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1. Introduction, In this note, some theorems which concern matrices of complex

numbers are generalized to matrices over real quaternions. First it is proved that

every matrix of quaternions has a characteristic root. Next, there exist n ~~ 1

mutually orthogonal unit ^-vectors all orthogonal to a given vector. It is shown

that Schur's lemma holds for matrices of quarternions: every matrix can be trans-

formed into triangular form by a unitary matrix. For individual quaternions, it is

known that two quaternions are similar if they have the same trace and the same

norm—thus every quaternion has a conjugate a + bj(b > 0). This fact is proved

again.

The quaternion λ. is called a characteristic root of a (square) matrix A pro-

vided a non-zero vector x exists such that Ax — x λ.. Similar matrices have the

same characteristic roots; if y — Tx, where T has an inverse, then TAT~ly

— T Ax — Tx λ = y λ . Another interesting fact is that if λ is a characteristic

root, then so is p~~ι\p; for from Ax ~ x λ follows A(x p) = (x p) p~ιλ p; thus if

the vector corresponding to the characteristic root λ is χ9 then xp is the vector

corresponding to the characteristic root p~~ιkp.

2. Lemma. We shall need the following result.

LEMMA 1. If A — (θj ί) is a matrix of elements from any field or fields, then

a triangular matrix T exists such that T~ι AT — C — (cij)i where C{; — 0 when-

ever i > ~f 1. The elements of T are rational functions of the elements of A,

Proof. The proof consists in transforming A in steps so that an additional

zero appears at each step. First A is transformed so that all the elements in the

first column (except the first two) become zero; the transformed matrix is further

transformed so that all the elements in the second column (except the first three)

become zero, and so on. The formal proof is inductive; it will be sufficient to give

the idea of the proof. In the first column of A9 either αy ! — 0 for all / > 1, or else
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aj}ι ψ 0 for some j > 1. In the former case, proceed directly to the second column.

In the other case , assume without loss of generality that a2tχ T 0 (otherwise

transform by a permutation matrix). Let / stand for the identity matrix, and let

em n be the matrix with 1 in the (m,n)th. place and 0 elsewhere. Let w3t2 be an

element of the field. The transform B — (6j,/) of A by the matrix / "f w3f2 e3t2

sat is f ies the conditions

£>2,i - α 2 , i , 63 >i = α 3 t i + w3t2 α 2 , i .

It is evident that if 1^3,2 i s suitably chosen, then the condition b3pί — 0 will be

satisf ied. Further transformations by

1 + ̂ , 2 ^ , 2 0 = 4, •• , n)

will successively replace the elements in the first column of A (except the first

two) by zeros. The second and later columns are handled in order by the same

method.

The above lemma and proof follow the lines of Lemma 4.4 of [ l ] ; in that

reference, the elements of the matrix A are residue classes mod pΓ, a prime power.

3 The existence of characteristic roots. We shall show that every matrix A

of quaternions has a characteristic root.

Since any characteristic root of C is also a characteristic root of A, it is

enough to prove that C has a characteristic root. The proof is by induction on n.

There are two cases. First, suppose that Cj + i,/ — 0 for some j with j < n. Let

C(, ) be the principal /-rowed minor of C; a non-zero vector %(,•) and a characteristic

root λ exist such that C(j)X(j) — xn)λ. Then λ is a characteristic root of C: the

corresponding vector is obtained from the vector %φ by appending n — j zeros.

In the second case, it is true for each j that Cj + ι$j ψ 0. There is a character-

istic vector (xl9 x2> , xn) with xn — 1; it is found by solving a polynomial

equation of degree n with just one term of highest degree. The fact that every

such equation has a solution is proved in [ 5 ] . The equation in question comes

by eliminating xn-2, xn-3i ' ' * > x\ m t u r n ^ Γ o r n t n e s e t Cχ ~ x λ- This set is

indeed the following:

(1) cn,n-lxn-l + Cn,n = λ ,

(2) Cn-l.n-2^-2 + Cn-1, n- 1 *n-l + ^π-l.π = xn-l ^ t
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[n ~ l ) C 2 , i X\ + C2t2

 X2 + β * + C 2 , rc- l ^ n - 1 + C 2 , n = * 2 ^

( Λ ) C l f l Λ 1 + C l f 2 Λ 2 + + C l f Π - . 1 X n _ ! + CUn = *χ λ .

First, λ must be eliminated from (2), (3), (n), using (1). Call the resulting

set ( 2 ' ) , (3 ' ), , (n' ). Then (2' ) must be solved for xn_2 > t n e resulting ex-

pression is substituted into ( 3 ' ) . Next the equation so obtained is solved for
χn—3 ' t n e resulting expression is substituted into ( 4 ' ) , and so on. Since c/ + i,y

ψ 0 for each j9 these steps are meaningful. At the last stage, {n ' ) becomes an

equation of degree n in the one unknown Λ ^ - I The single term of highest degree

is not zero. After xn_ι is determined, the values oί xn_2, , * i are determined

from (2 ') (n* ) , and the value of λ is determined from (1). These values

satisfy all requirements. This proves the following result.

THEOREM 1. Every matrix of quaternions has a characteristic root.

F o r a n a p p l i c a t i o n , w e n o t e t h a t t h e 2 X 2 m a t r i x ( α ^ y ) h a s c h a r a c t e r i s t i c r o o t

α l f l c o r r e s p o n d i n g t o t h e v e c t o r ( 1 , 0 ) if α 2 f l — 0 . If a2fι ψ 0 , a c h a r a c t e r i s t i c

v e c t o r i s {xί9\)9 a n d t h e c o r r e s p o n d i n g c h a r a c t e r i s t i c r o o t i s λ. — α 2 / i x ι ~^~ a2,i >

Vv^here x ι i s a s o l u t i o n of xι a2 i % i - α l f l xι ~~ X\ α 2 , 2 ~ ^ α ι , 2

4 . G e n e r a l i z a t i o n o f S c h u r ' s l e m m a . T o c o n t i n u e t h e d i s c u s s i o n , w e n e e d :

LEMMA 2. There exists a unitary1 matrix V of quaternion elements which has

a preassigned unit1 vector u± ~ (&ι,i> uι,2> * * # * uι,n) ^n ί n e βr^t row.

Proof, Since the space of rc-tuples over quaternions has the same dimension

independent of the choice of basis [6, pp. 18-19] , there is a set of n vectors
u\> &2> * ' * > bn which are linearly independent and span the space. From these

an orthonormal set ui9 * , un can be constructed by Schmidt's process of or-

thogonalization. The matrix which has these vectors for rows is unitary. The

process is exhibited in [3, p . l θ ] , where, however, the first displayed equation

should be changed to read b^ bm — (bjς am — b^ am) || c jj"1 = 0; otherwise

the reference [3, p 21, line 2] to this equation would be inappropriate.

THEOREM 2. (Generalization of Schur's lemma.) Every matrix of real qua-

ternions can be transformed into triangular form by a unitary matrix.

1 A m a t r i x U i s c a l l e d u n i t a r y if L U — 1 . A v e c t o r (u) i s c a l l e d a u n i t v e c t o r if uu*— 1 .



332 J. L. BRENNER

Proof. This theorem is a direct consequence of Theorem 1 and Lemma 2. The

proof, given in [9, pp. 25-26] , applies with equal force when the elements of the

matrices are quaternions.

5 Transformations of matrices. We shall establish several lemmas.

LEMMA 3. Let q be a quaternion. There exists another quaternion s such

that I s I = 1, s~ι qs = A + Bj, where A + Bj is a complex number with B > 0.

Lemma 3 is a consequence of Lemmas 4, 5, 6, 7. It is proved also in [4] ,

which refers to [2] . Another proof is given here because this proof is so direct,

and because Lemma 5 appears to be new.

L E MMA 4 . Let q = A + Bj + Ck + Djk, s = E + Fj + Gk + Πjk, \s\ = 1.

The four components of s" qs are respectively

A,

B[E2 + F2 - G2 - H2] + 2C[FG + EH] + 2D[FH - EG] ,

2B[FG - EH] + C[E2 + G2 - F2 ~ H2] + 2D[EF + GH] ,

2B[EG + FH] + 2C[GH - EF] + £ > [ £ 2 + H2 - F2 - G2] .

LEMMA 5. If q = A + Bj + C/c + D/λ;, then s = E + Fj exists such that | s

— 1, s"~ qrs Λαs fourth component zero.

Proof. If D = 0, take s = 1. If D φ 0, set s = t/\ t \ , where

ί = C - ( C 2 + D 2 ) ι / 2 + Z > ; .

LEMMA 6. If q = A + Bj + Ck, then s exists such that s\ — 1; s~ι qs has

third and fourth components both zero.

Proof. If C = 0, take s = 1. If C φ 0, set / = β/C, and take 5 = t/\ t \ , where

L E M M A 7. If q = A + Bj, then s exists such that \s\ = 1; s~ ι ^s = /I — 5/.

Proof. Take s = (7 + jk)/y/T.

COROLLARY. Every quaternion is similar to its conjugate.

The referee outlined another proof for the fact that two quaternions with equal



MATRICES OF QUATERNIONS 3 3 3

norms and traces can be transformed one into the other. Let the quaternions be

r = α 0 + axj + a2k + a3jk, q = 60 + b\j -f 62fe -f b3jk .

Consider then the equation xr — qx, where x — x0 + xxj + # 2 ^ + #3/&• The four

linear homogeneous equations for x0, xγ , x2, x3 which are equivalent with this

have as determinant an expression which under the assumption a0 — b0 reduces

to

( α ^ + α l + α l - ό f - f c l - ό a 2 ) 2 ,

which is equal to 0 under the assumptions made.

6 On characteristic roots. It has already been proved that any quaternion

matrix A can be transformed into triangular form T by some unitary matrix. It

follows further from Lemma 3 that A can be transformed by a unitary matrix into

triangular form in such a way that the diagonal elements are all of the form A H~ Bj9

B > 0. Indeed this transformation can be brought about by transforming T by an

appropriate unitary diagonal matrix.

The diagonal elements A + Bj(B > 0) which appear in this last transform of

A are unique; that is, any other transform of A which is in triangular form and

which has numbers A + Bj{B > 0) on the main diagonal will have the same num-

bers, although not necessarily in the same order.

The above fact is a consequence of general theorems concerning characteristic

roots of a matrix.

THEQREM 10. Jf λ is a characteristic raot of A, then so is pλ.p~~ι (see page

329).

THEOREM 11. If A is in triangular form, then every diagonal element is a

characteristic root.

Proof. L e t A — {aΓfS) be g iven: aΓfS — 0 when s < r. It i s t r i v i a l t h a t α M i s a

c h a r a c t e r i s t i c root . S u p p o s e it h a s b e e n proved t h a t a ί t l , # 2 , 2 * * * * > at,t a r e

c h a r a c t e r i s t i c r o o t s . If o ί + 1 > ί + 1 i s s i m i l a r to any one of t h e s e , t h e n at + ί t t + ι i s

a c h a r a c t e r i s t i c root in v i r tue of t h a t fact a l o n e . If β£ + i ,£ + ι i s s imi lar to none of

t h e p r e c e d i n g d i a g o n a l e l e m e n t s , then the v e c t o r (%1 , %2> * * * > %t—l > %t> l > 0 > 0 ,

• , 0) i s a c h a r a c t e r i s t i c v e c t o r c o r r e s p o n d i n g to the c h a r a c t e r i s t i c root

provided a l l the fol lowing e q u a t i o n s are s a t i s f i e d :
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atyt
xt + at,t + l —

at—ιft—ιχt—ι ~^~ at—i,tχt + α ί ~ i , ί + i =

Equations of the above type have been considered in [7] . It is shown there

that if a9 b9 c are quaternions, and if a is not similar to c, then ax -f b ~ xc has a

solution. Hence the above equations can be solved in serial order.

THEOREM 12. Let a matrix of quaternions be in triangular form. Then the only

characteristic roots are the diagonal elements (and the numbers similar to them).

Proof. If for some λ , we have Ax = x λ , x a non-zero vector, and iί A is

triangular, then

an,n xn xn "- >

an-l,n-lxn-l + an-l,n xn ~ xn-l^- ,

If xn ψ 0, then λ. is similar to an n . If

*n = Xn-l = = Xt + i = 0 , %χ φ 0 ,

then λ is similar to atft.

THEOREM 13. Similar matrices have the same characteristic roots (see page

329).

The determinant-like function V of the matrix A, defined by Study in [lO] , is

the product of the norms of the characteristic roots of A.

COROLLARY. The product of the norms of the characteristic roots of a matrix

of quaternions is a rational integral function of the elements and their conjugates.

After this article was submitted for publication, the author learned of an article

by H.C.Lee [s] which contains many of our results. The methods of proof there

are different from ours.
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