A THEOREM ON THE REPRESENTATION THEORY OF JORDAN ALGEBRAS

W. H. MILLS

1. Introduction. Let J be a Jordan algebra over a field Φ of characteristic neither 2 nor 3. Let $a \longrightarrow S_a$ be a (general) representation of J. If α is an algebraic element of J, then S_{α} is an algebraic element. The object of this paper is to determine the polynomial identity* satisfied by S_{α} . The polynomial obtained depends only on the minimal polynomial of α and the characteristic of Φ . It is the minimal polynomial of S_{α} if the associative algebra U generated by the S_a is the universal associative algebra of J and if J is generated by α .

2. Preliminaries. A (nonassociative) commutative algebra J over a field Φ is called a *Jordan algebra* if

$$(1) \qquad (a^2b)a = a^2(ba)$$

holds for all $a, b \in J$. In this paper it will be assumed that the characteristic of Φ is neither 2 nor 3.

It is well known that the Jordan algebra J is power associative; ** that is, the subalgebra generated by any single element a is associative. An immediate consequence is that if f(x) is a polynomial with no constant term then f(a) is uniquely defined.

Let R_a be the multiplicative mapping in J, $a \rightarrow xa = ax$, determined by the element a. From (1) it can be shown that we have

$$[R_a R_{bc}] + [R_b R_{ac}] + [R_c R_{ab}] = 0$$

and

$$R_a R_b R_c + R_c R_b R_a + R_{(ac)b} = R_a R_{bc} + R_b R_{ac} + R_c R_{ab}$$

for all a, b, $c \in J$, where [AB] denotes AB - BA. Since the characteristic of Φ is not 3, either of these relations and the commutative law imply (1). Let

Received November 20, 1950.

^{*} This problem was proposed by N. Jacobson.

^{**}See, for example, Albert [1].

Pacific J. Math. 1 (1951), 255-264.

W. H. MILLS

 $a \longrightarrow S_a$ be a linear mapping of J into an associative algebra U such that for all a, b, $c \in J$ we have

(2)
$$[S_a S_{bc}] + [S_b S_{ac}] + [S_c S_{ab}] = 0$$

and

(3)
$$S_a S_b S_c + S_c S_b S_a + S_{(ac) b} = S_a S_{bc} + S_b S_{ac} + S_c S_{ab}$$

Such a mapping is called a representation.

It has been shown* that there exists a representation $a \rightarrow S_a$ of J into an associative algebra U such that (a) U is generated by the elements S_a and (b) if $a \rightarrow T_a$ is an arbitrary representation of J then $S_a \rightarrow T_a$ defines a homomorphism of U. In this case the algebra U is called the *universal associative algebra* of J.

We shall now suppose that $a \to S_a$ is an arbitrary representation of J, and α a fixed element of J. Let $s(r) = S_{\alpha}r$, A = s(1), B = s(2). If we put $a = b = c = \alpha$ in (2), we get AB = BA. If we put $a = b = \alpha$, $c = \alpha^{r-2}$, $r \ge 3$, then (3) becomes

(4)
$$s(r) = 2As(r-1) + s(r-2)B - A^2s(r-2) - s(r-2)A^2$$
.

We now see that A and B generate a commutative subalgebra U_{α} containing s(r) for all r. By the commutativity of U_{α} , (4) becomes

(5)
$$s(r) = 2As(r-1) + (B-2A^2) s(r-2)$$

We now adjoin to the commutative associative algebra U_{α} an element C commuting with the elements of U_{α} such that $C^2 = B - A^2$. We have the following result.

LEMMA 1. 'For all positive integers r, we have

$$s(r) = (1/2)(A + C)^r + (1/2)(A - C)^r$$
.

Proof. If r = 1, then

$$(1/2)(A + C)^r + (1/2)(A - C)^r = A = s(1)$$
.

^{*} For a general discussion of the theory of representations of a Jordan algebra and a proof of the existence of the universal associative algebra, see Jacobson [2].

If r = 2, then

$$(1/2)(A + C)^r + (1/2)(A - C)^r = A^2 + C^2 = s(2)$$
.

Now suppose that $r \ge 3$ and that Lemma 1 holds for r - 1 and r - 2. By direct substitution it follows that A + C and A - C are roots of

$$x^2 = 2Ax + B - 2A^2,$$

and therefore of

$$x^r = 2Ax^{r-1} + (B - 2A^2) x^{r-2}$$

Hence,

$$(A + C)^{r} = 2A(A + C)^{r-1} + (B - 2A^{2})(A + C)^{r-2}$$

and

$$(A - C)^r = 2A(A - C)^{r-1} + (B - 2A^2)(A - C)^{r-2}$$

Adding and dividing by 2, we have the desired result:

$$(1/2)(A + C)^{r} + (1/2)(A - C)^{r} = 2As(r - 1) + (B - 2A^{2}) s(r - 2) = s(r).$$

An immediate consequence of Lemma 1 is that if g(x) is an arbitrary polynomial with no constant term, then

(6)
$$S_{g(\alpha)} = (1/2) g(A + C) + (1/2) g(A - C)$$
.

Now suppose further that α is an algebraic element of J and that f(x) is a polynomial with no constant term, such that $f(\alpha) = 0$. Then by (6) we have

$$0 = 2S_{f(\alpha)} = f(A + C) + f(A - C),$$

$$0 = 2S_{\alpha f(\alpha)} = (A + C) f(A + C) + (A - C) f(A - C).$$

The next step is to eliminate C from the system (7). To do this we need some additional tools.

3. Theory of elimination. Let Ω be the splitting field of f(x) over the field Φ . Let $P = \Phi[x]$, Q = P[y], $P' = \Omega[x]$, Q' = P'[y] be polynomial rings in one and two variables over Φ and Ω , respectively. Then P and P' are principal ideal rings. If q_1 and q_2 are elements of Q, let (q_1, q_2) be the ideal of Q generated by q_1 and q_2 , and let $\{q_1, q_2\}$ be a generator of the P-ideal $(q_1, q_2) \cap P$. Similarly, if q_1 and q_2 are elements of Q', let $((q_1, q_2))$ be the ideal of Q' generated W. H. MILLS

by q_1 and q_2 . Furthermore, let $\{\{q_1, q_2\}\}\$ denote a generator of the *P'*-ideal $((q_1, q_2)) \cap P'$. We note that $\{q_1, q_2\}$ and $\{\{q_1, q_2\}\}\$ are determined up to unit factors. The unit factors are nonzero elements of Φ and Ω respectively.

We shall establish the following lemma.

LEMMA 2. If q_1 and q_2 are elements of Q, then $\{q_1, q_2\} = \{\{q_1, q_2\}\}$ up to a unit factor.

Proof. Let $\omega_1, \omega_2, \cdots, \omega_m$ be a basis of Ω over Φ . Then $P' = \Sigma \omega_i P$ and $Q' = \Sigma \omega_i Q$. Therefore

$$((q_1,q_2)) = Q'q_1 + Q'q_2 = \Sigma\omega_i Qq_1 + \Sigma\omega_i Qq_2 = \Sigma\omega_i (q_1,q_2)$$

and

$$((q_1, q_2)) \cap P' = \Sigma \omega_i ((q_1, q_2) \cap P) = ((q_1, q_2) \cap P) P' = \{q_1, q_2\} P'.$$

It follows that $\{q_1, q_2\} = \{\{q_1, q_2\}\}.$

Let r and s be distinct elements of P', and let m and n be positive integers. We shall determine $\{\{(y - r)^m, (y - s)^n\}\}$.

LEMMA 3. Let S(m, n) be that positive integer satisfying

$$S(m,n) \leq m + n - 1,$$

$$\binom{S(m,n) - 1}{n - 1} \neq 0,$$

and

$$\binom{N}{n-1} = 0$$
 if $S(m,n) \leq N \leq m+n-2$,

where $\binom{N}{M}$ is the binomial coefficient considered as an integer in Φ . Then we have $\{\{(y - r)^m, (y - s)^n\}\} = (s - r)^{S(m,n)}$.

Proof. We note that S(m, n) depends only on m, n, and the characteristic p of Φ . If p = 0, or if $p \ge m + n - 1$, then S(m, n) = m + n - 1. In any case,

$$(8) m+n-1 \ge S(m,n) \ge n.$$

258

Replacing y by y + r, we may assume that r = 0, $s \neq 0$. Formally, modulo y^m , we have

$$(s - y)^{-n} = s^{-n} (1 - y/s)^{-n} \equiv s^{-n} \sum_{\mu=0}^{m-1} {\binom{-n}{\mu}} (-y/s)^{\mu}$$
$$= \sum_{\mu=0}^{m-1} s^{-n-\mu} {\binom{n+\mu-1}{\mu}} y^{\mu} = \sum_{\mu=0}^{m-1} s^{-n-\mu} {\binom{n+\mu-1}{n-1}} y^{\mu}$$
$$= \sum_{\nu=n}^{S(m,n)} s^{-\nu} {\binom{\nu-1}{n-1}} y^{\nu-n}.$$

Therefore there exists a $q \in Q'$ such that

(9)
$$qy^{m} + (y-s)^{n}(-1)^{n} \sum_{\nu=n}^{S(m,n)} s^{S(m,n)-\nu} {\binom{\nu-1}{n-1}} y^{\nu-n} = s^{S(m,n)}.$$

It follows that

$$\{\{y^{m}, (y-s)^{n}\}\}|s^{S(m,n)}.$$

Put

$$\{\{y^{m}, (y - s)^{n}\}\} = G, \quad s^{S(m, n)}/G = H.$$

Then G and H are elements of P'. Furthermore, there exist q_1 and q_2 in Q' such that the y-degree of q_2 is less than m and such that $q_1 y^m + q_2 (y - s)^n = G$. Hence

(10)
$$q_1 H y^m + q_2 H (y - s)^n = G H = s^{S(m,n)}$$
.

Subtracting (9) from (10) and comparing terms not divisible by y^m , we obtain

(11)
$$q_2 H = (-1)^n \sum_{\nu=n}^{S(m,n)} s^{S(m,n)-\nu} {\binom{\nu-1}{n-1}} y^{\nu-n}.$$

Comparing coefficients of $y^{S(m,n)-n}$ in (11), we get

$$H \mid \begin{pmatrix} S(m,n) - 1 \\ n - 1 \end{pmatrix}$$
,

which is a nonzero element of Φ . Therefore *H* is a unit element, and this establishes Lemma 3.

In the following we shall use l.c.m. (a_1, a_2, \dots, a_n) for the least common multiple of a_1, a_2, \dots, a_n .

LEMMA 4. If $((q_1, q_2)) \supseteq P'$, then

$$\{\{q_1q_2, q_3\}\} = 1.c.m.(\{\{q_1, q_3\}\}, \{\{q_2, q_3\}\}).$$

Proof. Put $p_1 = \{\{q_1, q_3\}\}, p_2 = \{\{q_2, q_3\}\}, and p_3 = 1.c.m. (p_1, p_2).$ We note that $((q_1, q_3)) \cap P' \supseteq ((q_1q_2, q_3)) \cap P'$, and therefore $p_1 | \{\{q_1q_2, q_3\}\}$. Similarly, $p_2 | \{\{q_1q_2, q_3\}\}, and hence <math>p_3 | \{\{q_1q_2, q_3\}\}$. Now there exist D, E, F, G, H, I in Q' such that

$$Dq_1 + Eq_3 = p_1$$
, $Fq_2 + Gq_3 = p_2$, $Hq_1 + Iq_2 = 1$.

Therefore

$$Dq_1q_2 + Eq_2q_3 = p_1q_2$$
 and $Fq_1q_2 + Gq_1q_3 = p_2q_1$.

Hence there exist K, L, M, N in Q' such that

$$Kq_1q_2 + Lq_3 = p_3q_2$$
 and $Mq_1q_2 + Nq_3 = p_3q_1$.

Hence

$$(HM + IK)q_1q_2 + (HN + IL)q_3 = p_3$$
.

Therefore $\{\{q_1q_2, q_3\}\} \mid p_3$, and the proof of Lemma 4 is complete.

We shall now determine $\{D, E\}$, where

$$D = f(x + y) + f(x - y),$$

$$E = (x + y) f(x + y) + (x - y) f(x - y).$$

By Lemma 2, we have $\{D, E\} = \{\{D, E\}\}$. Since

$$E - (x - y)D = 2yf(x + y),$$

we have

$$\{\{D, E\}\} = \{\{D, yf(x + y)\}\}.$$

Put

$$\{\{f(x + y), f(x - y)\}\} = \Delta.$$

Let n be the degree of f(x). Choose F(y) and G(y) in Q', with y-degree less than n, such that

$$F(y) f(x + y) + G(y) f(x - y) = \Delta.$$

Then F(y) and G(y) are completely determined. Now

$$F(-\mathbf{y}) f(\mathbf{x} - \mathbf{y}) + G(-\mathbf{y}) f(\mathbf{x} + \mathbf{y}) = \Delta.$$

Therefore we have F(-y) = G(y), from which it follows that F(0) = G(0), or y | [F(y) - G(y)]. Now

$$(F(y) - G(y)) f(x + y) + G(y) D = \Delta.$$

Therefore $\{\{D, yf(x + y)\}\} | \Delta$. It is clear that $\Delta | \{\{D, yf(x + y)\}\}$. Thus we have

$${D, E} = {{D, yf(x + y)}} = \Delta$$
.

We must now determine

$$\Delta = \{\{f(x+y), f(x-y)\}\}.$$

Let $f(x) = \prod (x - \alpha_i)^{n_i}$, where the α_i are distinct elements of Ω . Then

$$f(x + y) = \prod (x + y - \alpha_i)^{n_i}$$
, $f(x - y) = \prod (x - y - \alpha_j)^{n_j}$.

If q_1 and q_2 are two relatively prime factors of f(x + y), or of f(x - y), then $((q_1, q_2)) \supseteq P'$. Therefore we can apply Lemmas 3 and 4 to obtain

(12)
$$\{D,E\} = \{\{f(x + y), f(x - y)\}\} = 1.c.m.(2x - \alpha_i - \alpha_j)^{S(n_i, n_j)}$$

4. The equation for S_{α} . We shall establish the following result.

THEOREM. Let α be an algebraic element of J satisfying the equation $f(\alpha) = 0$, where f(x) is a polynomial with no constant term. Let

$$f(x) = \prod (\dot{x} - \alpha_i)^{n_i} ,$$

where the α_i are distinct elements of the splitting field Ω of f(x). Put

$$\psi(\mathbf{x}) = \lim_{i, j} (\mathbf{x} - (1/2)\alpha_i - (1/2)\alpha_j)^{S(n_i, n_j)}$$

Then $\psi(S_{\alpha}) = 0$. Furthermore, if the algebra U generated by the S_a , $a \in J$, is the universal associative algebra of J, if f(x) is the minimal polynomial of α , and if J is generated by α , then $\psi(x)$ is the minimal polynomial satisfied by S_{α} .

Proof. As before, we let $P = \varphi[x]$, Q = P[y] be polynomial rings over Φ in one and two variables respectively, and put

$$D = f(x + y) + f(x - y)$$

and

$$E = (x + y) f(x + y) + (x - y) f(x - y).$$

From (7) and (12) it follows that $\psi(S_{\alpha}) = 0$. We must now show that $\psi(x)$ is the minimal polynomial of S_{α} under the three given conditions. If we let (f(x)) be the principal ideal of P generated by f(x), then J is isomorphic to the quotient ring P/(f(x)) under the natural mapping $g(\alpha) \longrightarrow g(x) + (f(x))$. Let V be the quotient ring Q/(D, E). We now consider the linear mapping

(13)
$$g(x) \longrightarrow T_{g(x)} = (1/2)g(x + y) + (1/2)g(x - y) + (D,E)$$

of P into V. By the commutativity of V we have, for all g, h, $j \in P$,

(14)
$$[T_g T_{hj}] + [T_h T_{gj}] + [T_j T_{gh}] = 0$$

since each of the three terms vanishes. Furthermore, by direct substitution we have

(15)
$$2T_{g}T_{h}T_{j} + T_{ghj} = T_{g}T_{hj} + T_{h}T_{gj} + T_{j}T_{gh}.$$

We now determine the kernel K of the mapping (13). By definition, $g(x) \in K$ if and only if $g(x + y) + g(x - y) \in (D, E)$. Now

$$yf(x + y) = (1/2)E - (1/2)(x - y)D \in (D,E)$$

and

$$yf(x - y) = (1/2)(x + y)D - (1/2)E \in (D, E).$$

Let q(x) be an arbitrary element of P. Then, for suitable $h(x, y) \in Q$, we have

$$q(x + y) f(x + y) + q(x - y) f(x - y) = q(x)D + h(x, y) yf(x + y) - h(x, -y) yf(x - y) \in (D, E).$$

Therefore $q(x)f(x) \in K$ for all q(x), and thus $K \supseteq (f(x))$. Suppose $g(x) \in K$, $g(x) \notin (f(x))$. We may suppose that the degree of g(x) is less than *n*, the degree of f(x). Then $g(x + y) + g(x - y) = h_1D + h_2E$ for suitable h_1 and h_2 in Q. Since the degree of D is *n* and that of E is n + 1, it follows that $h_1 = h_2 = 0$. Therefore g(x + y) + g(x - y) is identically 0. This implies that g(x) is identically zero, a contradiction; hence we have K = (f(x)). It follows that

$$g(\alpha) \longrightarrow T_{g(x)} = (1/2)g(x + y) + (1/2)g(x - y) + (D, E)$$

defines a single-valued linear mapping of J into V. Furthermore, (14) and (15) imply that this mapping is a representation, and from (12) it follows that T_x , the image of α , has $\psi(x) = \{D, E\}$ as its minimal polynomial. Now since U is the universal associative algebra of J, the mapping $S_{g(\alpha)} \longrightarrow T_{g(x)}$ defines a homomorphism * of U into V. It follows that $\psi(x)$ is the minimal polynomial of S_{α} . This completes the proof.

We conclude by mentioning two simple consequences of the main theorem. If $f(x) = x^n$, then $\psi(x) = x^{S(n,n)}$. Now (8) yields $S(n,n) \leq 2n - 1$, and we have the following result.

COROLLARY 1. If $\alpha^n = 0$, then $S_{\alpha}^{2n-1} = 0$. Similarly, we obtain the following result.

COROLLARY 2. Let $f(\alpha) = 0$, where

$$f(x) = \prod_{\mu=1}^{n} (x - \beta_{\mu}).$$

Then $\Lambda(S_{\alpha}) = 0$, where

$$\Lambda(\mathbf{x}) = \prod_{\mu \ge \nu} (\mathbf{x} - (1/2)\beta_{\mu} - (1/2)\beta_{\nu}).$$

^{*} In fact it can easily be shown that this mapping is an isomorphism of U onto V.

Proof. Suppose

$$f(x) = \prod (x - \alpha_i)^{n_i}$$
,

where the α_i are distinct. Now by (8),

$$S(n_i,n_j) \leq n_i + n_j - 1 \leq n_i n_j$$
,

and

$$\Lambda(x) = \prod_{i} (x - \alpha_{i})^{n_{i}(n_{i}+1)/2} \prod_{j>i} (x - (1/2)\alpha_{i} - (1/2)\alpha_{j})^{n_{i}n_{j}}.$$

Therefore $\psi(x) | \Lambda(x)$, and the second corollary follows.

REFERENCES

1. A. A. Albert, A structure theory for Jordan algebras, Ann. of Math. 48 (1947), 546-567.

2. N. Jacobson, General representation theory of Jordan algebras, Trans. Amer. Math. Soc., scheduled to appear in vol. 70 (1951).

YALE UNIVERSITY

264