ON ISOMETRIC ISOMORPHISM OF GROUP ALGEBRAS

J. G. Wendel

1. Introduction. Let G be a locally compact group with right invariant Haar measure m [2, Chapter XI]. The class $L(G)$ of integrable functions on G forms a Banach algebra, with norm and product defined respectively by

$$
\begin{aligned}
\|x\| & =\int|x(g)| m(d g) \\
(x y)(g) & =\int x\left(g h^{-1}\right) y(h)_{m}(d h)
\end{aligned}
$$

The algebra is called real or complex according as the functions $x(g)$ and the scalar multipliers take real or complex values.

Suppose that τ is an isomorphism (algebraic and homeomorphic) of the group G onto a second locally compact group Γ having right invariant Haar measure μ; let c be the constant value of the ratio $m(E) / \mu(\tau E)$, and let χ be a continuous character on G. If T is the mapping of $L(G)$ onto $L(\Gamma)$ defined by

$$
(T x)(\tau g)=c \chi(g) x(g), \quad x \in L(G)
$$

then it is easily verified that T is a linear map preserving products and norms; for short, T is an isometric isomorphism of $L(G)$ onto $L(\Gamma)$.

It is the purpose of the present note to show that, conversely, any isometric is omorphism of $L(G)$ onto $L(\Gamma)$ has the above form, in both the real and complex cases.

We mention in passing that if T is merely required to be a topological isomorphism then G and Γ need not even be algebraically isomorphic. In fact, let G and Γ be any two finite abelian groups each having n elements, of which k are of order 2 . Then the complex group algebras of G and Γ are topologically isomorphic to the direct sum of n complex fields, and the real algebras are topologically isomorphic to the direct sum of $k+1$ real fields and $(n-k-1) / 2$ two-dimensional algebras equivalent to the complex field. The algebraic content of this statement

Received October 24, 1950.
Pacific J. Math. 1 (1951), 305-311.
follows from a theorem of Perlis and Walker [4], but for the sake of completeness we sketch a direct proof.

Since the character group of G is isomorphic to G there are exactly k characters $\chi_{1}, \chi_{2}, \cdots, \chi_{k}$ on G of order 2 . Together with the identity character χ_{0} these are all of the characters on G which take only real values. The remaining characters X_{k+1}, \cdots, X_{n-1} fall into complex-conjugate pairs, $\bar{X}_{2 m}=X_{2 m+1}, m=$ $(k+1) / 2,(k+3) / 2, \cdots,(n-2) / 2$. For $0 \leq j \leq n-1$ let $x_{j} \in L(G)$ (complex) be the vector with components $(1 / n) \chi_{j}(g)$. It is readily verified that the x_{j} are orthogonal idempotents, so that $L(G)$ can be written as the sum of n complex fields, and the same holds for the complex algebra $L(\Gamma)$. In the real case we retain the vectors x_{j} for $0 \leq j \leq k$, and replace the remaining ones by the (real) vectors $y_{m}=x_{2 m}+x_{2 m+1}, z_{m}=i x_{2 m}-i x_{2 m+1}$, whose law of multiplication is easily seen to be $y_{m}^{2}=y_{m}, z_{m}^{2}=-y_{m}, y_{m} z_{m}=z_{m} y_{m}=z_{m}$, while all other products vanish. Since the vectors x_{j}, y_{m}, z_{m} span $L(G)$ we see that $L(G)$ is represented as the sum of $k+1$ real fields and $(n-k-1) / 2$ complex fields; the same representation is obtained for the real algebra $L(\Gamma)$; this completes the proof of the algebraic part of the assertion. The fact that these algebras are also homeomorphic follows from the fact that all norms in a finite dimensional Banach space are equivalent.
2. Statement of results. For any fixed $g_{0} \in G$ let us denote the translation operator $x(g) \longrightarrow x\left(g_{0}^{-1} g\right), x \in L(G)$, by $S_{g_{0}}$; operators Σ_{γ} are defined similarly for $L(\Gamma)$. In this notation our precise result is:

Theorem 1. Let T be an isometric isomorphism of the (real, complex) algebra $L(G)$ onto the (real, complex) algebra $L(\Gamma)$. There is an isomorphism τ of G onto Γ, and a (real, complex) continuous character χ on G such that

$$
\begin{equation*}
T S_{g} T^{-1}=\chi(g) \Sigma_{\tau g}, \quad g \in G \tag{1A}
\end{equation*}
$$

$$
\begin{equation*}
(T x)(\tau g)=c \chi(g) x(g), \quad g \in G, \quad x \in L(G) \tag{1~B}
\end{equation*}
$$

where c is the constant value of the ratio $m(E) / \mu(\tau E)$.
For the proof we make use of a theorem due to Kawada [3] concerning positive

[^0]isomorphisms of $L(G)$ onto $L(\Gamma)$ in the real case; a mapping $P: L(G) \longrightarrow L(\Gamma)$ is called positive in case $x(g) \geq 0$ a.e. in G if and only if $(P x)(\gamma) \geq 0$ a.e. in Γ. Kawada's result reads:

Theorem K. Let P be a positive isomorphism of $L(G)$ onto $L(\Gamma)$, both algebras real. There is an isomorphism τ of G onto Γ such that $P S_{g} P^{-1}=k_{g} \Sigma_{\tau g}$, $g \in G$, where k_{g} is positive for each g.

In order to deduce Theorem 1 from Theorem K we need two intermediate results, of which the first is a sharpening of Kawada's theorem, while the second reveals the close connection which holds between isometric and positive isomorphisms.

Theorem 2. Let P be a positive isomorphism of real $L(G)$ onto $L(\Gamma)$. Then: (2A) P is an isometry;
(2B) $k_{g}=1$ for all $g \in G$;
(2C) $\quad P$ is given by the formula $(P x)(\tau g)=c x(g)$, where c is the constant value of the ratio $m(E) / \mu(\tau E)$.

Theorem 3. Let T be an isometric isomorphism of $L(G)$ onto $L(\Gamma)$. There is a continuous character $\chi(\gamma)$ on Γ such that if the mapping $P: L(G) \longrightarrow L(\Gamma)$ is defined by $(P x)(\gamma)=\chi(\gamma)(T x)(\gamma), x \in L(G), \gamma \in \Gamma$, then P is a positive is omorphism of the real subalgebra of $L(G)$ onto the real subalgebra of $L(\Gamma)$. The character X is real or complex with $L(G)$ and $L(\Gamma)$.
3. Proof of Theorem 2. P and its inverse are both order-preserving operators, and therefore are bounded [1, p.249]. Consequently the ratio $\|P x\| /\|x\|$ is bounded away from zero and infinity as x varies over $L(G), x \neq 0$. If x is a positive element of $L(G)$ it follows by repeated application of Fubini's theorem that $\left\|x^{n}\right\|=\|x\|^{n}$; since $P x$ is also positive, and $P\left(x^{n}\right)=(P x)^{n}$, we have the result that for fixed positive $x \neq 0$ the quantity $\{\|P x\| /\|x\|\}^{n}$ is bounded above and below for $n=1,2, \cdots$. Hence P is isometric at least for the positive elements of $L(G)$. But now for any $x \in L(G)$ we may write $x=x^{+}+x^{-}$, where x^{+}and x^{-} denote respectively the positive and negative parts of x. Then

$$
\|x\|=\left\|x^{+}+x^{-}\right\|=\left\|x^{+}\right\|+\left\|x^{-}\right\|=\left\|P_{x}^{+}\right\|+\left\|P_{x}^{-}\right\| \geq\left\|P_{x}^{+}+P_{x}^{-}\right\|=\|P x\| .
$$

Applying the argument to P^{-1} we obtain the result

$$
\|x\|=\left\|P^{-1} P x\right\| \leq\|P x\| \leq\|x\|
$$

which is the statement (2A).
Theorem (2B) follows at once from this and Theorem K. For if $x \in L(G)$ then $\left\|S_{g} x\right\|=m_{g}\|x\|$, where m_{g} is the constant value of the ratio $m(g E) / m(E)$. Similarly, $\left\|\Sigma_{\tau g} \xi\right\|=\mu_{\tau g}\|\xi\|$. Since τ is a homeomorphism, $\mu_{\tau g}=m_{g}$. The constant k_{g} may now be evaluated by taking norms on both sides of the equation $P S_{g} P^{-1}$ $=k_{g} \Sigma_{\tau g}$, and must therefore have the value unity.

To prove part (2C) of the theorem we observe that the operator Q defined by $(Q x)(\tau g)=c x(g)$ satisfies the relation $Q S_{g} Q^{-1}=\Sigma_{\tau g}$, and is an isomorphism of $L(G)$ onto $L(\Gamma)$. Then $Q S_{g} Q^{-1}=P S_{g} P^{-1}, g \in G$, and consequently $R=P^{-1} Q$ is a continuous automorphism of $L(G)$ which commutes with every S_{g}. We shall show that R must be the identity mapping.

Segal [5, p. 84] has shown that the product $x y$ of two elements x, y belonging to $L(G)$ may be written as a Bochner integral, which in our notation takes the form

$$
x y=\int x(h) m_{h}^{-1}\left\{S_{h} y\right\} m(d h),
$$

where the quantity in braces is a vector-valued function of $h \in G$, and the function m_{g} was defined above. Applying the operator R we obtain

$$
R(x y)=\int x(h) m_{h}^{-1}\left\{R S_{h} y\right\} m(d h)=\int x(h) m_{h}^{-1}\left\{S_{h} R y\right\} m(d h)=x R y .
$$

But R is an automorphism, and so also $R(x y)=(R x)(R y)$. Thus $x=R x$, all $x \in L(G)$, which shows that $P=Q$, as was to be proved.
4. Proof of Theorem 3. We first require several lemmas, all of which share the hypothesis: T is an isometric isomorphism of $L(G)$ onto $L(\Gamma)$, indifferently real or complex. For $x, y \in L(G)$ we write ξ for $T x, \eta$ for $T y$. We denote by $E(x)$ the set $\{g \mid g \in G, x(g) \neq 0\}$, which is regarded as being determined only up to a null-set; $E(\xi)$ in Γ is defined in the same fashion. (Although we make no use of this fact, the first three lemmas below actually hold in case T is an isometry between two arbitrary L-spaces.)

Lemma 1. If $E(x) \cap E(y)=\Lambda$ then $E(\xi) \cap E(\eta)=\Lambda$, and conversely.
Proof. The hypotheses imply that for all scalars A we have $\|x+A y\|=\|x\|$ $+|A|\|y\|$. Then for all A we have $\|\xi+A \eta\|=\|\xi\|+|A|\|\eta\|$, which implies that $E(\xi)$ and $E(\eta)$ are disjoint. For the converse we need only replace T by T^{-1}.

Lemma 2. If $E(x) \subseteq E(y)$ then $E(\xi) \subseteq E(\eta)$, and conversely.
Proof. Suppose that $E(x) \subseteq E(y)$, but that $E(\xi) \nsubseteq E(\eta)$. Then we may write $\xi=\xi_{1}+\xi_{2}$, with $E\left(\xi_{1}\right) \subseteq E(\eta), E\left(\xi_{2}\right) \cap E(\eta)=\Lambda=E\left(\xi_{1}\right) \cap E\left(\xi_{2}\right)$. Let $T^{-1} \xi_{i}=x_{i}$; then from Lemma 1 it follows that $E\left(x_{1}\right) \cap E\left(x_{2}\right)=\Lambda=E\left(x_{2}\right)$ $\cap E(y)$. But $E\left(x_{1}\right) \cup E\left(x_{2}\right)=E(x) \subseteq E(y)$; this contradiction yields the result.

Lemma 3. Let B in Γ be a σ-finite measurable set (that is, the sum of a countable number of sets of finite measure). Then there is a positive $x \in L(G)$ such that $E(\xi)=B$.

Proof. Let $\eta \in L(\Gamma)$ be chosen so that $E(\eta)=B$. Let $y=T^{-1} \eta$, and set $x(\mathrm{~g})=|y(\mathrm{~g})|, g \in G$. Then $x \in L(G), E(x)=E(y)$, and therefore from Lemma 2 it follows that $E(\xi)=B$.

Lemma 4. Let x and y be positive elements of $L(G)$. For $\gamma \in E(\xi)$ let $K_{\xi}(\gamma)=\xi(\gamma) /|\xi(\gamma)|$, and define $K_{\eta}(\gamma)$ in similar fashion. Then $K_{\xi}(\gamma)=$ $K_{\eta}(\gamma)$ almost everywhere on $E(\xi) \cap E(\eta)$.

Proof. Since x and y were taken to be positive we have $\|x+y\|=\|x\|+\|y\|$. Therefore $\|\xi+\eta\|=\|\xi\|+\|\eta\|$. Then $|\xi(\gamma)+\eta(\gamma)|=|\xi(\gamma)|+|\eta(\gamma)|$ a.e. in Γ. Hence, since the functions K have modulus 1 ,

$$
\left|K_{\xi}(\gamma) \cdot K_{\eta}(\gamma)^{-1}\right| \xi(\gamma)|+|\eta(\gamma)||=|\xi(\gamma)|+|\eta(\gamma)|
$$

a.e. in $E(\xi) \cap E(\eta)$. But then $K_{\xi}(\gamma) K_{\eta}(\gamma)^{-1}=1$ a.e. on $E(\xi) \cap E(\eta)$, as was to be proved.

Lemma 5. There is a unique continuous character χ on Γ with the property that for all positive $x \in L(G)$ we have $\xi(\gamma)=\chi(\gamma)|\xi(\gamma)|$ a.e.; χ is real or complex with $L(G)$ and $L(\Gamma)$.

Proof. Let Γ_{0} be the open-closed invariant subgroup of Γ generated by a compact neighborhood of the identity. Since Γ_{0} is σ-finite we may apply Lemma 3 to obtain a positive $x \in L(G)$ such that $E(\xi)=\Gamma_{0}$. Now $x \geq 0$ implies that $\left\|x^{2}\right\|=\|x\|^{2}$; then also $\left\|\xi^{2}\right\|=\|\xi\|^{2}$. The element ξ^{2} is given by the formula

$$
\xi^{2}(\gamma)=\int_{\Gamma} \xi\left(\gamma \delta^{-1}\right) \xi(\delta) \mu(d \delta)=\int_{\Gamma_{0}} \xi\left(\gamma \delta^{-1}\right) \xi(\delta) \mu(d \delta)
$$

Since \boldsymbol{x}^{2} is also positive we have from Lemma 4 that $K_{\xi^{2}}(\gamma)=K_{\xi}(\gamma)$ a.e. on $E\left(\xi^{2}\right) \cap E(\xi) \subseteq \Gamma_{0}=E(\xi)$. Writing simply $K(\gamma)$ for the common value, we see
that the relation $\xi^{2}(\gamma)=K(\gamma)\left|\xi^{2}(\gamma)\right|$ therefore holds in Γ_{0} even outside of $E\left(\xi^{2}\right)$. Then

$$
\begin{aligned}
\left|\xi^{2}(\gamma)\right| & =K(\gamma)^{-1} \int_{\Gamma_{0}} \xi\left(\gamma \delta^{-1}\right) \xi(\delta) \mu(d \delta) \\
& =\int_{\Gamma_{0}} K(\gamma)^{-1} K\left(\gamma \delta^{-1}\right) K(\delta)\left|\xi\left(\gamma \delta^{-1}\right) \xi(\delta)\right| \mu(d \delta)
\end{aligned}
$$

Integrating over Γ_{0} again we obtain

$$
\begin{aligned}
\left\|\xi^{2}\right\| & =\int \mu(d \gamma) \int K(\gamma)^{-1} K\left(\gamma \delta^{-1}\right) K(\delta)\left|\xi\left(\gamma \delta^{-1}\right) \xi(\delta)\right| \mu(d \delta) \\
& =\|\xi\|^{2}=\int \mu(d \gamma) \int\left|\xi\left(\gamma \delta^{-1}\right) \xi(\delta)\right| \mu(d \delta)
\end{aligned}
$$

Therefore $K(\gamma)^{-1} K\left(\gamma \delta^{-1}\right) K(\delta)=1$ a.e. on $\Gamma_{0} \times \Gamma_{0}$. Then there is a null-set $N \subset \Gamma_{0}$ such that $\gamma \notin N$ implies $K\left(\gamma \delta^{-1}\right) K(\delta)=K(\gamma)$ for almost all $\delta \in \Gamma_{0}$. We integrate this equation over a set M of finite positive measure and obtain

$$
\begin{aligned}
K(\gamma) \mu(M) & =\int_{\Gamma_{0}} K\left(\gamma \delta^{-1}\right) K(\delta) \phi_{M}(\delta) \mu(d \delta) \\
& =\int_{\Gamma_{0}} K\left(\delta^{-1}\right) K(\delta \gamma) \phi_{M}(\delta \gamma) \mu(d \delta),
\end{aligned}
$$

where ϕ_{M} is the characteristic function of M. The right member is easily seen to be a continuous function of γ, for all $\gamma \in \Gamma_{0}$; hence $K(\gamma)$ is equal a.e. to a continuous function $\chi_{0}(\gamma)$, which is clearly a character on Γ_{0}. From Lemma 4 it follows also that, for positive $x \in L(G)$, if $E(\xi) \subseteq \Gamma_{0}$ then $\xi(\gamma)=\chi_{0}(\gamma)$ $|\xi(\gamma)|$ a.e.

The proof is completed by extending the function χ_{0} to all of Γ. To do this we write Γ as the union of disjoint cosets $\gamma_{\alpha} \Gamma_{0}$, and consider the open-closed subgroup Γ_{1} generated by any finite number of cosets. Then Γ_{1} is again σ-finite, and we may repeat the above argument to obtain a continuous character χ_{1} on Γ_{1}. Lemma 4 guarantees that for two such subgroups Γ_{1} and Γ_{1}^{\prime} the characters X_{1} and χ_{1}^{\prime} will agree on $\Gamma_{1} \cap \Gamma_{1}^{\prime} \supseteq \Gamma_{0}$, so that χ_{1} is indeed an extension of χ_{0}. Clearly, if $x \geq 0$ and $E(\xi) \subseteq \Gamma_{1}$ then $\xi(\gamma)=\chi_{1}(\gamma)|\xi(\gamma)|$.

Finally, χ on all of Γ is defined by $\chi(\gamma)=\chi_{1}(\gamma)$ for $\gamma \in \Gamma_{1}$. Since the union of all such subgroups Γ_{1} is precisely Γ, and since as shown above the subgroup
characters are mutually consistent, the function χ is well-defined. It is clearly a continuous character. The remaining property, that $x \geq 0$ implies $\xi(\gamma)=\chi(\gamma)$ $|\xi(\gamma)|$, can be proved as follows. The set $E(\xi)$ intersects at most a countable number of cosets $\gamma_{n} \Gamma_{0}$ in sets of positive measure. Let ξ_{n} be the restriction to $\gamma_{n} \Gamma_{0}$ of ξ, and put $x_{n}=T^{-1} \xi_{n}$. Then $x=\sum_{n=1}^{\infty} x_{n}$, and by Lemma 1 the sets $E\left(x_{n}\right)$ are pairwise disjoint, so that the x_{n} are themselves positive elements. From this it follows that $\xi_{n}(\gamma)=\chi_{n}(\gamma)\left|\xi_{n}(\gamma)\right|=\chi(\gamma)\left|\xi_{n}(\gamma)\right|$ for $\gamma \in \gamma_{n} \Gamma_{0}$; hence the result holds.

The proof of Theorem 3 is now immediate. For the continuous character χ on Γ constructed in Lemma 5 the mapping P on $L(G)$ to $L(\Gamma)$ defined by $(P x)(\gamma)$ $=\chi(\gamma)^{-1}(T x)(\gamma)$ carries positive elements of $L(G)$ into positive elements of $L(\Gamma) ; P$ is clearly an algebraic isomorphism of $L(G)$ onto $L(\Gamma)$. We have only to show that $P x$ positive implies x positive. Suppose then that $P x=\xi$ is positive, but that $x=x_{1}-x_{2}+i\left(x_{3}-x_{4}\right)$, with $x_{j} \geq 0$ and $E\left(x_{1}\right) \cap E\left(x_{2}\right)=E\left(x_{3}\right) \cap E\left(x_{4}\right)$ $=\Lambda$, and correspondingly $\xi=\xi_{1}-\xi_{2}+i\left(\xi_{3}-\xi_{4}\right) . P$ is evidently an isometry, and therefore by Lemma 1 the sets $E\left(\xi_{1}\right) \cap E\left(\xi_{2}\right)$ and $E\left(\xi_{3}\right) \cap E\left(\xi_{4}\right)$ are null-sets. Therefore $\xi_{2}=\xi_{3}=\xi_{4}=0$; so $x=x_{1}$, and x is positive.
5. Proof of Theorem 1. Because of Theorem 3 we may apply Theorems K and (2B) to the real sub-algebras of $L(G), L(\Gamma)$, to conclude that there is an isomorphism τ of G onto Γ such that $P S_{g} P^{-1}=\Sigma_{\tau g}$. Since τ is a homeomorphism we may regard the function X as a continuous character on G, by defining $\chi(g)=$ $\chi(\tau g)$. By Theorem (2C), P is given on the real subalgebras by the formula ($P x$) $(\tau g)=c x(g)$, and, because of the linearity, this formula must hold throughout all of $L(G)$. Therefore $(T x)(\tau g)=c \chi(g) x(g)$, which proves (1B). Theorem (1A) is an easy consequence of this formula.

We note finally that Theorem (2A) shows that Kawada's theorem follows from Theorem 1 .

References

1. Garrett Birkhoff, Lattice Theory, Amer. Math. Soc. Colloquium Publications, vol. 25; American Mathematical Society, New York, 1948.
2. P. R. Halmos, Measure Theory, D. Van Nostrand, New York, 1949.
3. Y. Kawada, On the group ring of a topological group, Math. Japonicae 1 (1948), 1-5.
4. S. Perlis and G. L. Walker, Abelian group algebras of finite order, Trans. Amer. Math. Soc. 68 (1950), 420-426.
5. I. E. Segal, Irreducible representations of operator algebras, Bull. Amer. Math. Soc. 53 (1947), 73-88.

Yale University

[^0]: *I am obliged to Professor C. E. Rickart for suggesting the probable existence of a formula of this kind.

