AN APPROACH T9 SINGULAR HOMOLOGY THEORY

TiBor Rabo

INTRODUCTION

0.1. Given a topological space X, we associate with X a complex R = R(X) as
follows. Let Ew denote Hilbert space (that is, the space of all sequences ry,* * *,
Tny* *+ of real numbers such that the series r7 + <+ ++4 r2 ++ -+ converges,
with the usual definition of distance). For p > 0, let vg,* « ¢, vp be a sequence
of p + 1 points in Ew, which need not be linearly independent or distinct, and
let |v0,° XN Upl denote the convex hull of these points. Finally, let T be a
continuous mapping from |wvg,* * *, vpl into X. Then the sequence vg,* * -, v,
jointly with T is a p-cell of the complex R, and will be denoted by (vy,* * -,
Vps T)®. The group Cg of (integral) p-chains in R is defined as the free Abelian
group with these p-cells as free generators. For p < 0, Cg is defined by C;; =0
(that is, le consists then of a zero-element alone). The boundary operator a;:

Cg — Cg_l is defined by the conventional formula

p .
ag(vo’cna, vp’ T)R = Z (—.l)l (Uo,‘.., 1;i,c-.,vp, T)R

1=0

for p > 1. For p <0, ’85 is defined as the trivial zero-homomorphism. Clearly
99 = 0, and thus R = R(X) is a complex which is obviously closure-finite in the
sense of [4]. Accordingly, one can define cycles zg, boundaries bg, and so
forth, for R in the usual manner. The homology groups of R are defined by Hg =

Zg/Bg, where Z%, Bg denote the group of p-cycles and p-boundaries respectively
in R.

0.2. The complex R, which was introduced and studied recently by the writer
(6], differs from the various singular complexes used in previous literature first

in the use of Hilbert space. The general practice is to consider continuous map-

pings T from rectilinear simplexes located in any Euclidean space. Instead, we
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use Hilbert space in its capacity of infinite-dimensional Euclidean space, a pro-
cedure which may of course be adopted in all the various versions of singular
homology theory. The main departure from previous practice lies however in the
fact that no identifications are made in the chain groups Cg of R: two p-cells
(vg 5°** vl; , TR, (CFICICN UII;’ T")R are equal if and only if they are identi-
cal, that is, if vo = vg,***, vp = vp, T' = T". Thus the complex R is of
enormous size as compared with previously used complexes. Let us note that
beyond the lack of identifications, R is further increased by the fact that the
points vg,*  *, vp occurring in a p-cell (vg,* * +, vp, T)® are not required to be

linearly independent or distinct.

0.3. There arises the question of how the homology groups of R compare with
those arising in previous approaches tq singular homology theory. In [6], the
writer proved that the homology groups of R are isomorphic to those of the so-
called total singular complex S = S(X) introduced by Eilenberg [3]. Since this
result will be used in the sequel, we shall now give the precise statement of the
main theorem established in [6]. For each dimension p >0, let us select a funda-
mental p-simplex, with (linearly independent) vertices dg,* * *, dp. For our own
purposes, it is convenient to choose dg, dy, d;,* * * as the points (1,0,0,0,° + *),
0,1,0,0,° ¢ ), (0,0,1,0,**+),*++ in Ew. Given then a sequence vy,* * *, vp
of p + 1 points in E«, which need not be linearly independent or distinct, there
exists a unique linear map o: Ido, <oy, dpi — |v0, I vpl such that o (d;)
=v;,i=0,++, p. This linear map is denoted by [vy,* * *, vp] . The total singu-
lar complex S = S(X) of Eilenberg [3] may now be described as follows. For
p > 0, a p-cell of S is an aggregate (dg,* * *, dp, T)s, where T is a continuous
mapping from |dg,** *, dpl into X. The group Cg of (integral) p-chains of S is
then the free Abelian group with these p-cells as free generators, For p < 0, one
sets Cg = 0. The boundary operator af, : Cg — C‘;-l is defined by

P , :
5(do,***, dp, T)S =Y (—1) (do,***s dp-1,T[do, ***, di, **, dp])¥,
1=0

forp > 1. Forp <0, Bf, is the trivial zero-homomorphism. The homology groups of
S will be denoted byHg. We have then obvious homomorphisms

. cR ~ S . oS R
op: Cp —Cp, Tp: Cp —Cp,

defined as follows forp > 0:
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S — oos R
Tp(do,"‘,dp,T) - (do, :dp’T) ’

o-p(vo,”.’vprT)R = (d09 ”"dp’T[vO: '“;vp])s .

Forp <0, 7p and o}, are defined as the trivial zero-homomorphisms. Unfortunately,
Tp is not a chain-mapping. On the other hand, o}, is easily seen to be a chain-
mapping, and hence it induces homomorphisms oy : Hf, — H‘g. The main result
of [6] is contained in the following statement.

THEOREM. The homomorphism op : Hg — Hg is an isomorphism onto, for

every dimension p.

Since singular homology theory is sometimes thought of only in relation to
triangulable spaces, it may be appropriate to note that the preceding theorem is
valid for general topological spaces. In particular, the space need not be arc-wise
connected.

0.4 In view of the preceding theorem,the complex R appears as an appropriate
tool in constructing singular homology theory. It is of interest to note that the
various complexes used in previous approaches to singular homology theory may
be derived from the complex R by a combination of the following two types of
reduction.

(i) The chain groups Cg of R are replaced by certain subgroups I',. For
example, one may select [', as the group generated by those p-cells (v, - -,
Up, T)® for which the points vg,* * -, vy are linearly independent. Another sig-
nificant choice may be based upon the concept of a minimal complex studied by
Eilenberg and Zilber [3].

(ii) One selects in Cg, for each p, a certain subgroup Gp, and one replaces
Cc g by the factor group Cg /Gp: From the computational point of view, this amounts
to an identification of elements of Cg which are contained in the same coset
relative to Gp. For brevity, we shall refer to this type of process as an identi-
fication scheme.

In the present paper, we shall study the effect of the various identification
schemes, occurring in previous theories, upon the homology structure of the com-
plex R. It is easy to see that these identification schemes may be reduced to
three basic types. Our result is that one may apply these basic identification
schemes in any desired combination without changing the homology structure of R
(see Theorem 1 in $4.7). As a matter of fact, we obtain an identification scheme
which appears stronger than those previously used (see Theorem2in4.7and see
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§5). This leads to some interesting questions, formulated in $6, which seem to
deserve further study.

0.5. It should be noted that the complex R is semisimplicial in the sense
of [3], and therefore can be used to construct a complete homology and coho-
mology theory.

0.6. Previous relevant literature, as well as further problems arising in this
line of thought, will be discussed in §6 when convenient terminology will be
available. The writer wishes to express his appreciation of the courtesy extended
by S. Eilenberg and N. Steenrod who made available to him the manuscript of their
yet unpublished book [2]. Both technically and conceptually, the study of that
book proved most valuable in preparing the present paper.

1. IDENTIFICATIONS IN MAYER COMPLEXES

1.1. A Mayer complex M is a collection of Abelian groups C,, where the

integer p ranges from — ® to + ®, together with homomorphisms

ap . Cp‘—‘) Cp—] )

such that 9p-; 9p = 0. Cycles and boundaries are defined in the -usual manner.
The homology groups Hp, of M are defined by H, = Z,/B, , where Z,, B, are the

groups of p-cycles and p-boundaries respectively. If M, M' are Mayer complexes,

then a set of homomorphisms

is termed a chain mapping if 9, f, = fp-1 Op, where primes refer to the complex
M '

For clarity, we shall write Cg, Bg, Hg, and so on, to identify the complex
under consideration. In particular, a p-chain of M (that is, an element of Cg) will
be denoted by symbols like cg, dg, and so forth.

1.2. We shall now describe the general process of identification in a Mayer
complex M. Let {sz be a collection of Abelian groups such that G, C C}‘,‘ and

L]
(1) ap Gp C Gp—l .

Explicitly: if cj € G, then 3ycy € Gp-y. Set CF = C)//Gp. Thus, the
elements of C';',' are cosets .celative to Gp. The general element of C}','u is of the
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form {cg}, where this symbol denotes the coset containing the element cg of

C},’. In view of (1), we can then define homomorphisms
ai’;‘ : C; - C;—l

by the formula 97 {cg} = {a,‘,’c},’} . Clearly op-; 0 = 0. Accordingly, the system
of factor groups {C{,"}, jointly with the homomorphisms 07, constitutes a Mayer
complex m. We shall say that m is obtained by identification, with respect to the
system {GPE, from M. The system pr}, satisfying (1), will be termed an identifier
for M. We have then natural homomorphisms

L M
. M _ ¥
defined by 7, ¢cp = {cp }. Clearly
3pp cg = BZ{Cg} = {3‘; cg} = Wp_la:cz .
Thus Tp is a chain mapping, and hence induces homomorphisms
Tep Hg —»—Hg ,

defined as follows. If z;,' is a cycle in M, then we let [z:]y denote the homology
class containing z}‘,{. The symbol [z;']m is defined similarly. Then 77, is given

by

Tplzplu = [7p2p]a .

If 7,, is an isomorphism onto for every p, then we shall say that the identifier
{GP} is unessential. Thus the process of identification with respect to an unes-

sential identifier does not change the homology structure of the complex.

1.3. We shall state presently a convenient condition for the unessential char-
acter of an identifier {GPE. Let us observe that the condition (1) in 1.2 means
that the homomorphisms 31‘,', cut down to the subgroups G, , may be used to turn
the system {GPZ into a Mayer complex which we call G. The complex m, defined
in 1.2, appears then as merely the complex M mod G in the sense of the general
relative homology theory of Mayer complexes. From this general theory, the condi-
tion for Typ tO be an isomorphism onto, for all p, is well known: it is necessary
and sufficient that all the homology groups of G be trivial. For convenient appli-
cation, we shall now state this condition expli¢itly.

The condition (U). We shall say that the identifier EGP§ satisfies the condition
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(U) if the following holds if zp is a cycle in M such that p € G, then there
exists a (p + 1)-chain cpﬂ € Gp+y such that apﬂ Cp+1 = zg.
We have then the following criterion.

CRITERION FOR UNESSENTIAL IDENTIFIERS. An identifier {Gp} is unes-
sential if and only if it satisfies condition (U).

Since the elements of Cp represent those elements ong which are, in a sense,
discarded as we pass from the complex M to the complex m, the criterion may be
also worded as follows: discarded cycles should bound discarded chains. In a
special case, this criterion was used by Tucker [8]. As mentioned above, the
general criterion is merely a re-wording of a well-known theorem in the relative
homology theory of Mayer complexes (for a comprehensive presentation, see
Eilenberg and Steenrod [2]). For the convenience of the reader, we shall now

outline a direct proof of the criterion.
1.4. Assume first that the identifier {Gp} is unessential. Take a cycle
@) zp €Gp .

Then 7,z p = {zpf = 0, and hence Tup [zp e = [77 zp ¥1n. = 0. Since 77, is an

isomorphism onto, it follows that zp bounds in M:

(2)

N _ M L4
Zp Op+1 Cp+1 »

Application of 7, yields, in view of (1), the equation
— N _ M N M
0 =7pzp =TpOp+1Cp+1 = Op+17p+1 Cp+1 -

Thus 77,4+, Cp+1 is a cycle of the complex m. Smce 74 is an isomorphism onto, we
have therefore a cycle Zp+1 such that 77, 4, Zp+1 differs from the cycle 775+, cp +

only by a boundary. Thus we can write
77p+1 Zg+1 = 7Tp+1 Cg.pl + 3;“ C;+2 .
Now cp's; is of the form {cgﬂ} = Tp+2 01‘7{"‘2 . Making this substitution, we obtain
M — L} — M M M
7Tp+1 Zp+1 = Tlp+1 Cg-pl + ‘ag+277p+2 Cpt2 = 7Tp+1(cp+1 + 3p+2 cp+2) .
Hence

(3) Tpt1(cpsr = zp+1 + Fpraches) = 0.
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Now let us consider the (p + 1)-chain
M N
dgn = Cgﬂ - Z:+1 + Op+2Cp+2 .

By (3) we have d:ﬂ € Gp+1s while from (2) we have z: = a;’ﬂ d:ﬂ . Thus (1)
is seen to imply that zp” bounds a chain contained in Gp+;. In other words, con-

dition (U) holds.

1.5. Assume now, conversely, that condition (U) holds. We have to show
that 77, is an isomorphism onto for every p.
(i) Suppose we have

(1) Tr.p[zg]' = 0

for a certain cycle zg. The assumption means that 7, zl‘,' bounds some chain
cp+1 Since cp'+1 is of the form {c},ﬁd =Tp4 cgﬂ , we have

Tpzp = OP+1Tp+1 Cpr1 = MpOpe1 cper
and hence
Wp(zg - 3‘p'+1 cg“) =0.
Thus the cycle
(2) Zg= zg—ag+1cg+1

is contained in Gp. Since condition (U) is now assumed, it follows that Zg is of
the form

(3 Zp=3Ni1dpey (df+1 € Gp+1) .
From (2) and (3) it follows that
Zg = ag+1 (Cg‘f'l + d:-l-l) .

Thus (1) implies that z: bounds in M, and hence 77, is an isomorphism into.

(ii) Assign now an element [z[’,”]m of Hy". Now zp' is of the form

W 2= {ch} =mpef .

Since z7; is a cycle, we have

— AR R — M M _ M M
0= ap zp = 3p7rpcp = Wp-lap cp -
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Hence
3 cp € Gp-1

Thus a,’;’ cg is a cycle contained in Gp_l. Since condition (U) is now assumed, we
have a chain dg such that

® el = ol (hE6p).
Thus cy — djp is a cycle:
cg - dg = zg .
Now we calculate
Tplzp 1y = [yl = mpdiln .

By (1), mpcp = zJ, and by (2), 7,d} = 0. Thus finally

M —
ﬂcp[zp ]” - [Z; ]M .
Thus 77, is onto, and the proof of the criterion is complete.

1.6. In marked contrast to the general character of the preceding discussion,
the unessential identifiers actually employed in the sequel are of a very special
and restricted type. There arises the question whether there are general con-
structions yielding unessential identifiers in Mayer complexes. The following
comments may be of interest from this point of view. Let M, L be Mayer complexes
and let

1) fp: CP—C5

be a chain-mapping such that the induced homomorphisms f,p : H: — H}f‘ are
isomorphisms onto. In symbols:

2 fop: Hy ~ Hp .

Let N, denote the nucleus of the homomorphism (1). Since f, is a chain-mapping,
it is immediate that the system fNP} is an identifier.

In view of the strong assumption (2) one may be tempted to conjecture that
{NPE is unessential. The following simple example shows that this is not the
case, even under extremely special and favorable circumstances. Let M be a finite
simplicial complex described abstractly as follows. The group C¥ of (integral)
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2-chains of M is the free Abelian group with a single generator t&. The l-chain
group C¥ is the free Abelian group with four generators s;, s;, s3, s4. The
0O-chain group Cg' is generated by a, b, ¢, d, e. For p #0,1, 2, the p-chain group

C }‘,' reduces to a zero-element. The boundary relations are as follows:
Ot =s; +s,+s3, O9sy=c—b, 9s=a—c, 9s3=b—a, Osq =e —d,

Jda =0 =09c=09d=0%e=0.

We define first homomorphisms f, : Cp” — Cg as follows:

fat =0, fis1 = fis2= f1s3 =0, fisq = sy +s3+s3,

foa= fob= foc = a, fod = foe=d.

For p ;é 0, 1, 2, of course fp is the trivial zero-homomorphism. Next we define
homomorphisms D, : C: e Cgﬂ as follows:

DOa:O’ D0b=—83, DoC=Sz, D0d=0, Doe=—84 N
Dys; =~—t, D;s; =0, Dis; =0, Dissg=t.

For p #0, 1, of course Dp is the trivial zero-homomorphism. One verifies readily
the following facts.

() fp is a chain-mapping. .

(ii) 3Dpyg + Dp_xa'yg = fp')’})l - 'yg, for every p-chain 7’5’ of M. Thus
fp = 1.

(iii) Let Np be the nucleus of fp, and let m be the complex obtained from ¥
by using the identifier {Np§,in the sense of 1.2. Then the 1-dimensional homology
group H{" of m is infinite cyclic.

(iv) The l-dimensional homology group HY of M is trivial (consists of zero
alone).

Thus M and m have different homology structures, and hence {N pf is certainly
not unessential. And yet, in view of (i), (ii), the induced homomorphisms fap:
H: — H}‘,’ are isomorphisms onto. In other words, a very plausible method to
obtain unessential identifiers fails even under very special and favorable con-

ditions.

1.7. In dealing with additively written Abelian groups, we shall use certain
familiar conventions. Thus we shall write G = 0 to state that the Abelian group G
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is trivial (consists of a zero-element alone). If 4{,+ + +, A, are subgroups of G,

then A, +++++ A, will denote the smallest subgroup containing 4,,+*+, 4,.

2. THE AuxILIARY CoMPLEX K

2.1. The auxiliary complex K, which played an important role in [6] already,
is merely the “formal complex,” in the sense of [2], of Ex taken as a point set.
The complex K is defined as follows. For p > 0, a p-cell of K is a sequence
(vo,* **, vp) of points of Ew which are not required to be linearly independent
or distinct. Two p-cells (vgy,* -, vp)s (wgose e, wp) are considered as equal if
and only if v; = w;, i =0, *++, p. These p-cells are taken as a base for a free
Abelian group, to be denoted by C,, the group of (finite) p-chains of K. Forp <0,
one defines €, = 0. For p > 1, the boundary operator

%p: Cp—>Cp-y

is defined by the formula

P .
ap(vO:..'rvp)z E (_'l)l (vo’.“rﬁi:.."vp)'

1=0

Clearly 09 = 0. For p < 0, 9, is of course defined as the trivial zero homo-
morphism.

Let (vg,+ + *, vp) be ap-cell of K Treating the points of Ew as vectors in the
usual manner, we describe the barycenter b = b(vg,* * *, vp) of the points v,

** *, vp by the formula

vo + *r
b=—"7—.
pt+1

2.2. The following homomorphisms will be used.
(1) The homomorphism ap : Cp — Cp-1» already defined.
(ii) In terms of any assigned point v of Ew, one defines the cone homo-

morphism
Byt Cp— Cpey (p20)
by the formula

hZ(vO’ ey vP) = (—l)p+l(v0: ***, Vp, v) .
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Forp < 0, hy is the trivial zero homomorphism.

(iii) The barycentric homomorphism
Bp: Cp—Cp

is d(;fined as follows. For p < 0, ,Ep is the trivial zero homomorphism. Forp = 0,
Bo =1, the identity. For p > 1, B, is defined recursively by the formula

:Bp(UO: "':Up) =hg'lﬁp'lap(v°’ **, vp) ’

where b is the barycenter of the points vg,* * *, v;.

(iv) The barycentric homotopy operator
Pp: Cp—= Cp

is defined as follows. For p < 0, pp(vg,* *+,vp) = 0. For p > 1, p, is defined
recursively by the formula

pp(UO’...)vp) = hg(/Bp —-1- pp"l ap)(vo.“‘, vp) )

where b is the barycenter of the points (vg,* ¢ *, vp).

(v) Forp>1,0<j<p—1, we define the homomorphism,
tp,j i Gp™Cp

by the formula ¢, ;(vg,*++, v, Vi, vp) = (vgs***y vj41y Vjy* * *5 VP
The operation tp ; will be referred to as a transposition. Thus “transposition”
means here a transposition of adjacent elements. According to the definition of
equality for p-cells (see 2.1), we have tp ;(vg,* **,vp) = (vg,* *+, vp) if and
only if v; = vj4;.

2.3. The following identities hold among these various homomorphisms

() Op+y hy +hp-13p =1 (p21),
() 9pBp = Bp-1 9,

(ii)  Op410p + Pp-10p =Fp — 1,

(iv)  Bptp,; ==—Bp (P21, 0<j<p—-1).

2.4. If (vg,* -, vp) is a p-cell of K, then ;vo »ty p l denotes the convex

hull of the points vy, « +, vp (that is, the smallest convex set containing these
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points). If ¢, is a p-chain of K, and 4 is a convex set in E«, then the inclusion

cp C Ais defined to mean that cp can be written in the form

n
cp = z kj(vo.j P vp.j) ’
j=1

where the coefficients %; are of course integers, so that !”o,j’ cee, ”p,jl C 4,

j=1,+++,n.One has then the following inclusions:

(i) ap(vo,“‘,vp) cC va,“',vp|.
(i) Bp(vo,***,vp) C lvo, s, vpl,
(iif) pp(vo,***,vp) < lvg, e, vpl,
(iv) tp, i (vosee" vp) C lvo, e, vl -

As a consequence, an inclusion ¢, C A implies that d,c, C 4, Bpecp C 4,
Ppcp © A, tpjcp C A. It is understood that the zero chain ¢, =0 is agreed

to satisfy the inclusion ¢, C A for every convex set 4.

2.5. For p > 1, an elementary t-chain in K is defined as a p-chain ¢, which

can be written in the form (see 2.2 (v))

Cp = (1}0’...’ vp) + tp,j(vo »° vp) .

LEMMA. Given an elementary t-chain

sz(vOt.'.rvp)+tP;j(v0).“) vp) (le))

the following statements hold:

(i) If p=1, then dpcp = 0. If p > 1, then Jpcp is a linear combination (with
integral coefficients) of elementary t-chains C |vg,* * *, vp 5

(i) Bpep=0;

(iii) ppep is a linear combination (with integral coefficients) of elementary

t-chains C lvo,”',vpl.

Proof. The assertion (ii) is an immediate consequence of 2.4 (iv). The as-
sertions (i) and (iii) are readily verified for p = 1. Hence we can assume that
p>1

Proof of (i) for p > 1. Lét us note that ¢ ;(vg,* * *, vp) is of the form (wg
.o, wp), where v; = w; for i # jsit 1, and v; = wjsy, vj+g = wje Now we have
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p .
apcp = z (—1)1 [(UO:...’ﬁi 't vp) + (wo,’“,'bi ;“',wp)] .

1=0

For i # j, j + 1, the quantity in square brackets is clearly an elementary z-chain
C lvo, cecy vp ' On the other hand, the terms corresponding to i = j and
i =j +1 cancel. Thus (i) follows.

Proof of (iii) for p > 1. Since (iii) is verified directly for p = 1, we proceed
by induction. Assume (iii) to hold for p — 1, where p > 2. Let us write again
tp,j = Wo,* * +, wp). Clearly, the points vy, * +, v, and the points wy,* * +, wp

have the same barycenter 5. Hence we have (see 2.2 (iv))
Pp (os*+svp)= kS [Bp o, + 5 vp) = (vo,*++, vp)
~ Pp-19p (OPPREEN vp)] ’
Pptoj@o st + s vp)=hp [Bptp,j(ors v vp) = tpj (vos*s vp)
= Pp=19ptp,j Wos=+ s vp)].
In view of (ii), addition yields
(1) Ppcp = hg( —cp = Pp-19 cp) +

Now, by (i), 9y ¢, is a linear combination (with integral coefficients) of elementary
t-chains C Ivo y* s Up I . Hence, by the inductive assumption, the same holds
for pp-1 3pcp, and hence also for the quantity in parentheses in (1), and finally
for pp ¢ itself, since b € Ivo, Ce, [

2.6. Forp > 1, an elementary d-chain in K is defined as a p-cell (vg,* **, vp)

such that v; = vj4, for some j.

LEMMA. If c¢p = (vg,* -, vp) is an elementary d-chain, then the following
statements hold.

() If p=1, then 9pcp = 0. If p > 1, then Opcp is a linear combination (with
integral coefficients) of elementary d-chains C |vg,** *, vp |

(i) Bpep=0.

(iii) ppep is a linear combination (with integral coefficients) of elementary

d-chains C |vg,* * -, vpl.

The proof is entirely analogous to that in 2.5, except that (ii) requires an
additional remark. We have v; = v;4; for some j by assumption. For this same j,
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we have then the relation
tp, i (b0, +1up) = (vo,*+*,vp) »
Hence we have also
Bp tp, j (vo, ’“:Up) = Bp(vo,* “,Up) .
On the other hand, 2.3 (iv) yields
IBp tp,j(vO: "':vp) = “',Bp(vo, '“»vp) .

Hence 28,(vg,**+,vp) = 0. Since B,(vg,* *+,vp) is an element of the free
Abelian group C, ,-it follows that 8, (vg,* + +, vp) = 0.

3. Tue CoMPLEX R = R(X)

3.1. In working with the complex R (see 0.1), the following device (introduced
by Eilenberg and Steenrod in [2] in connection with the complex S; see 0.3) is
useful. Let 4 be a convex subset of Fw, and let Cg denote the subgroup of C)
(see 2.1) generated by those p-cells (v, * * +, vp) of the complex K which satisfy
the inclusion (vg,* -, vp) C A (see 2.4). For p < 0, we define C; = 0 (see
1.7). Let T: A — X be a continuous mapping. We can define then homomor-
phisms

Tp: Cp — C}
by the formula
Tp(UOr”';Up) = (UO".';vp,T)R (P Z 0’ ('UO:..':Up) c C}AJ) .

For p < 0, T} is the trivial zero-homomorphism. For ¢, € C;,‘, it will be con-
venient to use the symbol (cp, T)® to denote Tpep. Among the simple and obvious

rules of computation for the symbol (cp , T)R, we mention the formula
ag(cp:T)H = (ap CP)T)R
In terms of the preceding notations, we define now homomorphisms
Bp: chp—ch,

R. CR R
pp: Cp—Cpay
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by the formulas
Bp(vo,*+*,vp, 1) = (Bp(vo,**,vp),T)", (p20),
Pp(vo, >+, vp, I = (pp(vo,*+*,vp), )" (p20).

Since ﬁp(vo,- .o, vp) cC lvo,° * e, vp l, pp(vo,' .., vp) c |v0,° .., vpl by
2.4, the homomorphisms ,BS, pg are well defined. For p < 0, ,Bf, and p;} are
defined as the trivial zero homomorphisms. In terms of the homomorphisms tp,j

defined in 2.2, we define
thj: Cp—GC (P21, 0<jsp-1),
by means of the formula
tg'j(vo, “',UP,T)R = (tp'j(vo, "',vp),T)R .
We have then the following identities (see [6]):
) o5 By = Bp-195;
@ +1pp + pp-1Op = B,

where 1 denotes the identity transformation in C p’:; furthermore (see 0.3)

3) BR iR . =—pR (0<j<p);
(4) op Tp=1;

(5) O = 0p-1 B Tp;

(6) 0p-198Tp0p = 0p-19f ;

(7) op B T, 0p= 0, BE S

(8 Op+1 PP Tp Tp =CTp+1Pp;

() Tp-19p-1 95 B} = G T 0p B

3.2. For p > 1, we define an elementary t-chain in R as a chain of the form
(wos* s vps " + (tp,j(wos* 5 vp), T)? (see 2.2). The subgroup of Cg gener-
ated by the elementary t-chains will be denoted by Tg. For p < 0, we define
Th=0

p .
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LEmMA. If cf € T7, then

(i) agchTg—l,
(i) Bpep =0
(iii) PR €Ty -

Proof. Clearly, it is sufficient to consider the case where cg is an elementary
t-chain:

cg = (vo,"',vp,T)R + (tp,j(vo,“',vp),T)R
= ((vo, ***,vp) + tp.j(vo."',vp)»T)R .
Then we have
3f B = (¥pl(vo, = vp) + tp,j(vo,***,vp)],T)E.

By 2.5 (i), BP [(wgs* =, vp) + tp,j(vo yo o, vp)] is either zero or else a linear
combination, with integral coefficients, of (p — 1)-chains of the form (wq,* - *,
wp._l) totp-1,nwo,t e e, wp..‘), all C Ivo,' .., vpl, and thus (i) is obvious.

In a similar manner, (ii) and (iii) follow from 2.5 (ii) and 2.5 (iii).

3.3. For p > 1, we define an elementary d-chain in R as a p-cell'(‘uo, s,
Vp, T)® such that vj= vj+y for some j, 0 <j <p — 1. The subgroup of Cg gener-
ated by the elementary d-chains is denoted by Dg. For p < 0, we define Dg =0.

LemMA. If cp € DJ, then

(1) a;,‘ CSCDS_I,
(i) B k=0,
(iii) P}? c§€D5+1 .

These statements are immediate consequences of 2.6 (i), 2.6 (ii), 2.6 (iii).

3.4 Given a p-cell (vg,* -, vp, T)R, take a sequence wg,* * *, wpofp +1
linearly independent points in Eq . Then we have a linear mapping &t: |wg,* * *,
wpf — |vo, -, vpl such that o (w;) = v;, i =0, * * +, p. Then the p-chain

(1) Cg = (vO’ ..'9vp’T)R - (w0s .'.’wvaa)R
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will be termed an elementary a-chain., The subgroup of C: generated by the ele-
mentary a-chains will be denoted by Ag. For p < 0, we define Ag =0.

LEMMA. cg € Ag if and only if o) cg =0 (see 0.3).

Proof. Assume cg € Ag. Then cg is a linear combination of chains of the
form (1), and hence it is sufficient to show that Upcg = Q for the chain (1). Now
we have (see 0.3)

O'pcg = (dOI ...:dp!T[vO) “'1”}3])8 - (dO".';d‘p!Ta[WOy “')wp])s .

Clearly [vg,* <+, vp] =& [wg,* -, wp}, and thus O'pcg .

Assume next that O'pcg = 0. Then we also have TpOp cg = 0. The chain cg

can be written as a (finite) sum

(2) =3 nj(vo,j, " vp.j Tj)%,
J

where the coefficients nj are integers. We have then
@) 0="7p0p "g = Z nj (do, ‘“,dp.Tj[vo.j. "':vp,j])R .
J
Subtracting (3) from (2), we see that cg appears as a linear combination of ele-

mentary a-chains, and thus cg ( A:. If p < 0, then the lemma is of course
obvious.

3.5. LEMMA. If cp € A, then

() Bg e} € Ag-‘,
(ii) Bpep €A4F,
(i) pReh € 4.

These statements are immediate consequences of the identities (6), (7), (8) in
3.1, in connection with the lemma in 3.4. For example, to prove (iii), we note that
by (8) in 3.1, we have

1) Op+1PpCh = Tp+1PpTpOpch =0,

since cg € Ag, and hence crpcg =0 by 3.4. Also by 3.4, the relation (1) implies
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that picp € Af4y.
&
3.6. Let us observe that the chain groups Cg, Cf) are free Abelian groups by

their very definition (see 0.3) and hence they do not contain elements of finite
order.

4. UNESSENTIAL IDENTIFICATIONS IN R =R (X)

4.1. LEMMA. Let {Gp} be an identifier for R (see 1.2, 0.1) such that the
following conditions hold:

(@) ch € Gp implies that BEch =0 ;
(ii) cg € Gp implies that ,Og cg € Gp+1 .+
Then {GP} is unessential (see 1.2).

Proof. We shall verify that {Gp§ satisfies condition (U) of 1.3. Take a cycle
zg € Gp. In view of (i) and (ii), the homotopy identity

R R_R R R R _ pR_R __. R
1 Op+1Ppzp + Pp-19p2p = Bpzp — zp
yields the relation
R _ _ QR R R
2p =~ 0p+1Pp 2p

Thus zf, is the boundary of the (p + 1)-chain pg zg (= Gp+1 , and condition (U)

is established. By the criterion in 1.3, it follows that pr§ is unessential.

4.2, LEMMA. Let ipr be an identifier for R, such that the following con-
ditions hold:

() Gp DAg (see 3.4);
(ii) c’; € Gp implies that op ﬁg cg =0 (see 0.3);
(ii1) cg (= Gp implies that pg cg € Gp+y »

Then ngg is unessential.

Proof. Again, we verify that {GPZ satisfies condition (U). Let us take a cycle
zg (= Gp; we have to show that it is the boundary of some chain in Gp+1 . We
note that
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2 s b
is a cycle, and that by (ii) we have
lh = epbfst =0,

since zg € Gp. Since oyp : HI’: — HS is an isomorphism onto (see 0.3), it
follows that Q’;, bounds:

(@) éﬁ = Bﬁnyﬁn .
Applying o, on the left, we get (see 0.3)
0 =0plf =0p3 1Y he1 = Fp+10p+17h41 -
Thus oy 4, ’ypﬂﬂ is a cycle:
(3) Tpt1YReL = Zpt1 .

Since o, is an isomorphism onto (see 0.3), there exists a cycle zgﬂ such that
S . .
Zp+1 and Op+1 zg +; differ only in a boundary:

(4) 2‘34.1 =Up+l Zg-c.l + 3§+2 Cﬁ{-z .

Since ag +2= Oph1 Bg+2 Tp+2s the relations (3) and (4) yield

R, _ R _ =
®) ope1(Yp+1 = 2p+1 — OpuaTpracpez) = 0.
On setting

R _.R _ R _ R s
(6) dp+1 =¥p+1 = 2p+1 = Ops2Tp+2Cp+a ,

we see that the relations (5), (1), (2), (6) yield

() Opr1dpsy =0,

8 Brzf = 34, dpey .

From the homotopy identity 4.1 (1) and from (8) we infer now that
9) zg = ag-}l(dg{-l - pg zg) .

By (7), (i), and 3.4, we have d}fﬂ € Gp+;. Since p;,'zf, € Gp+ by (id), it
follows from (9) that zg is the boundary of a chain in Gp+1 , and the proof of the
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lemma is complete.

4.3. LEMMA. Let {sz be an identifier for R which satisfies the assumptions
of the lemma in 4.1. For each p, let G denote the division-hull of Gp. Then iGp}

is again an identifier (see 1.2) which satisfies the assumptions of Lemma 4.1.

Proof. Take a chain cg € 6p. Then there exists an integer n # 0, such that
ncg € G, and hence (since {Gpi satisfies the assumptions of Lemma 4.1)

1) nBhcp =0,
(2) npg Cg € Gp+1 .

By the definition of ép+1, (2) implies that pgcg € 6p+|. Since ,Bgcg is an
element of the free Abelian group Cg (see 3.6), (1) implies that SAck =

P°p
4.4. LEMMA. Let pr} be an identifier for R which satisfies the assumptions

of Lemma 4.2. Then QGP} is again an identifier which satisfies the assumptions
of the same lemma.

The proof is the same as in 4.3, excépt that one uses now the fact that GP,B;,{ cg
is an element of the free Abelian group Ci,s {see 3.6).

4.5. LEMMA. Let {G;l)g, oo ,{G(")} be identifiers for R, satisfying
the assumptions of Lemma 4.1. Then iGP‘) +oeoet Gg')f is again an identifier
which satisfies the assumptions of Lemma 4.1.

The proof is obvious.

4.6. LEMMA. Let Q' be a collection (perhaps empty) of identifiers for R,
each of which satisfies the assumptions of Lemma 4.1. Let Q" be a nonempty
collection of identifiers for R, each of which satisfies the assumptions of Lemma
4.2. For each p, let Gp denote the smallest subgroup of Cg containing the groups,
with the same subscript p, of the identifiers contained in ¥’ and Q". Then {Gp}

is an identifier satisfying the assumptions of Lemma 4.2.
The proof is obvious.

4.7. The preceding lemmas, combined with the results of §3, yield a number
of unessential identifiers for R. In the following two theorems, the symbols Ag,
Dg, Tg have the meanings explained in $3.
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THEOREM 1. Each one of the systems ng , ng !, fT;}, ng + Dg !,
{Ag + T; }, {Dg + Tlf ?, {Ag + Dg + TPR} is an unessential identifier forR
(see 1.2).

THEOREM 2. If ﬁg denotes the division-hull of the group F},’ = Ag +Dg + T[f,

then {FPR} is an unessential identifier for R.

Proof. By 3.5 and 3.4, the system §4g } is an identifier satisfying the as-
sumptions of Lemma 4.2. Similarly, the systems {DS 3 {Tg} are identifiers
satisfying the assumptions of Lemma 4.1, by 3.2 and 3.3 respectively. By 4.5 it
follows then that {Dg + Tg } is an identifier satisfying the assumptions of Lemma
4.1. Similarly, by 4.6 it follows that {47 +DJ + T3}, {47 + D%}, {45 + 1]}
are identifiers satisfying the assumption of Lemma 4.2. Finally, {1—':} is an
identifier satisfying the assumptions of Lemma 4.2, as a consequence of 4.4. The
unessential character of all these identifiers is then a direct consequence of 4.1

and 4.2 respectively.

HE MARK. The writer was unable to determine whether or not I_'R coincides

with F

5. Tee CoMPLEX r = r(X)

5.1. Theorem 1 in 4.7 shows that any combination of the basic identification
schemes, used in previous approaches to singular homology theory, may be applied
to the singular complex R without affecting its homology structure. From the point
of view of achieving maximum reduction, the identifier ff‘;} is of special interest.
We shall therefore go into some detail concerning this particular identifier. By the
general remarks made in §1, this identifier leads from the singular complex R to
a new and much smaller Mayer complex which we shall denote by r = r(X). Since
{ﬁg } is unessential, r has the same homology structure as R. We want to examine
in some detail the computational facilities and conveniences available in the

complex r.

5.2. By the general remarks in §1, the elements of the p-chain group Cp of r
are of the form fcp}, where this symbol denotes the coset (relative to 1_' ) con-
taining the p-chain cp of R. Let us adopt, in dealing with the complex r, the usual
practice of writing cg instead of icgi, with the understanding that cg is now
considered as a representative of the element {c,‘I} of Cp. For clarity, we shall
use the congruence symbol = in writing equations, to remind ourselves of the
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fact that we are dealing actually with congruences mod f‘g We shall presently

note some of the computational rules for the complex r.

5.3. Let (vg,* **, vp; TR, i, -, Vps T")® be two p-cells of R related
as follows. There exists a system of lmearly independent points wq,* * *, wp in
Es and two linear maps o': Iwo,' . ',wp| — |v(’,,- .., UFI’ |, o Iwo,
s wp | — |vg,---, vp |, such that the following relations hold:

@) o’ (wi) = 'Uli ’ OL”(II),‘,) = ‘U';‘, (i =0,'“,P) ’
(i1) T'a' = T'a" .

Then (vo y o vp , TR = =(vg s *svp, T")?. Indeed, by the definition of AR
and FB (see 3.4, 4.7), we have

© veu ot MR — et ‘o' YRE AR c R
(UO; rvp’T) (wO’ * ;wprTa) CAP p

and hence

(vo, "=+, vp, T')E = (wo,* - up, T o’ )R .
Similarly

(vo, e, vp, T")? = (wo,***,up, T " )?.
Since T' o' = T"o", the assertion follows.

5.4. Given a sequence vy, **, vp of p + 1 points in Ew (which need not be
linearly independent or distinct), by a transposition we shall mean (as in §2) the
operation of exchanging two adjacent elements of the sequence vy,* * . Let
then (vg, -« *, vp, T’ )R, (vgs***svp, T")® be two p-cells related as follows

(@) |vo, e+, vp] = |vg,***,vp| ,and T =T";

(ii) there exists a sequence of n > 0 transpositions leading from (vg,* * *,vp)
to (vg,** 5 vp)e

Then (vg,* -, vp, TR =g, - *yVp, T")® if n is even, and (v§,* **,
vp, T' Bo= —(vg,e - svp, T )R if n is odd. Indeed, the assertion is obvious
if n = 0. If n = 1, the assertion follows immediately from the fact that TR C FR
(see 3.2, 4.7). Repeated application of this remark yields the desired result for a

general n.
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5.5. Let (vg,* -+, Vp, T)® be a p-cell such that the points vg,* «+, v, are
not all distinct. Then (vg,* *+, v}, T)®? = 0. Indeed, by a certain number n of
transpositions we can obtain a p-cell (wq,***, wp, T)® in which two adjacent
points wj, wj+; coincide. Then (see 3.3, 4.7)

(wcu" *y Wp T)R [ Dg C ﬁ[’: ,
and hence
(WOr“.:wp’T)n =0.
On the other hand, by 5.4,
(‘ll)o, .“’wp’T)R =t (vO! ‘.':vp:T)R ’
and the assertion follows.

5:6. Let (vo,* **, vp, ) be a p-cell of R. Let wq,* * *, wy, where ¢ > p,
be a system of linearly independent points in Ew, and let ot: |wg,* «+, wa
— Jvg,e e, vpl be a linear map such that the points & (wg),* * +, d(wg)
coincide with the points vy, * **, v, in any order and with any number of repe-
titions. Then

(wO)“.yle1T(x')ﬁ =0.

Indeed, by 5.3 we have the relation
(wO: ---’wq’Ta)R = ( O‘(Wo), t O((Wq), T)R .

On the other hand, since ¢ > p, the points G (wg),* * *, X (w,) are not all distinct.
Hence, by 5.5, we have

(O('(WO)’ *t, a(wq)’T)R =0,

and the assertion follows.

5.7. Let (vg,* **, vp, )R be a p-cell of R, such that the points vy, * +, v}
are linearly independent. Suppose this p-cell possesses the following type of
symmetry. There exists a linear map o.: |vg,* * *, vpl — |vg, e, vpl, such
that (i) the points & (vo),* **, & (vp) form an odd permutation of the points vy,
*++, vp (taken in the indicated order) and (ii) Tt = T. Then (vg,**-, Vp, R
= 0. Indeed by 5.4 and 5.3 we have
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(UO: ""vv‘prT)R E_(a(vO): ...’a(vp)’T)ﬂ ’
(vO’“.’vp’Ta)RE (a(VO)"“ta(vp):T)R .

Since T = T, it follows that 2(vg, - * *, Vps R =0, or equivalently

2(vo, “‘,vp,T)R () lé';,‘ .

Now since f‘: is the division-hull of 1_‘: (see 4.7), the last relation implies the

existence of an integer k& # 0 such that 2k (vg,* * +, Vp, Nt € I"{,‘, and hence

(by the definition of the division-hull) (vg,* -, Ups R € 1_'5. Thus (vg,***,
R = ’

vp, )" = 0.

5.8. The argument just used yields obviously the general result: if ncg =0,
where n is an integer # 0, then 05 = 0. In other words, the p-chain group C}, of
the complex r has no elements of finite order. Of course, this is a priori obvious
from the remark that a division-hull is closed under division. It may be of interest
to determine whether or not C}, is in fact a free Abelian group. The writer was

unable to answer this question.

5.9. The homomorphisms '6:, Bg, ,og, TpOp apply to congruences. In detail:

if cf = &f, then
R R — NR=R R R — aR=R R R — _R=R R — —R
Opcp = 9pTp, PBpcp =BpTp, Ppcp = PpTp, TpOpcp =TpOpTp.

The first one of these asserted congruences is of course merely a restatement of
A

the fact that {F}}} is an identifier. The last one may be verified as follows. In

view of the identity 3.1 (4) we have

R _ R —_ R __ R _
op(Tpopcp —cp) =0pcp —opcp = 0,
and hence, by 3.4,
R _. R d R
’TPO'p CP Cp C AP.

Since Ag C f'PR, it follows that

R— R
(1) TpOpcp = cp .

.. <R — =R — =R . R — <R
Similarly, TpOplp = cg. Since c;,' = cg, it follows that TpOpCp = TpOplp. Now
let us recall that {Fg} satisfies the assumptions of Lemma 4.2, as we observed
in the course of the proof in 4.7. Accordingly, the assumption cg = ES, which is

equivalent to cg - ES € I_'; , implies that
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R¢{ R . =R\ _
(2) Cp :Bp(cp Cp) =0,
R( R _ —R a
(3) pp(CP CP) C r‘}:"‘l .

The relation (3) is equivalent to ppcp = pp cIJ On the other hand, (2) implies,
by 3.4, that ﬁl;,(cp ;}) (= AR C 1_'R, and hence that ,BP Cp 'BP Cp

5.10. In terms of familiar terminology, the preceding results may be summarized
as follows. In the complex r, affine-equivalent p-cells of R become equal to each
other (see 5.3). The permutation rule (or the orientation convention) holds inr
(see 5.4). Degenerate p-cells of R may be discarded in r (see 5.5, 5.6), as well as
affine-symmetric p-cells (see 5.7). The operators d%, f,, ,02 continue to apply
in r (see 5.9). Furthermore, the operation TpOp is also applicable in r (see 5.9).
The effect of this operation is to replace a general p-cell (v, * +, vp, T)® by a
p-cell of the form (do,* * +, dp, T*) (see 0.3). Accordingly, one can avoid en-
tirely the use of p-cells (v, *+, vp, T)? where the points vy, * +, vp are not
linearly independent (it is not obvious, however, that this practice, if followed
consistently, contributes to clarity and simplicity of calculations). Finally, let
us note that the complex r offers the advantage that its chain-groups do not have
elements of finite order (see 5.8). In the light of comments made in previous liter-

ature, this may represent a desirable feature.

5.11. In the course of a correspondence on these subjects, Professor S.
MacLane communicated to the writer a simple and ingenious proof of the fact
that the chain-groups of the complex r are indeed free Abelian groups (cf. 5.8).

6. CONCLUSION

6.1. One may raise the question whether the singular complex R admits of
further reductions, in terms of identifications, without affecting its homology
structure. In particular, one may ask whether there exists a maximal identification
scheme, in some natural and appropriate sense. A plausible approach may be
obtained by setting up the principle that only those identifications are admitted for
which the computational rules set forth in 5.3—5.9 hold. The problem consists then
of determining whether among all unessential identifiers {GP}, conforming to this
principle, there exists one, say {G_P}, such that G, C Ep for all identifiers {pr
satisfying the requirements just stated. The writer was unable to settle various
interesting questions upon which the answer to this problem seems to depend.

6.2. From a heuristic point of view, one may conjecture that, in view of the
intensive study and manifold applications of singular homology theory, it is un-
likely that any relevant identification scheme escaped the attention of the many
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workers in this field. For example, one may assume, as a heuristic working hy-
pothesis, that by applying simultaneously all the identification schemes used in
the papers listed in the References of the present paper one obtains a maximal
identification scheme in the sense of 6.1. The writer was unable to find a proof

for the theorem suggested by these remarks.

6.3. As regards previous literature concerned with the unessential character
of identification schemes, precise comparisons would lead to excessive detail,
particularly because our complex R has not been considered explicitly in the
literature, as far as the writer is aware. The following comments are meant to
indicate the origin of certain questions rather than the exact formulation of defi-
nitions occurring in other theories. The initial motivation for the present study,
as well as for the previous paper [6] of the writer, came from the important paper
of Eilenberg [1]. In that paper, Eilenberg shows, in effect, that (in our termi-
nology) the identifier {Tg} is unessential (see 3.2). In his previous paper [6],
the writer showed then that the identifier ng} is also unessential. However, the
unessential character of certain identifications has been recognized by various
authors. Thus Seifert-Threlfall [7] and Lefschetz [5] contain remarks suggesting
that the “affine symmetric” p-cells may be discarded without affecting the homol-
ogy structure. Tucker [8] showed, in effect, that the system {Dg} is unessential,
at least in relation to the identifier {Tg }. In a sense, our complex R appears thus
as the singular complex in unreduced form, alternative theories being derivable by
various types of reduction. The problems we stated in 6.1 and 6.2 amount merely
to the question whether there is some end to this process of reduction without

changing the homology structure.
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