ W = ί log (, + 2) " ' + α ( ' ' '

where <χix) is continuous near x = 1. Thus

dt+ f
W 5 J° ί log (2 + t/β) J o t log (2 + t)

The first integral on the right tends to zero as € —» 0 . Since ψix) ~" CC(%) is

positive (see [2] ) it follows that ψix) — OC(Λ ) is integrable over (1,2) [β,

p. 342] . The interval (0,1) may be handled similarly. Hence ψ(x) C L .

That hit) is indeed the Hankel transform of ψix) is a consequence of a result

of P. M. Owen [5,p.31θ] . But it may be seen from (9) that ψaix) is not in L , so

that l.i.m ψaix) surely fails to exist.

4. A summability method. It is natural to try to include the case p = 1 into

the theory by introducing a suitable summability method. Our interest will be con-

fined to the Cesaro method. If fix) £ L and git) is its Hankel transform then we

shall define

/.(*) = fo° (1 - t/a)k{xt)U* Jv(*t)g(t) dt

= C f(y)ck(χ,y,a) dy,
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where

(11) Ck(x,y, a) = f* (xy)1/2 uJ v(*α)j v(yu)(l - u/a)k da.

Offord [4] has studied the local convergence properties of fa(x) for k = l.We

are able to extend his results to the case k > 0, but the estimates required are

too long and tedious for presentation here. Instead we investigate the strong con-

vergence.

THEOREM 3. Let fix) G L, k > 0. // faix) is defined by (10), then faix)

converges strongly to fix).

Proof. We shall first prove that Cjcix9y9a) C L and ||C&(#>y,α)|| < M,

where the norm is taken with respect to x and the bound M is independent of γ and

a. An integration by parts and a change of variable in (11) give

/Ί o) C ( \ — I (Λ — λκ~"l ( \l/2 Π J

2 ^

where

= Jy+i(ays)Jv(axs) - Jv

y - x

Jv+ι{ays)jy{axs) + Jy{ays)jv+ι{axs)
*~ .

Consider

where

J
v+1
(ays) (θ < s < l),

(s > 1).
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Now, as a function of s , G(a9y9s) £ Lp for some p > 1 so that

F(a,y,z) = fΰ

ωG(a,y,s)(sz)1/2Jv{sz)ds

is in Lp as a function of z [3] Also

a'<Ap JjΓ" \G(a,y,s)\Pdsy
/P <M,

where M is a constant independent of a and y. Thus

The other parts of (12) may be cared for similarly, so that we have

The range | y — x \ < I/a is easily handled since, by (11), for this range we have

y,α) | < Ma- Hence | |C^(x,y,a)| | < M. We see at once from (10) that

C \fa(χ)\dx= tfdx

< C \f(y)\dy / / \Ck(x,y,a)\dx,

so ||/a(^)|| ^ ^l l/(*) | | The proof may now be completed by the methods of

Theorem l
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