
TWO THEOREMS ON METRIC SPACES

H S I E N - C H U N G WANG

1. Introduction, Let £ be a metric space with distance function d. The space

E is called two-point homogeneous if given any four points a, a1, b, b' with

d(a9a') = d(b,b'), there exists an isometry of E carrying a, α' to b, b' , re-

spectively. In a recent paper [7] , the author has determined all the compact and

connected two-point homogeneous spaces. It is the aim of the present note to

discuss the noncompact case, and prove a conjecture of Busemann which can be

regarded also as a sharpening of a theorem of Birkhoff [ l ] . The results con-

cerning the noncompact two-point homogeneous spaces are not as satisfactory as

the results for the compact case; we have to assume certain conditions on the

metric.

By a segment in a metric space E, we shall mean an isometric image of a

closed interval with the usual metric. A metric space will be said to have the

property (L) if given a point p, there exists a neighborhood IF of p so that each

point x (y^p) of W can be joined to p by at most one segment in E. The following

theorems will be proved:

THEOREM 1. Let E be a finite-dimensional, finitely compact, convex metric

space with property (L). // E is two-point homogeneous, then E is homeomorphic

with a manifold.

THEOREM 2. Let E be a metric space with all the properties mentioned in

Theorem 1. //, moreover, dim E is odd, then E is congruent either to the euclidean

space, the hyperbolic space, the elliptic space, or the spherical space.

Our Theorem 2 justifies the conjecture of Busemann [2, p. 233] that a two-

point homogeneous three dimensional S.L. space [2, p. 78] is either elliptic,

hyperbolic, or euclidean. It is to be noted that Theorem 2 no longer holds if dim E

is even and greater than two. The complex elliptic spaces [7] and the hyperbolic

Hermitian spaces 1 [2, p. 192] serve as counter examples.

Received May 25, 1951.
1 These spaces were first introduced by H. Poincare, and then discussed by G.Fubini

and E. Study. Following E.Cartan, we call these spaces the hyperbolic Hermitian spaces.
Pacific J. Math. 1 (1951),473-480.
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2 Preliminary results* Throughout this note, by a Busemann space [2, p. 11 ] ,

we shall mean a finitely compact, convex metric space such that at each point

p, there exists a neighborhood W with the following property: given any two points

x9 y of W and any e > 0, we can find a positive number δ < e for which a unique

point z exists so that

d(x,y) +d(y,z) =d(x,z), d(y, z) = S .

It can easily be verified that the class of all two-point homogeneous, finitely

compact, convex metric space with the property (L) coincides with the class of all

two-point homogeneous Busemann spaces. In the statements of our Theorems, we

use the property (L) instead of Busemann's axioms merely because it is, geo-

metrically, easier to visualize.

Let E be a Busemann space. We shall first see that each (/-sphere1 of suf-

ficiently small radius is locally connected. In fact, let p be a point of E. We

choose e > 0 so small that each point x with 0 < d(p, x) < e can be joined to p

by one and only one segment. Let K{p, β) be the cί-sphere with center p and radius

€, and R the totality of points y with 0 < d(p, y) < e. Then evidently R is an open

set of E. Since E is convex, E must be locally connected. It follows then that R

is locally connected.

For each point y of K(p9 e), we denote by Py (s) (0 < s < e) the isometric repre-

sentation of the segment joining p to y. Let / be the open interval 0 < s < e.

By our choice of 6, the mapping h: K(p, e) X / —> R defined by h{y9s) — Py (s)

is a one-to-one mapping of the topological product K{p, β) X / onto R. Moreover,

from Busemann's results [2, I., §3] concerning the convergence of geodesies,

we see immediately that h is bicontinuous. This tells us that K(p, β) X / and R

are homeomorphic. Since R is locally connected, K(p, β) X /, and hence K (p, β),

is locally connected.

3. Proof of Theorem l Let £ be a metric space with all the properties men-

tioned in Theorem 1. From the above discussions, we know that for any point p of

E, the J-sphere Kip, β) with sufficiently small radius e is locally connected. Let

Γ be the group of all isometries of E, and Γ̂  the totality of all those isometries

which leave p invariant. In Γ, we introduce the topology as defined by van Dantzig

and van der Waerden [4] (in fact, this is exactly the g-topology of R. Arens).

1 By a d-sphere we mean the totality of points equidistant from a fixed point with re-
spect to the metric d. This should be distinguished from the (n — l)-sphere which stands
for the {n — l)-dimensional topological sphere.
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Then Γ̂  forms a compact topological group [4] . Evidently, Γ̂  is a transformation

group of K (p, e) in the sense of Montgomery and Zippin. From the two-point homo-

geneity, Γ̂  is transitive on K (p, e). Taking account of the finite dimensionality

and local connectedness of K (p, e) and the compactness of Γ̂  , we can conclude

[5] that Vp is a Lie group, and hence K(p,β) is locally euclidean (here as well

as in what follows, locally euclidean is always used in the topological sense).

The set /ί, being homeomorphic with the topological product of K{p, e) and the

open interval /, must be locally euclidean as well. Hence our space E is locally

euclidean at each point of R, and hence locally euclidean at all its points. More-

over, E is obviously separable and connected. It follows then that E is homeo-

morphic with a manifold.

4. The structure of c/-spheres Before proving Theorem 2, we find it convenient

to establish some more properties of the c/-spheres.

LEMMA. Let E be a metric space satisfying all the conditions in Theorem 2.

Then each d-sphere with sufficient small radius is homeomorphic with the {n ~~ 1)-

dimensional topological sphere where dim E — n.

Proof. If dim E is equal to one, this is trivial. Now we shall assume that

n > 1. Let p be a point of E9 and e so small that each point x with 0 < d(p9x) < e

can be joined to p by one and only one segment. Set K (p, e) to be the cZ-sphere

with center p and radius €, and

U = { x \ d(P, x ) < e } .

We shall show first that U is contractible to a point. Given each point γ of K(p,β),

let us denote by Py (s) the isometric representation of the segment joining p to y.

Then the pair (7,5), where y C K{p, e) and 0 < 5 < £, can be regarded as polar

coordinates of points in U. For any real number t with 0 < t < 1, we define

φ[t,Py(s)] = Py(ts).

We see immediately that φ is a well-defined mapping of the product /X (/, and

Φ[l,Py(s)]=Py(S), φ(t,p)=p, Φ[0,Py(s)]=p,

where / denotes the closed interval \t \ 0 < t < 1 j . The continuity of φ can easily

be verified. Thus φ gives a contraction of (J into the point p, and thus the homo-

topy group 7Ti(U) vanishes for each ΐ.

Now let us consider the set R = U ~~ p. Since U is an ̂ -dimensional open



476 HSIEN-CHUNG WANG

manifold and n > 1, the set R is connected and has the same homotopy group 77; as

U for all dimensions i less than n — 1. Thus ττι(R) — 0, i — 1, 2, ' , n — 2. On

the other hand, we have shown in §1 that R is homeomorphic with the topological

product K(p, e) X /, where / denotes an open interval. It follows then that K (p, 6)

is connected and

( 1 ) n ί K i p . e ) ] = 0 , i = 1 , 2 , •••, n - 2 .

From the proof of Theorem 1, we know that K(p,e) is a homogeneous space of a

compact Lie group. Its connectedness and its simply-connectedness imply that it

is an orientable manifold.

Since both K(p, e) and / are manifolds, we have

dim K(p, e) + dim J = dim R = dim E = n ,

and hence dim K (p, e) = n — 1. It follows immediately from (l) that/£ (p, β) is a

simply-connected homology sphere of even dimension n ~ 1. Therefore [6] X(p, 6)

is a topological sphere. The lemma is proved.

5. Proof of Theorem 2. Suppose E to be a metric space with all the properties

mentioned in Theorem 2. If E is compact, then our Theorem 2 follows as a direct

consequence of [7, Theorem VI] . Thus we can assume from now on that E is

not compact. We shall first show that E is an open S. L. space in the sense of

Busemann [2, p. 78] . To show this, it suffices [3, p.173] to establish that each

geodesic is congruent to a euclidean line; for this, it suffices to demonstrate that

given any two distinct points x, y and any k > 0, there exists a point z so that

d(x,y) +d(y,z)=d(x,z), d(y, z) = k .

In fact, since E is finitely compact and noncompact, E cannot be bounded. There

exists then a sequence of points p 0 , pi , P2, # * * with d(po,pi) tending to infinity.

Thus we can choose i so large that d(po,pι) > d(x,y) + k. Let r be a segment

joining p 0 to pi. Evidently there exist three points x', γ', z ' in r such that

d ( x ' , y 1 ) + d { y \ z 1 ) = d { χ , z ) , d ( x ' , y ' ) = d ( x , y ) , d ( y ' , z ' ) = k .

From the two-point homogeneity of E, there is an isometry f of E carrying x ', γ1 to

x9y respectively. Then we can see immediately that the point z = f{z') has all

the required properties. Thus E is an open S. L. space .

Let K(p, e) be the (/-sphere with center p and radius e , and Γ̂  the group of all
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isornetries of E which leave the point p invariant. From the above lemma, we know

that K (p, e) is an (n ~ l)-sphere and Γ̂  a compact and transitive transformation

group of K ip, β). Moreover, it can easily be seen that TL is effective on Kip, β).

In our further discussions, we shall rule out the trivial case where dim E — n

— 1. Thus Kip, β) is connected, and the identity component C,0 of Γl forms a

connected, compact, transitive, and effective transformation group of K(p,ε)

Since n — 1 is even, it follows [6] that Γ̂ ° is either isomorphic with the ro-

tation group Rn—ι or Cartan's exceptional group G2> We shall discuss these two

cases separately.

Case Λ. Suppose Γ̂ ° to be isomorphic with the group Rn-X of all rotations of

the in — l)-sphere. Let us represent Kip,β) by the unit sphere in a certains-

dimensional euclidean space, and consider Rn_γ not only as a topological group

but also as a transformation group of K ip, β) in the usual sense. It is well known

that Γ̂ ° and Rn_ι have the same topological type, that is, there exists a homeo-

morphism φ of K ip, e) onto itself so that

*„_! = φTfφ-* = WΦ-1 | / c r p ° | .

Since n is odd, given any point q of K(p, β), there exists a rotation of period two

which leaves fixed only q and its diametrically opposite point. It follows then that

for each point q of K (p, e), we can find a transformation f in C,0 such that (a) f is

of period two, (b) / leaves q fixed, and (c) f has only two fixed points on K (p, e) .

Now let g be any geodesic through p in E. It intersects K(p, β) at two points, say

q and q' . We consider the transformation / in C,0 having the above three properties

(a), (b), and (c). Since / is an isometry leaving fixed p and q, it leaves the geo-

desic g pointwise invariant. Moreover, this isometry f cannot have any other fixed

point, for otherwise / would have some other fixed points on Kip, β) besides q and

q'. Thus / is a reflection of E about g. Since p is an arbitrary point and g an

arbitrary geodesic through p, there exists a reflection of E about each geodesic.

From Schur's Theorem [ 2 , p . l 8 l ] , it follows that E is either hyperbolic or eu-

clidean.

Case B. Suppose Γ̂ ° to be isomorphic with the exceptional group G2 To dis-

cuss this case, we have to digress into a few properties of Cayley numbers. Let

1, eι ii — 1,2, , 7) be the units of Cayley algebra./The multiplication rule is

given by



478 HSIEN-CHUNG WANG

e2 — e 3 , e 4 - e 5
eβ - e7

together with the equalities obtained by cyclic permutation of the indices. Let

7 7

number, (*i )2 ~

be the totality of all the Cayley numbers with vanishing real part and with norm

equal to unity. Evidently, 0 forms a 6-sphere, and each automorphism of the

Cayley algebra carries 0 into itself. We can regard therefore the group H of all

automorphisms of Cayley algebra as a transformation group of 0 (the topology over

// is defined in the usual manner). Now // acts effectively and transitively on 0.

Moreover, it is known that H is isomorphic with the exceptional group G2 .

For each x — Σι = ίxι βj in 0, we shall denote the Cayley number xx — Σι=2

χiei

by x*9 and call it the symmetric image of x with respect to e t . It is evident that

(1) (*•)* =x, x*
= x, if x = +e

φ x, otherwise.
C θ

Moreover, by a direct calculation, we can show that given any two Cayley numbers

y, z in 0, there exists an automorphism / in // such that

/ ( β i ) = e i , f{y)=y*, fU) = z*.

It is to be noted that this / depends on y and z. There is no automorphism of

Cayley algebra which carries each x in 0 into its symmetric image x*.

Now we can proceed to the proof of Theorem 2. Since Γ̂ ° is isomorphic with

the exceptional group G29 K(p,β) must be six-dimensional [ 6 ] . It is known that

each transitive transformation group of the 6-sphere which is isomorphic with the

exceptional group G2 has the same topological type as H.1 Thus we can identify

0 and K(p,β) in such a manner that Γ̂ ° and H coincide. Let x be a point of K{p,e)

It determines a ray px, that is, the totality of points u of E for which either d(xf u)

+ d(u9p) = d(x9p) or d{u9x) + d(x9p) = d(u9p) [2, p. 76] . For each nonnegative

number s, we denote by Px (s) the point u on the ray px with the property that

1 Γ F h i s f o l l o w s a s a d i r e c t c o n s e q u e n c e of L 6 , L e m m a 6 j .
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d (p, u) — 5. Since E is an open S. L. space, each point of E other than p can be

represented in a unique way as Px (s), where x £ X(p, β) and 5 > 0. Let y, z be

any two points of K (p, β ) , and let y * , z * be, respectively, their symmetric images

with respect to eί [note that we have identified θ with K(p, e ) ] . Then there

exists a transformation / in Γ °̂ such that / ( e ^ = el9 f{γ) — y * , /(z) = z * . Since/

is an isometry of E and leaves p fixed, we have, for any s, s ' > 0, the relations

f[Py(s)]=Py.(s), f[Pz(s'n=Pt.(s ) .

This tells us that

(2) d[Py(s), Pz(s')] =d[Py.(s), Pz.(s')] (s,s'>0).

Now let us consider the mapping h : E —> E defined by h [Px (s)] — Px* (s),

where x C Kip, β) and 5 > 0. Equality (2) tells us that this mapping h is an

isometry of £ . Moreover, from (l) we can see that h is of period two and that h has

only two fixed points e t and ""βj on K (p, β). It follows then that A is a reflection

of E about the geodesic joining p and elm However, our space E is two-point homo-

geneous so that there exists a reflection about every geodesic of E. From Schur's

Theorem, we can conclude that E is either hyperbolic or eaclidean. Theorem 2

is hereby proved.

6. Remarks, In all the arguments, we use only the weaker two-point homo-

geneity; that is, there exists a number 8 > 0 such that, for any four points x, x1,

y, y' with d{x, x' ) — d (y, y' ) < δ. there exists an isometry of E carrying χ9 x1

to y, y' respectively.

The author wishes to express his thanks to Professor H. Busemann for his

helpful suggestions concerning the proof of Theorem 2.
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