A THEOREM ON THE REPRESENTATION THEORY OF JORDAN ALGEBRAS

W. H. Mills

1. Introduction. Let J be a Jordan algebra over a field Φ of characteristic neither 2 nor 3. Let $a \longrightarrow S_{a}$ be a (general) representation of J. If α is an algebraic element of J, then S_{α} is an algebraic element. The object of this paper is to determine the polynomial identity* satisfied by S_{α}. The polynomial obtained depends only on the minimal polynomial of α and the characteristic of Φ. It is the minimal polynomial of S_{α} if the associative algebra U generated by the S_{a} is the universal associative algebra of J and if J is generated by α.
2. Preliminaries. A (nonassociative) commutative algebra J over a field Φ is called a Jordan algebra if

$$
\begin{equation*}
\left(a^{2} b\right) a=a^{2}(b a) \tag{1}
\end{equation*}
$$

holds for all $a, b \in J$. In this paper it will be assumed that the characteristic of Φ is neither 2 nor 3.

It is well known that the Jordan algebra J is power associative;** that is, the subalgebra generated by any single element a is associative. An immediate consequence is that if $f(x)$ is a polynomial with no constant term then $f(a)$ is uniquely defined.

Let R_{a} be the multiplicative mapping in $J, a \longrightarrow x a=a x$, determined by the element a. From (1) it can be shown that we have

$$
\left[R_{a} R_{b c}\right]+\left[R_{b} R_{a c}\right]+\left[R_{c} R_{a b}\right]=0
$$

and

$$
R_{a} R_{b} R_{c}+R_{c} R_{b} R_{a}+R_{(a c) b}=R_{a} R_{b c}+R_{b} R_{a c}+R_{c} R_{a b}
$$

for all $a, b, c \in J$, where $[A B]$ denotes $A B-B A$. Since the characteristic of Φ is not 3 , either of these relations and the commutative law imply (1). Let

* This problem was proposed by N. Jacobson.
**See, for example, Albert [1].
Pacific J. Math. 1 (1951), 255-264.
$a \longrightarrow S_{a}$ be a linear mapping of J into an associative algebra U such that for all $a, b, c \in J$ we have

$$
\begin{equation*}
\left[S_{a} S_{b c}\right]+\left[S_{b} S_{a c}\right]+\left[S_{c} S_{a b}\right]=0 \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
S_{a} S_{b} S_{c}+S_{c} S_{b} S_{a}+S_{(a c) b}=S_{a} S_{b c}+S_{b} S_{a c}+S_{c} S_{a b} \tag{3}
\end{equation*}
$$

Such a mapping is called a representation.
It has been shown * that there exists a representation $a \longrightarrow S_{a}$ of J into an associative algebra U such that (a) U is generated by the elements S_{a} and (b) if $a \rightarrow T_{a}$ is an arbitrary representation of J then $S_{a} \longrightarrow T_{a}$ defines a homomorphism of U. In this case the algebra U is called the universal associative alge$b r a$ of J.

We shall now suppose that $a \longrightarrow S_{a}$ is an arbitrary representation of J, and α a fixed element of J. Let $s(r)=S_{\alpha} r, A=s(1), B=s(2)$. If we put $a=b=c=\alpha$ in (2), we get $A B=B A$. If we put $a=b=\alpha, c=\alpha^{r-2}, r \geq 3$, then (3) becomes

$$
\begin{equation*}
s(r)=2 A s(r-1)+s(r-2) B-A^{2} s(r-2)-s(r-2) A^{2} \tag{4}
\end{equation*}
$$

We now see that A and B generate a commutative subalgebra U_{α} containing $s(r)$ for all r. By the commutativity of U_{α}, (4) becomes

$$
\begin{equation*}
s(r)=2 A s(r-1)+\left(B-2 A^{2}\right) s(r-2) \tag{5}
\end{equation*}
$$

We now adjoin to the commutative associative algebra U_{α} an element C commuting with the elements of U_{α} such that $C^{2}=B-A^{2}$. We have the following result.

Lemma 1. 'For all positive integers r, we have

$$
s(r)=(1 / 2)(A+C)^{r}+(1 / 2)(A-C)^{r} .
$$

Proof. If $r=1$, then

$$
(1 / 2)(A+C)^{r}+(1 / 2)(A-C)^{r}=A=s(1)
$$

[^0]If $r=2$, then

$$
(1 / 2)(A+C)^{r}+(1 / 2)(A-C)^{r}=A^{2}+C^{2}=s(2)
$$

Now suppose that $r \geq 3$ and that Lemma 1 holds for $r-1$ and $r-2$. By direct substitution it follows that $A+C$ and $A-C$ are roots of

$$
x^{2}=2 A x+B-2 A^{2}
$$

and therefore of

$$
x^{r}=2 A x^{r-1}+\left(B-2 A^{2}\right) x^{r-2}
$$

Hence,

$$
(A+C)^{r}=2 A(A+C)^{r-1}+\left(B-2 A^{2}\right)(A+C)^{r-2}
$$

and

$$
(A-C)^{r}=2 A(A-C)^{r-1}+\left(B-2 A^{2}\right)(A-C)^{r-2}
$$

Adding and dividing by 2 , we have the desired result:

$$
(1 / 2)(A+C)^{r}+(1 / 2)(A-C)^{r}=2 A s(r-1)+\left(B-2 A^{2}\right) s(r-2)=s(r)
$$

An immediate consequence of Lemma 1 is that if $g(x)$ is an arbitrary polynomial with no constant term, then

$$
\begin{equation*}
S_{g(\alpha)}=(1 / 2) g(A+C)+(1 / 2) g(A-C) \tag{6}
\end{equation*}
$$

Now suppose further that α is an algebraic element of J and that $f(x)$ is a polynomial with no constant term, such that $f(\alpha)=0$. Then by (6) we have

$$
\begin{align*}
0=2 S_{f(\alpha)} & =f(A+C)+f(A-C) \tag{7}\\
0=2 S_{\alpha f(\alpha)} & =(A+C) f(A+C)+(A-C) f(A-C)
\end{align*}
$$

The next step is to eliminate C from the system (7). To do this we need some additional tools.
3. Theory of elimination. Let Ω be the splitting field of $f(x)$ over the field Φ. Let $P=\Phi[x], Q=P[y], P^{\prime}=\Omega[x], Q^{\prime}=P^{\prime}[y]$ be polynomial rings in one and two variables over Φ and Ω, respectively. Then P and P^{\prime} are principal ideal rings. If q_{1} and q_{2} are elements of Q, let $\left(q_{1}, q_{2}\right)$ be the ideal of Q generated by q_{1} and q_{2}, and let $\left\{q_{1}, q_{2}\right\}$ be a.generator of the P-ideal $\left(q_{1}, q_{2}\right) \cap P$. Similarly, if q_{1} and q_{2} are elements of Q^{\prime}, let $\left(\left(q_{1}, q_{2}\right)\right)$ be the ideal of Q^{\prime} generated
by q_{1} and q_{2}. Furthermore, let $\left\{\left\{q_{1}, q_{2}\right\}\right\}$ denote a generator of the P^{\prime}-ideal $\left(\left(q_{1}, q_{2}\right)\right) \cap P^{\prime}$. We note that $\left\{q_{1}, q_{2}\right\}$ and $\left\{\left\{q_{1}, q_{2}\right\}\right\}$ are determined up to unit factors. The unit factors are nonzero elements of Φ and Ω respectively.

We shall establish the following lemma.
Lemma 2. If q_{1} and q_{2} are elements of Q, then $\left\{q_{1}, q_{2}\right\}=\left\{\left\{q_{1}, q_{2}\right\}\right\}$ up to a unit factor.

Proof. Let $\omega_{1}, \omega_{2}, \cdots, \omega_{m}$ be a basis of Ω over Φ. Then $P^{\prime}=\Sigma \omega_{i} P$ and $Q^{\prime}=\Sigma \omega_{i} Q$. Therefore

$$
\left(\left(q_{1}, q_{2}\right)\right)=Q^{\prime} q_{1}+Q^{\prime} q_{2}=\Sigma \omega_{i} Q q_{1}+\sum \omega_{i} Q q_{2}=\Sigma \omega_{i}\left(q_{1}, q_{2}\right)
$$

and

$$
\left(\left(q_{1}, q_{2}\right)\right) \cap P^{\prime}=\sum \omega_{i}\left(\left(q_{1}, q_{2}\right) \cap P\right)=\left(\left(q_{1}, q_{2}\right) \cap P\right) P^{\prime}=\left\{q_{1}, q_{2}\right\} P^{\prime}
$$

It follows that $\left\{q_{1}, q_{2}\right\}=\left\{\left\{q_{1}, q_{2}\right\}\right\}$.
Let r and s be distinct elements of P^{\prime}, and let m and n be positive integers. We shall determine $\left\{\left\{(y-r)^{m},(y-s)^{n}\right\}\right\}$.

Lemma 3. Let $S(m, n)$ be that positive integer satisfying

$$
\begin{aligned}
& S(m, n) \leq m+n-1 \\
& \binom{S(m, n)-1}{n-1} \neq 0
\end{aligned}
$$

and

$$
\binom{N}{n-1}=0 \quad \text { if } S(m, n) \leq N \leq m+n-2
$$

where $\binom{N}{M}$ is the binomial coefficient considered as an integer in Φ. Then we have

$$
\left\{\left\{(y-r)^{m}, \quad(y-s)^{n}\right\}\right\}=(s-r)^{S(m, n)}
$$

Proof. We note that $S(m, n)$ depends only on m, n, and the characteristic p of Φ. If $p=0$, or if $p \geq m+n-1$, then $S(m, n)=m+n-1$. In any case,
(8)

$$
m+n-1 \geq S(m, n) \geq n
$$

Replacing y by $y+r$, we may assume that $r=0, s \neq 0$. Formally, modulo y^{m}, we have

$$
\begin{aligned}
(s-y)^{-n} & =s^{-n}(1-y / s)^{-n} \equiv s^{-n} \sum_{\mu=0}^{m-1}\binom{-n}{\mu}(-y / s)^{\mu} \\
& =\sum_{\mu=0}^{m-1} s^{-n-\mu}\binom{n+\mu-1}{\mu} y^{\mu}=\sum_{\mu=0}^{m-1} s^{-n-\mu}\binom{n+\mu-1}{n-1} y^{\mu} \\
& =\sum_{\nu=n}^{s(m, n)} s^{-\nu\binom{\nu-1}{n-1} y^{\nu-n} .} .
\end{aligned}
$$

Therefore there exists a $q \in Q^{\prime}$ such that

It follows that

$$
\left\{\left\{y^{m},(y-s)^{n}\right\}\right\} \mid s^{s(m, n)} .
$$

Put

$$
\left\{\left\{y^{m},(y-s)^{n}\right\}\right\}=G, \quad s^{S(m, n)} / G=H .
$$

Then G and H are elements of P^{\prime}. Furthermore, there exist q_{1} and q_{2} in Q^{\prime} such that the y-degree of q_{2} is less than m and such that $q_{1} y^{m}+q_{2}(y-s)^{n}=G$. Hence

$$
\begin{equation*}
q_{1} H y^{m}+q_{2} H(y-s)^{n}=G H=s^{S(m, n)} . \tag{10}
\end{equation*}
$$

Subtracting (9) from (10) and comparing terms not divisible by y^{m}, we obtain

Comparing coefficients of $y^{S(m, n)-n}$ in (11), we get

$$
H \left\lvert\,\binom{ S(m, n)-1}{n-1}\right.
$$

which is a nonzero element of Φ. Therefore H is a unit element, and this establishes Lemma 3.

In the following we shall use l.c.m. $\left(a_{1}, a_{2}, \cdots, a_{n}\right)$ for the least common multiple of $a_{1}, a_{2}, \cdots, a_{n}$.

Lemma 4. If $\left(\left(q_{1}, q_{2}\right)\right) \supseteq P^{\prime}$, then

$$
\left\{\left\{q_{1} q_{2}, q_{3}\right\}\right\}=1 . \operatorname{c.m} .\left(\left\{\left\{q_{1}, q_{3}\right\}\right\},\left\{\left\{q_{2}, q_{3}\right\}\right\}\right) .
$$

Proof. Put $p_{1}=\left\{\left\{q_{1}, q_{3}\right\}\right\}, p_{2}=\left\{\left\{q_{2}, q_{3}\right\}\right\}$, and $p_{3}=$ l.c.m. $\left(p_{1}, p_{2}\right)$. We note that $\left(\left(q_{1}, q_{3}\right)\right) \cap P^{\prime} \supseteq\left(\left(q_{1} q_{2}, q_{3}\right)\right) \cap P^{\prime}$, and therefore $p_{1} \mid\left\{\left\{q_{1} q_{2}, q_{3}\right\}\right\}$. Similarly, $p_{2} \mid\left\{\left\{q_{1} q_{2}, q_{3}\right\}\right\}$, and hence $p_{3} \mid\left\{\left\{q_{1} q_{2}, q_{3}\right\}\right\}$. Now there exist D, E, F, G, H, I in Q^{\prime} such that

$$
D q_{1}+E q_{3}=p_{1}, \quad F q_{2}+G q_{3}=p_{2}, \quad H q_{1}+I q_{2}=1
$$

Therefore

$$
D q_{1} q_{2}+E q_{2} q_{3}=p_{1} q_{2} \quad \text { and } \quad F q_{1} q_{2}+G q_{1} q_{3}=p_{2} q_{1}
$$

Hence there exist K, L, M, N in Q^{\prime} such that

$$
K q_{1} q_{2}+L q_{3}=p_{3} q_{2} \quad \text { and } \quad M q_{1} q_{2}+N q_{3}=p_{3} q_{1}
$$

Hence

$$
(H M+I K) q_{1} q_{2}+(H N+I L) q_{3}=p_{3}
$$

Therefore $\left\{\left\{q_{1} q_{2}, q_{3}\right\}\right\} \mid p_{3}$, and the proof of Lemma 4 is complete.
We shall now determine $\{D, E\}$, where

$$
\begin{aligned}
& D=f(x+y)+f(x-y) \\
& E=(x+y) f(x+y)+(x-y) f(x-y)
\end{aligned}
$$

By Lemma 2, we have $\{D, E\}=\{\{D, E\}\}$. Since

$$
E-(x-y) D=2 y f(x+y)
$$

we have

$$
\{\{D, E\}\}=\{\{D, y f(x+y)\}\} .
$$

Put

$$
\{\{f(x+y), f(x-y)\}\}=\Delta .
$$

Let n be the degree of $f(x)$. Choose $F(y)$ and $G(y)$ in Q^{\prime}, with y-degree less than n, such that

$$
F(y) f(x+y)+G(y) f(x-y)=\Delta .
$$

Then $F(y)$ and $G(y)$ are completely determined. Now

$$
F(-y) f(x-y)+G(-y) f(x+y)=\Delta
$$

Therefore we have $F(-y)=G(y)$, from which it follows that $F(0)=G(0)$, or $y \mid[F(y)-G(y)]$. Now

$$
(F(y)-G(y)) f(x+y)+G(y) D=\Delta .
$$

Therefore $\{\{D, y f(x+y)\}\} \mid \Delta$. It is clear that $\Delta \mid\{\{D, y f(x+y)\}\}$. Thus we have

$$
\{D, E\}=\{\{D, y f(x+y)\}\}=\Delta .
$$

We must now determine

$$
\Delta=\{\{f(x+y), f(x-y)\}\}
$$

Let $f(x)=\Pi\left(x-\alpha_{i}\right)^{n_{i}}$, where the α_{i} are distinct elements of Ω. Then

$$
f(x+y)=\Pi\left(x+y-\alpha_{i}\right)^{n_{i}}, \quad f(x-y)=\Pi\left(x-y-\alpha_{j}\right)^{n_{j}}
$$

If q_{1} and q_{2} are two relatively prime factors of $f(x+y)$, or of $f(x-y)$, then $\left(\left(q_{1}, q_{2}\right)\right) \supseteq P^{\prime}$. Therefore we can apply Lemmas 3 and 4 to obtain

$$
\begin{equation*}
\{D, E\}=\{\{f(x+y), \quad f(x-y)\}\}=l_{i, j}, \mathrm{~m} .\left(2 x-\alpha_{i}-\alpha_{j}\right)^{S\left(n_{i}, n_{j}\right)} \tag{12}
\end{equation*}
$$

4. The equation for S_{α}. We shall establish the following result.

Theorem. Let α be an algebraic element of J satisfying the equation $f(\alpha)=0$, where $f(x)$ is a polynomial with no constant term. Let

$$
f(x)=\prod\left(\dot{x}-\alpha_{i}\right)^{n_{i}}
$$

where the α_{i} are distinct elements of the splitting field Ω of $f(x)$. Put

$$
\psi(x)=l_{i, j, m}\left(x-(1 / 2) \alpha_{i}-(1 / 2) \alpha_{j}\right)^{S\left(n_{i}, n_{j}\right)}
$$

Then $\psi\left(S_{\alpha}\right)=0$. Furthermore, if the algebra U generated by the $S_{a}, a \in J$, is the universal associative algebra of J, if $f(x)$ is the minimal polynomial of α, and if J is generated by α, then $\psi(x)$ is the minimal polynomial satisfied by S_{α}.

Proof. As before, we let $P=\Psi[x], Q=P[y]$ be polynomial rings over Φ in one and two variables respectively, and put

$$
D=f(x+y)+f(x-y)
$$

and

$$
E=(x+y) f(x+y)+(x-y) f(x-y)
$$

From (7) and (12) it follows that $\psi\left(S_{\alpha}\right)=0$. We must now show that $\psi(x)$ is the minimal polynomial of S_{α} under the three given conditions. If we let $(f(x))$ be the principal ideal of P generated by $f(x)$, then J is isomorphic to the quotient ring $P /(f(x))$ under the natural mapping $g(\alpha) \rightarrow g(x)+(f(x))$. Let V be the quotient ring $Q /(D, E)$. We now consider the linear mapping

$$
\begin{equation*}
g(x) \longrightarrow T_{g(x)}=(1 / 2) g(x+y)+(1 / 2) g(x-y)+(D, E) \tag{13}
\end{equation*}
$$

of P into V. By the commutativity of V we have, for all $g, h, j \in P$,

$$
\begin{equation*}
\left[T_{g} T_{h j}\right]+\left[T_{h} T_{g j}\right]+\left[T_{j} T_{g h}\right]=0 \tag{14}
\end{equation*}
$$

since each of the three terms vanishes. Furthermore, by direct substitution we have

$$
\begin{equation*}
2 T_{g} T_{h} T_{j}+T_{g h j}=T_{g} T_{h j}+T_{h} T_{g j}+T_{j} T_{g h} \tag{15}
\end{equation*}
$$

We now determine the kernel K of the mapping (13). By definition, $g(x) \in K$ if and only if $g(x+y)+g(x-y) \in(D, E)$. Now

$$
y f(x+y)=(1 / 2) E-(1 / 2)(x-y) D \in(D, E)
$$

and

$$
y f(x-y)=(1 / 2)(x+y) D-(1 / 2) E \in(D, E)
$$

Let $q(x)$ be an arbitrary element of P. Then, for suitable $h(x, y) \in Q$, we have

$$
\begin{aligned}
q(x+y) f(x+y)+q(x-y) f(x-y)= & q(x) D+h(x, y) y f(x+y) \\
& -h(x,-y) y f(x-y) \in(D, E)
\end{aligned}
$$

Therefore $q(x) f(x) \in K$ for all $q(x)$, and thus $K \supseteq(f(x))$. Suppose $g(x) \in K$, $g(x) \notin(f(x))$. We may suppose that the degree of $g(x)$ is less than n, the degree of $f(x)$. Then $g(x+y)+g(x-y)=h_{1} D+h_{2} E$ for suitable h_{1} and h_{2} in Q. Since the degree of D is n and that of E is $n+1$, it follows that $h_{1}=h_{2}=0$. Therefore $g(x+y)+g(x-y)$ is identically 0 . This implies that $g(x)$ is identically zero, a contradiction; hence we have $K=(f(x))$. It follows that

$$
g(\alpha) \rightarrow T_{g(x)}=(1 / 2) g(x+y)+(1 / 2) g(x-y)+(D, E)
$$

defines a single-valued linear mapping of J into V. Furthermore, (14) and (15) imply that this mapping is a representation, and from (12) it follows that T_{x}, the image of α, has $\psi(x)=\{D, E\}$ as its minimal polynomial. Now since U is the universal associative algebra of J, the mapping $S_{g(\alpha)} \rightarrow T_{g(x)}$ defines a homomorphism* of U into V. It follows that $\psi(x)$ is the minimal polynomial of S_{α}. This completes the proof.

We conclude by mentioning two simple consequences of the main theorem. If $f(x)=x^{n}$, then $\psi(x)=x^{S(n, n)}$. Now (8) yields $S(n, n) \leq 2 n-1$, and we have the following result.

Corollary 1. If $\alpha^{n}=0$, then $S_{\alpha}^{2 n-1}=0$.
Similarly, we obtain the following result.
Corollary 2. Let $f(\alpha)=0$, where

$$
f(x)=\prod_{\mu=1}^{n}\left(x-\beta_{\mu}\right)
$$

Then $\Lambda\left(S_{\alpha}\right)=0$, where

$$
\Lambda(x)=\prod_{\mu \geq \nu}\left(x-(1 / 2) \beta_{\mu}-(1 / 2) \beta_{\nu}\right)
$$

[^1]Proof. Suppose

$$
f(x)=\Pi\left(x-\alpha_{i}\right)^{n_{i}}
$$

where the α_{i} are distinct. Now by (8),

$$
S\left(n_{i}, n_{j}\right) \leq n_{i}+n_{j}-1 \leq n_{i} n_{j},
$$

and

$$
\Lambda(x)=\prod_{i}\left(x-\alpha_{i}\right)^{n_{i}\left(n_{\imath}+1\right) / 2} \prod_{j>i}\left(x-(1 / 2) \alpha_{i}-(1 / 2) \alpha_{j}\right)^{n_{i} n_{j}}
$$

Therefore $\psi(x) \mid \Lambda(x)$, and the second corollary follows.

References

1. A. A. Albert, A structure theory for Jordan algebras, Ann. of Math. 48 (1947), 546-567.
2. N. Jacobson, General representation theory of Jordan algebras, Trans. Amer. Math. Soc., scheduled to appear in vol. 70 (1951).

Yale University

[^0]: * For a general discussion of the theory of representations of a Jordan algebra and a proof of the existence of the universal associative algebra, see Jacobson [2].

[^1]: * In fact it can easily be shown that this mapping is an isomorphism of U onto V.

