A PARTIAL DIFFERENTIAL EQUATION
ARISING IN CONFORMAL MAPPING

P. R. GARABEDIAN

1. Introduction. During the past few years considerable attention has been giv-
en to the role played by kernel functions in conformal mapping, potential theory,
and the theory of linear partial differential equations of elliptic type. The interest
in this study has originated from the unifying influence which the concept of a ker-
nel function introduces in these theories, and from the simple relationships dis-
covered between the various kernels and the classical Green’s and Neumann’s
functions [3-5,8,13]. Much of the older theory has been given a new interpreta-
tion, and a new light has been shed upon the study of canonical conformal maps,
the Dirichlet problem, and the fundamental existence theorems [9,10,12]. The
methods and results, which received their original impetus from investigations of
functions of several complex variables [1], have been surprisingly simple and
basic.

The present paper is devoted to the study of several kernel functions which a-
rise in conformal mapping and in mathematical physics, and to the investigation of
some eigenvalue problems related to these kernels. We show that the kernel func-

tion associated with the norm
ST 16(2) 12 plz) dxdy
D

of analytic functions ¢ (z) of the complex variable z in a plane domain D can be

expressed in terms of the Green’s function of the partial differential equation
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Iltere p(z) is a positive weight function. Such weighted norms arise in the theory
of orthogonal polynomials and the study of problems in interpolation and approxi-

mation [15,16]. A similar discussion of the kernel for the norm

S u(2)? plz) dady

of real harmonic functions u(z) in D is carried out.
These kernels are found to be related, in the case p = 1, to the eigenfunctions

of the extremal problem

| S w(z)? dxy|

fflw(l)|2dxdy = maximum, w(z) analytic in D,
D

introduced by Friedrichs [7]. This eigenvalue problem is shown to be equivalent
to two other eigenvalue problems of a quite different character.

Underlying the manipulations is the idea that minimum problems for multiple in-
tegrals with differential equations as side conditions, such as those mentioned
above, correspond always to boundary value problems of a very simple nature in
the theory of partial differential equations.Proofs are carried out in such a way as
to yield the existence of the solutions of the related boundary value problems.!

An application of the theoretical material is made to the case where D is an el-
lipse. In particular, it is found that the Green’s function of a convex clamped plate

need not be of one sign.

2. The partial differential equation, Let o(z) be a positive continuously dif-
ferentiable function of x and y in a region containing the plane domain D of finite
connectivity and its boundary C. We shall suppose that C consists of n simple
closed curves Cy,* * *,C, which have continuous curvature. We define () to be the

class of functions ¢(z) which are analytic in D and have a finite norm

(1) {f |¢(z) P p(z) do do = dxdy .

It is not hard to show [1] that there exists in () a complete orthonormal system

iqsu(z)f ’

1 For quite similar existence proofs, cf. the works [19, 20, 21] of G. Fichera, at the end
of the table of references, to which the author’s attention has recently been drawn.
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0, (v#u,

D L, (v=u),

and that every function ¢(z) € () has an expansion

@

z) = Y andu(z) , ay =f{¢(z><z57z)p(z)do,

v=1

which converges uniformly in each closed subdomain of .
We define the kernel function K(z, t) of the class () by the formula

(2) K(z, t) = 2 ¢u(2) du(t) .
v=1
Clearly, K(z, t) is analytic in z and ¢, and
(3) b(z) = Jf Kz, t) §(t) p(t) do | sCq .
D

The reproducing property (3) characterizes K(z,t) completely, and therefore the
kernel function is independent of the orthonormal system {¢,(z)}. From (3) and

the Schwarz inequality

b (2) |2 = {)f Kppdo \ sf{ K(z, )] pdo fo[qs 12 pdo

= K(z,2) S 1 #(e) 2 p(t) do
D
we deduce an important extremal property of the function

I\"(z, t)

flz) = K(t, t)

Indeed, f(z) yields the minimum of the norm (1) amongst all functions ¢ € () with
¢ (¢) = 1. The minimum value of the norm is K(¢, £)~*.
Our main objective is to determine the analytic function K(z,t) from consider-

ations which are independent of orthonormal systems or reproducing and minimum
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properties, and are based rather upon a Dirichlet boundary value problem. We shall
proceed in such a manner that we obtain simultaneously the desired formula for the
kernel function and the existence of a solution of the pertinent boundary value
problem.

We suppose that w is a point in the exterior B of D. We set

1
#(2) =
z— w
in the integral equation (3), and we obtain
K(t
@ I, o) = ffM2loGlde - 1 e
D zZ T w t—w *

Now for w € D, we find, by Poisson’s equation,

3I(w, t) 1
w  Pawey  HK) el de Ty o

iz =l

= - 7T,O(w)]((t,w) .

Dut since K(t,w) is analytic in @, this yields for /(w, t) the complex second order
partial differential equation

L2 p, 1) =0 €D
—_ [ t = s .
dw p(w) OB o N

Since [(w, t) satisfies this partial differential equation, or, rather, system of two
partial differential equations, of elliptic type in D, and since the explicit formula
(4) holds in B, we are led to attempt to prove that /(w, ¢) is continuous across C
and therefore solves the boundary value problem suggested by (4).

We proceed to prove the continuity of /(w, ¢) at a point wy € C. Since C has
continuous curvature, there is a circle [' lying in D and tangent to C at w,. We de-
note by w a point of I' on the normal to C through wg, and we denote by w” the in-

verse of w in the circle I'. We first show that

(6) I (w, w*) = ffK(t, Z)I L - ! } do
T zZ T w

zZ T w

do = 0.

z — w*

= [[K(t, 2) % 1og
T dz
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Indeed, the linear fractional transformation

z —w*

carries [' into a circle ‘y centered at the origin in the {-plane, and in terms of the

new variable [, the function /,(w, w*) has the form

Liw, w*) = ffK(t z( )_{ log {do(l)

I

[k, =)z 29
¥ 4

By expanding K(z, 2(£)) 2({) in a Taylor’s series of powers of { in 7y and using po-
lar coordinates and the orthogonality of the sine and cosine functions, we find
readily that the latter integral vanishes.

We have, by (6),

I(w, t) = I(w*, t) = ff K, (Zz ) (2 —pw(*))

//ktz) —w*) p(z)do
(z = w)(z —w*)

K(t, ) (0 = v") (o () = p(w)) do
o I (: =)z — v*)

The integrand of /* is dominated in D — I' by an expression

=1+ 1

AlK(t, 2) ]

‘Z """ll)ol

since |z —wy|/|z —w| and |w — w*|/|z — w*| are bounded there. This es-

timate of the integrand of /' is integrable over U — [' by the Schwarz inequality
g g ¥ 1

(ff*—u— do )2 < fflKIzdo ff

[z = wo| =T z—w(,‘?

where the last integral converges because of the deletion of the circle ' from D.

Furthermore, the integrand in /" is dominated by anintegrable expressionB|K(¢,z)|,
g y g p
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since p(z) satisfies a Lipschitz condition

lo(z) = p(w)| < B'|z = w| .

Thus we can apply the Lebesgue convergence theorem to the integrals /' and " to

obtain
(7 lim [I(w, ¢) = I(w*, )] =[] lim l([i(t_ Z;((’:::;l (z)do=0.

wowg puvug
Since we see from (4) that I(w, t) is uniformly continuous for w € B, it is possible

to conclude from the special continuity condition (7), in which w and w* are in-
verse points in I, that [(w, t) is, in fact, continuous across C with no restriction.

With these calculations, at hand, we set

S(w,t) :ffh(t,z—pufz)dc . 1 ’ wED,
D

z

and from (4) and the continuity of Kw, ¢) we find

lim S(w, t) = 0, wED,
w->C
while by (3)
d 1 35( ) =0
~ ~_ > )t = ) .
du plw) 37 web

Hence S(w,t) is the solution of the elliptic partial differential equation (5) in D
which has zero boundary values and has a simple pole at w = ¢ € D. We have now
a new characterization of the kernel function K(w, t) in terms of the equation (5),

for Poisson’s equation yields the representation

1 98w, t)

(8 K{: ) = -
) (o, ¢) 70(w) 0w

Note that since K(w, t) is given in terms of a first derivative of S(w, t), the second
order partial differential equation (5) for S becomes the Cauchy-Riemann differ-
ential equations for the analytic function K(w, t).

We denote by G(w, t) the Green’s function in D of the equation

3 1 39
0w ,O(w) dw

(9) u(w) = 0



A PARTIAL DIFFERENTIAL EQUATION ARISING IN CONFORMAL MAPPING 491

adjoint to (5). That is, G(w, t) satisfies (9) in D except at the point w = ¢, where
it has a singularity

G(w, t) = p(t) log -l—i—

I + continuous terms,
w—t

and G(w, t) vanishes for w€ C. Since p(w) is real, the conjugate u(w) of a solution
u(w) of (9) is a solution of the adjoint equation (5), and conversely. lience we ob-

tain, comparing singularities and boundary values,

2 9G(w, t)
Sto ) =50 T8 ¢

and therefore, finally,

K, ) = — 2 932 G(w, t)
(10) T T ) plt)  dwor

It is natural to consider, in addition to X(w, t), various other analytic functions

in D defined by minimum problems for the norm (1) and closely connected with the
kernel function as given by (10). Let [ be a simple closed curve in D and let
Q3 consist of all functions € () possessing in D indefinite integrals which are
single-valued except for the one period

fglqb(z)dz =1,

taken over all paths 3’ homologous to 8 in D. We denote by W3(z) the function in

Qﬁ which minimizes (1). Hlence
I We(2) #(2) p(z) do = 0

for every function ¢€ () with a single-valued indefinite integral in D. We define
the generalized harmonic measure wg(z) by the formula

- wsw) = I W (zz P(f)do— , wED |
D zZ—w

and we find by application of Poisson’s equation and continuity considerations,
as in the preceding, that wg(w) satisfies the elliptic equation(9)and has constant

boundary values on each component of C.
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It becomes clear, then, that our procedure is sufficient for a complete discus-
sion of minimum problems in the norm (1), and we turn to the study of the system

of elliptic equations (9).

3. The energy integral, Let u(z) and v(z) be any pair of suitably differentiable

functions in ) + C. Then Green’s theorem yields the basic identities

919 12w 1 pudv .
ffu pa_do poBZBZdU— 2i£p33 dz ,

1 9u 9w 1 v du
sy © 5 aos I3 540 =58 .5 &

Thus it is clear that (9) is the Euler equation of the integral

=— Ay by ay = by do, u=a+ 1b,
ff {(ay + + (ay = bye)?}

(1) pr L |oulz) |*
ffp(z) 3

and (5) and (9) are adjoint partial differential equations. If u(z)is a solution of (9),
and v(z) is a solution of (5), in a region bounded by curves &, we obtain the

formula

(13) a

Setting u(z) = G(z,¢) and v(z) = G(z,w) and applying (13), we have the symmetry
rule

(14) G(w; t) = G(t,w) .

Thus the Green’s function G(w, t) of (9) is, as a function of ¢, the Green’s function

of (5). Finally, we have the Green’s formula

z)

Z

_ 1 (v,
B 56 o(z) 9z

dz

for the solution of the Dirichlet boundary value problem for (9). Since G(w,z) = 0

z € C, this formula can be written

1
u(w) = 9t .¢ (z) 3. ds ,
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where s represents the arclength and v the inner normal of C, with a similar formu-
la for the solution of (5).

The general solution u{w) of the elliptic partial differential equation (9) can be
obtained directly using the evident connection with the Cauchy-Riemann differen-

tial equations. We find

where f(z) and g(w) are arbitrary analytic functions. Note that

1 Qu(w)
p(w)  ow

= —7f(w) ,

and note that the expression

__1_ ff ,O(Z) do
2m (2 = t)(z — v)
is a basic fundamental solution of (9). Each solution of (5) is the complex conju-

gate of a solution of (9), and thus we have, for the general solution v(w) of (5),

o) = fyeellde

D zZ " w

where h(z) and j(w) are analytic. Therefore we find for the scalar product between

u(w) and v(w) in terms of the energy integral (12) the representation

1 %u Jv

fD;5; 0w 47 T ”2f{f(w)h(w)pda

as the scalar product of the functions f, A € (). Thus the norm (1) and the energy
integral (12) are equivalent,

15) I

D P

2
du(z)
32

do = 72 f{p(z)]f(z)l?do.

The classical approach to the equation (9)through the Dirichlet principle would
consist in seeking a function u(w) minimizing (12) in a class of differentiable func-
tions with prescribed boundary values. Our attack is based rather upon extremal

problems for (1) in the class (), and contrasts with the older method in that we
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operate, in a sense, entirely within the family of solutions of (9). Note that the
formulation in terms of (1) imposes on p(z) only the conditions of positiveness
and continuity, except in the neighborhood of C, where a Lipschitz or Il&lder con-
dition is necessary for the continuity proof (7).

I.et us study a special case of the theory developed so far. Let u(z) be a
function analytic in D + C, and set

p(z) = [u2)]* .

The general solution of (9) can now be written

u(w) = p)U() ,

where U(w) is complex and harmonic. Indeed,

3 1 Le] 9 1 3U(w) 1 9%2U(w) B

2 L 2 0 v = o - LS,
3% |u(w)|? dw 93 m{w) Ow w(w) v ow
Note in passing that for u(z) = z the system of two second order equations (9)

can be reduced to the one fourth order elasticity equation, which has a general

solution u,(z) of the form

ui(z) = R {z U()} .

If gw,t) denotes the Green’s function of the Laplace equation in D, we obtain

(16) G(w, t) = w(w)u(t)g(w, t) .

Thus by (10) the kernel function K(w, t) is given by

2 9  ——
a7 =~ = [u(w)u(t) g(v, t)]
Ko ) == el e)]® Bwo
2 g, 1) _ ko t)
mu(w)u(t)  Owdt pw)u(t)

where k(w,t) is the kernel function of (1) with p = 1. This result has a simple
meaning when u(w) is the derivative of a conformal mapping { = M(w) of the do-
main D,
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Here (17) merely expresses the conformal invariance of the kernel function £(w, t)

as a differential

K(w, t)dM(w)dM(t) = k(w,t) dudt ,

since the weight p(w) = |u@)|? is the Jacobian of the mapping { = M(w).

It is of interest to remark at this point that the differential equation (9) exhi-
bits a certain invariance under conformal mappings { = M(w). Take, again, an
arbitrary weight function p(w) and assume that it behaves as an absolute invariant

under the transformation { = M(w). In the {-plane we have

9 _ 3 3
9L M @w)dw 3L W (w) 3%

and therefore

9 1 9 1 92 1 1 2 13

1
3L p o( _m 9% p M (w) Ow - M'(w)|? 9% p Ow

Since this operator changes only by the multiplicative factor |}’ (w)|? when we
transform from the w-plane to the {-plane, the invariance of the class of solu-
tions of (9) under conformal mapping follows. Clearly, the kernel function K(w,¢)
with scalar weight p varies as a differential in both arguments.

In closing this section, we call attention to the fact that the Neumann’s func-
tion of (9) plays no role in the study of the kernel function with a general weight
function p(z), although when p(z) is constant on C the problem of determining

solutions of (9) in D with prescribed normal derivatives on C has significance.

4. Expansion of Green’s function. We turn our attention to the expansion of
the Green’s function of (9) in terms of an orthonormal system {¢, (2)} complete in
(). We obtain a construction of G(w, t) in terms of the kernel function K(w, t) which
is also a proof of the existence of G(w,t). Our expansion formula will yield a
number of the more important properties of the Green’s function, and the con-
struction will not refer explicitly to behavior on the boundary C of D.

Our procedure is essentially an integration of (10). We consider the integral

bg) = K(z, &) p(2) p(L) do(z) do(()
S o) = o AT G-a)-1)

By the orthogonality of the sine and cosine functions, it is clear that we can
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replace the factors (z—w)! and (L —¢)! in the integrand by the bounded ex-

pressions
pGz) =plw) - pL) —p(t)
—Q— . an
p(2)(z — ) p(L)(L = ¢)
in circles about z = w and { = ¢, respectively, without altering the value of the

integral. The new functions which we define in this manner are square integrable
over D, and therefore we can expand K(z, {) in its series form (2) and integrate

term by term at will. In particular, we find forw € B, ¢t € D:

o= g § @ Iy o) | K04

—w {—t

_ 1 p(L) do(l)
ﬂz; (C"")( —t)

Now for fixed ¢t € ), one can show that the integral J(w,t) is a continuous
function of w across C in a manner essentially identical with that which led to

the continuity relation (7). Hence

. _ p(L) do (L)
(18) w£1zmec J(w, t) = ff C—z)(é—t) , w, tED.

Recalling the nature of a fundamental solution of (9), we now see that the Green’s

function G(w, t) can be defined by the formula

(19) G(w, t) =2—if[ _/ifg-))i(—ot) - J(w, t) .

Indeed, this expression satisfies (9) by Poisson’s equation, and has zero boundary

values by (18). We set

by () = I ¢”(sz’(;‘)_d)c’(l) , vED,
D Z—w

and we note that b,(w) is a particular solution of (9) in D. Thus (19) can be re-

written

(20) Gw, t) =

1, pQde 1
o Toni-0 o I, bEnO),
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and we have an expansion of the Green’s function in terms of a symmetric geomet-
ric integral and a kernel function. We emphasize that the series of Fourier coeffi-
cients on the right converges uniformly in each closed subdomain of I} because of
the square integrability of the modified functions involved. It is interesting in this
connection that the Green’s function represents according to (20) the difference
between an improper geometrical integral and the development for this integral in
terms of Fourier coefficients.

A first remark about formula (20) is that (10) follows from it by mere differen-
tiation. The expression (20) is also significant in that it displays the positive
definite character of the regular part of the Green’s function, J(w,t). Since J(w,t)

is expressed as a kernel function,

So 1) == T b n(e),

many interesting inequalities are quite simply obtained. These are consequences

of the positive nature of quantities of the type

[N [20(w, w) + NEJd(w, t) + Apd(t, w) + | w|2J0(¢, t)

Z Nby(w) + pby ()2 > 0.

These inequalities have more or less the strength of the classical distortion theo-
rem for schlicht functions. In fact, by substituting o(z) = 1 and making suitable
choice of the points w and ¢ and the domain D, one can obtain by this procedure
Koebe’s original results. We note, finally, that formulas like (20) which represent
the Green’s function in terms of a geometrical integral and a kernel function are
easily obtained in many further classes of functions; for example, such a formula
can be obtained for the Green’s function of the Laplace equation in three dimen-
sions. These remarks tie in closelywith previous work on inequalities and geomet-
rical integrals [6,14].

The expansion (20) is new even in the simple case p(z) = 1.Let us apply it to
the calculation of G(w, ¢) in the circular ring r < [z | <1 with p(z) = 1. Here the

set of functions b, (w) for (20) is found by Green’s theorem to be
T 1 r2n+2
_ +1
bv(w) - ((n+1)(1—r2"+2))(wn + Fntl ): n #
-2
log r

Y
) log |w],

batw) =~
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where we take v = 2n + 1,n > 0,and v = —2n, n < —2. Thus we obtain, for

the Green’s function glw, ) of the Laplace equation in the circular ring r <|z|< 1,

. w — L do(z) (logfwf)(log‘t f)
@) glv,t) = — r<|fz1<1 EEE e s
® 1 rn . r2n
Zgo 2n(1—r?") (w ' a)(t T )

In closing this section,we note that for p(z) =1, G(w, t) = g(w,t) is real, and
therefore, from (20) and (10),

b by do

1
5 9t 2 f{((z—w)(z—t))2'

<
Q)

3
Q)
g|
Q)
|
Q)

lience, in this case, the kernel function has an interpretation in terms of the dif-
ference between the Cauchy principal value of an improper integral and the devel-

opment of the integral in terms of Fourier coefficients.

5. An eigenvalue problem. We consider once more the kernel function K(w, ¢)
associated with a general weight function p(z), and we study for a moment the in-

tegral equation

b (t) = fof K(t, z) (z)do .

Let A, be an eigenvalue and let ¢, (z) be the corresponding eigenfunction of this
equation,

¢,(t) = A, foK(t,z)qsy(z)do.

The scalar product of ¢, with any function € ) is given by the interesting for-
mula

1{ ¢ ()P (t) p(t)do = N, [[[.gk(z, )¢ (t) p(t) doley(z)do

In particular, for w € B we have
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ff 2L Lo(t) = Mldo

499

t—w
Thus, by the usual argument of continuity across C, the function
. @, (t)[p(t) = A )do
pG) [l et = hdde
D —w

has boundary values 0 on C, while in D it satisfies the partial differential equa-
tion

Thus the eigenfunctions of this non-linear eigenvalue problem in elliptic partial

differential equations are connected with the eigenfunctions of the above integral
equation,

1 al’v(w) - = »
plw) =k, Ov #oe)

In the case of the circular ring r < ]z} <1 with weight function,O:,O(‘z |)
which depends only upon |z |, the powers of z form a complete system of doubly

orthogonal eigenfunctions of the type just described. Supposing that the ¢, (z) are
normalized in the metric (1), we find

whereas for the kernel function %(w, ¢t) with weight function 1, we have (2]

K, 1) = 3 Mo () 2 (e)

However, the extremal problems

012G plz)do
‘/]l; l¢(z) lsz = maximum

A=
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and
L[4[ pl:) do
A = - = minimum
I @:)2do
D
need not have solutions in {1, as can be seen, for example, by taking po(z) = |z |2.

Thus there is a difficulty, in general, in showing the existence of a complete sys-
tem of eigenfunctions.

Note, in passing, that if we have two weight functions p(z) and ©*(2) in the do-
main D, the corresponding kernel functions K(w, t) and K*(w, t) satisfy the integral

equation
K*(w, t) = Kw, t) — /{'K(w, 2)K*(z, t) [p* (2) — p(2z)]do .
Setting
§K(w,t) = K*(w, t) — K(w, t),
sp(z) = p*(z) = p(z) = O(e) ,
we can write this as
SK(w, t) = — %K(w, 2)K(z, t) Sp(z)do + 0(€?),

a relation which is connected with the classical Hadamard variational formula
[11] for certain classes of variations & p(z) of our weight function.

We take o(z) = 1, and we turn now to a somewhat different eigenvalue problem
for which it is known that a complete orthonormal system of eigenfunctions Y, (z)
€ QO exists. The work of Friedrichs [7] gives us, indeed, a complete orthonormal

svstem {y, (z)} satisfying

(22) /vLy ﬂ¢v(l)¢(l) dU = ff ¢V(Z)¢<Z)do— ’ ¢ €: Q ’
D D

with decreasing eigenvalues

B = 1>pp 2 32 s00 > 0

which are obtained from the extremal problem

| fqub(ZVdU |
‘[];|¢(z)|2d0'

maximum,
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We shall study (22) by the methods of this paper and shall associate with the
eigenvalues 1, of (22) a new eigenvalue problem for a related partial differential
equation.

From (22) we have

/].{/‘va -¢()} 2 =0, wE B .

zZTw

Thus, as usual, we define

(23) = I =)} == €D,

w

and we show that U/} (w) has boundary valueszero on C by proving that the integral
J is continuous across C. Let [ be a circle in D tangent to C at wy, letw be a
point in [ on the normal to C through w,, and let w* be the inverse of w in [". 1t

suffices to show that

S s = SR A B

wowg zZ T w z = w*

This is true for the portion of the integral taken over ) — [ by the square integra-
bility of fz — wg |"! there, as can be seen by comparison with the discussion in
$2. For the integral over I, we see, again from §9, that the contribution from the

term u Y, (2z) vanishes, and also that

gL - 2w =

zZ—w z — w*

We have thus from the Gauss mean value theorem

(w —w*)do

1 1
O] et ELl AR RO R o oy

B ~ (w—il)*) 77772
= Wleo) =) E e 0

where z; is the center and 7) the radius of [". Thus it remains only to show that
lim Yo(w)(w —w*) = 0.
w->wop

Let y(w) be the largest circle in D centered at w, and let the radius of y(w) be

€ . Then w — w* = O(e) because of the smoothness of C; and the mean value
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theorem yields, for some ¥ > 0,

(w—w)? ffy%(z) 2dor
[ ()? (w—w*)?| = 2

TE

it JI (2)?do
y(w)
The last integral tends to zero as w — w, and € — 0, since ;,(z) is square in-

IN

tegrable, and hence our continuity proof is complete.
We now derive a partial differential equation of the second order for the func-

tion U, (w), which vanishes on C. By Poisson’s equation we have

oU,
3% = —W/‘uk/’u(w) +7Tlrljv(w) .

Taking conjugates, we find

0,

3 = = 7T/Jvu‘;bv(w) + 77‘7[’1/(“)) ,
w
and therefore
U, A,
(24) T(l=ul)y.(w) = == +4,
v 0% Jw

By the Cauchy-Riemann equations for Y, (w) we obtain

320, 21U,

(25) +
ow? v 0w dw

Hence the functions U, (w) are the eigenfunctions and the u, are the eigenvalues

for the eigenvalue problem

with U =0 on C.

For v > 1 the eigenfunctions \,(w) are obtained from the U, (w) by means of
formula (24). Green’s theorem can then be applied to yield (22). Therefore (22) and
(25) are quite equivalent eigenvalue problems. Friedrichs’ prineipal result, the

strong inequality 1, < gy = 1, has now a new significance, particularly since
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(24) cannot be solved for the first (constant) eigenfunction i (w).

One sees, in general, from the results obtained so far, then, how problems in
the study of analytic functions of class () in a domain D lead naturally to the dis-
cussion of systems of two partial differential equations of the second order, such
as (9) and (25). We remark, in closing, that the solutions U(w) of (25) always sat-
isfy, in particular, the single fourth order elasticity equation

9* U(w)

YER I
6. Extensions. [t is quite clear that the method which has led us here to re-
sults such as (10), (20), and (25) has wide applications to the study of the exist-
ence and representation of solutions of linear partial differential equations of
elliptic type. Equations which can be discussed in this manner, such as the
equation
ugz + uyy +P(x,y)u =0, P <o,

need have no connection with analytic functions. However, we shall consider in
this section one more case which is drawn from the theory of harmonic functions.
We introduce the class A of real-valued harmonic functions u(z) in D with a

finite integral

(26) j); u(z)? p(z) do |

where p(z) is once more a positive weight function with, say, continuous second
derivatives in a region including D + C.By the Gauss mean value theorem and the

Schwarz inequality there is a positive function A(z) in D such that
%

lu(z0)| < A(z0) (,/:/D'u(z)2 p(z)dc’) , 20ED.

Hence there exists in A a complete orthonormal system fuy ()},
ﬂ‘ U-V(Z) Ll/_L(Z),OdO' = S}LV )
D

the kernel function

27) M(z, t) = i uy (2)uy(t)

1
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converges and is in A, and we have the reproducing property

ff/t(t 2)u(z) pdo u €A,

In particular, for w€ B, the extenor of [, we obtain

ff 1\!1 t Z log

log pdo =0,

it'—w{ |Z_ i

lience with w€ 3, L€ we find

1 1
fj); log {t—w| log lt“m ,O(t)dU(t)

1 1
log
|z = w| lt = (]

—/f‘/fM ) log p(z) p(t)do(z)do(t) = 0,

or, more directly,
[ee]

j]‘ log I iwl log ]tiél pdo — Z VV(w)VV(Q) =0,

(28) D v=1

where

p(z)do(z), =123

w) = [[u(z) log “‘“_1*_'—
D |z = v

are the Fourier coefficients of the function — log |z —w| for w€ B, and also for

w&D. The statement is, then, that the integral

1 1
1 log pdo
S oe T] T T

is represented faithfully by its development in terms of Fourier coefficients with
respect to the orthonormal system {u,} when w€ B, because in this case the first
factor —log |t —w| in the integrand belongs to the class A, and the second fac-
tor —log |t =] is square integrable.

When both { and w are in D, we set

(29)  H(w, L) =%ﬁ” log |ti
D
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and we proceed to show that H(w, {) is the Green’s function of the fourth order

elliptic partial differential equation

1 9?
(30) A — Ah =0, A =4 =
0 0z0%

Indeed, from the square integrability of —log |z —w/| and Schwarz’s inequal-

ity, together with Bessel’s inequality

@ 1 2
El n@? < ff llog =1 ] pdo < @,

it is apparent that the kernel series
©
z Vv(w) Vv(g)
v=1

is continuous across C, and therefore by comparison with (28) we find
lim H(w, ) = 0, w€ D,
w->C

It is more difficult, however, to verify the requirement

9H(w, {) _
dv

0, weEC,

for the derivative of # with respect to the inner normal v of C. We shall prove this

condition by showing that the gradient

% - —2— If 1 ’10g ! - z VV(C) uy(z)}p(z)dd

Jw 77 D zZTw IZ—'(:,I v=1

tends to zero as w — C.

By comparison with (28), we see that it is sufficient to show that

lim ffD[Ziw - z_lw*J V(z)p(z)do = 0,

w->C

where V(z) represents the terms previously in brackets, and where w and w* lie on

the normal to C through a point w, and are inverse points in a circle I" in D
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tangent to C at w,. Since

ziw “Z_lw* =0(lz—_l—m), :€D-T,
[z-l-w _Z_lw*I[P(Z)—p(w)]z o(1), LET,

and since these dominants are square integrable over D — I and [, respectively,
we see, as in previous continuity proofs, that the Lebesgue theorem applies to the
part of our integral extended over D — I' and that it applies to the part extended
over [ with p(z) replaced by p(z) — p(w). Thus the only difficulty is to prove

(31) 1imﬂ[ S }V(z)d0=0.
VA *

- w zZTw

Now in the circle I, V(z) has a harmonic conjugate V*(z) which is also square

integrable, and hence the analytic function
W(z) = v(z) + iv*(z)

is square integrable over [". By (6) we have

rlz—w z = w*
and also
g1 - ) e -
Therefore
fﬂziw - Z_IW*J V(z)do = Q[ iw ~ z_lw*][w(z)+@]do—

1
2
1
2

==

[ == - =m0 - wwao

zZ—w z —

77_7)2 [W(zo) = Ww)] (w — w*)
2 (20 = w) (20 — w*) '
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by the Gauss mean value theorem, where z, is the center and 7) the radius of ['.
Letting 7y(w) be the largest circle in [ centered at z = w, we obtain for some

M > 0, again by the mean value theorem,

W(w)? (w —w*)?| < M JI[#(2)]%do
v(w)

and since W(z) is square integrable, the last integral tends to zero as w — wy.
This completes the proof of (31).

Thus we have, on C,

9H(w, L)
(32) = —" = 0.
H(w, {) 3y
By application of Poisson’s equation and term by term differentiation, we verify
immediately that #(w, {) satisfies (30), and it is furthermore clear that the inte-
gral in formula (29) is a fundamental solution of (30). Hence H(w, {) is, indeed,
the Green’s function of (30). We now obtain by differentiation of (29) and two ap-

plications of Poisson’s equation the formula

1
87p (w) p(L)

expressing the kernel function in terms of the Green’s function. The usual deduc-
tions as to the positive definite nature [11] of H(w, {) follow from (29) and (33).

(33) Mw, L) = — Ay Dy H(w, §)

The significance of the norm (26) for the equation(30) is apparent from the form

2L
/}D"(Ah) pd

of the Euler integral of (30) and the form

1

|z = vl

do + uz(w)

h(w) = f{ul(z)p(z) log

of the general solution of (30), expressed in terms of two arbitrary harmonic func-

tions. We have, thus,

1
S (h)? =do =47 fI uipdo .
D P D

It is interesting that we obtain the existence of the Green’s function H(w, {) using

a norm which depends on only half the number of arbitrary functions involved in
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the general solution of (30). Also, the connection between extremal functions for
the norm (26) and solutions of (30) with simple boundary behavior can be explained
by use of the Green’s identity

dq dp
[[iedq — qApldo +§[pa—V "qalds =0,

in which we can take, for example, p€ A and ¢ a solution of (30).

We point out that for po(z) =1, equation (30) is merely the equation of an elas-
tic plate. Thus our method leads to a new [17,18] discussion of the existence
and representation of the solutions of boundary value problems in elasticity. This
case has an interesting connection with Friedrichs’ eigenfunctions {U,(2)1, dis-

cussed in $5. Indeed, setting
You(z) = Uv(l) + v (z)
we obtain, from (22),
/J'D fu, uyt vy, toiuyy— iu#vyida =0 ,
/f fuyu, — vyvy + uyvy t iu#vV}dcr = Wy duy
D

Thus for a simply connected domain D, in which each harmonic function u(z) has

a single-valued conjugate v(z), the system of functions

%
2
( ) UV(Z), v=12--,

L+ py
%
2
R
1 = py
forma complete orthonormal system in A. Therefore, with p(z) = 1, we have

(34) Mz, t) = 2 § y(z) uy(t) + o9 § vy (2)vy(t)

v=1 1 +'U'V v=2 l—fU“V

’

while

[o]

k(z, t) = z {uy(z) + ivy(zﬂ {uy(t) - ivy(t)} .

v=1
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lence the orthonormal eigenfunctions {y,(z)} and the corresponding eigenvalues
o, provide a link between the analytic functions of class {1 and the harmonic
functions of class A which arise in elasticity.

In particular, for the interior of an ellipse the ,,(z) are the Chebyshev poly-
nomials of second kind [7] and the Green’s function H(z,t) has an explicit rep-
resentation (29). Suppose, in fact, that /) is the ellipse

2 2
x y <1,
cosh? o sinh? o
so that ( . "
sinh (v cosh™! 2 2
bo(e)=p, ShlicohTl) L pt 2y
sinh (cosh™ z) 0,20 77 sinh 2 vo !
nl 7 Zj: 1’ 2, )
Then we obtain the formula of Erd€lyi and Zaremba :
H(z, t) 2 JIIB! 1 L 4o
Z, - og og
T 7D | w] It = w]

sinh (cosh™!:

2 © 2
_— P 1 sinh (Vcosh—lz)
m = pi ? [‘/f log w| %[ ) ] do

- {| sinh (cosh™! 2z

jf log - 1 SR[sinh (vCosh’lz)) } o

=12 Pl = p,? sinh (cosh™!z

- = > A jfn 10g - 5 [sinh (Vcosh"z)) }da

1 sinh (v cosh™z)
lo 3 o
L TErTI p oy fe)

sinh (cosh™!

The integrals can be reduced by using Green’s theorem.

This tie between the elasticity equation and the Laplace equation by means of
the Friedrichs eigenfunctions can be generalized to the case of multiply connected
domains. Here, however, we must restrict the class A to functions u(z) with

single-valued conjugates v(z) and we must replace H(z,t) by a similar function
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which has merely constant boundary values on each component of C and zero nor-
mal derivatives.

Finally, the reader will notice that the case where p(z) = | u(z) |2, the square
of the modulus of an analytic function wu(z), also has bearing on the elasticity

equation. Here, in fact, the general solution of the equation (30) is

h(z) = RIM() £(z) + g(2)}

where M '(z) = u(z) and f(z), g(z) are analytic. Thus the conformal transformation
{ = M(z) reduces (30) to the elasticity equation.

7. A numerical example. We add at this point a note concerning the nature of
the deflection of the clamped elliptical plate of §6. It has been conjectured by
Hadamard [11] that the Green’s function H(z,t) of the elasticity equation in a
domain D is positive. This conjecture has the interpretation that when one places
a downward point load at €D upon an infinitesimally thin elastic plate clamped
at C, the resulting deflection H(z,t) at z€ D is always directed downward, with
the load. Duffin has shown that H(z,t) can become negative when D is an infinite
strip, while Loewner and Szegd have exhibited bounded regions for which the con-
jecture is untrue, although these regions are not convex. The statement is true for
a circle.

We discuss here an ellipse for which the Green’s function can take negative
values, and we thus obtain a counterexample even for the case of bounded convex
plates, where the conjecture of Hadamard appears to be most plausible. Our pro-
cedure provides an illustration of the adaptability of the method of orthogonal
functions to computational problems.

Our first remark is that if H(z,¢) is nonnegative in a domain D, then the fourth

derivative

94H(z, t)
n2(z) on2(t) z, teC,

must also be nonnegative, where n(z) and n(t) represent the inner normals at z and
t on C. This result follows immediately from a consideration of the Taylor’s series
for H(w, {) about w = z, { = t. By the boundary conditions imposed upon H(z, t),
the second derivatives of H(z,t) with respect to the arc lengths s(z) and s(¢) at z,
t€ C vanish. Thus we obtain

94H(z, t)
9n2(z) 9n?(t)

AZAtH(Z;t): z, tCC,
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and therefore, by (33),
94H(z t)
_C M2 ) = —8uwM(z, t), z, tEC.
9n?(z) In?(t) (

Thus we can show that Hadamard’s conjecture is false by exhibiting points z and
¢t on C for which the kernel function i/(z, t) is positive.
Let now D be the ellipse
2 2
x
2 \y_ <1
cosh® o sinh? o

of $ 6, and take for z, ¢t €C the vertices

z=cosho , t = —cosho .
Then, by $6,
- : i -1 i -1 —
Mz, t) =1lim 2p32 z 210V . Slflh (Z/cosil x) sinh (vcosh™!(—x))
x> cosho =1 P1 + oy sinh (COSh lx) sinh (COSh—l(—‘x))

x < cosho

= lim 2 E: (- 1)v+1 (v sinh 20) sinh? vr
oo reo 0 & sinh 2v0 + v sinh 200 sinh?r

Thus it suffices to prove for some o > 0 that

[« . 2
(35) Lim z (_1)y+1 v sinh*vr > 0.
reoc,r<o g7 sinh 2v0 + v sinh 20
We note that
0 2vr
Ve 1
li —-1)¥ ==,
r-»mo vgl ( ) eV 4
and therefore we can replace (35) by
|t
oo {sinh 2vo + ¥ sinh 20 4 '
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Wwe set o0 = log 2, and this becomes

., > 2v —2v2T™ + v2(2% — 277

w3 (- BEEEEEEE D vl s,
vo1 2% — 97 4+ (22 — 272) 4

an inequality which can be verified by direct calculation.

Briefly, the first ten terms of the series (36) are
-.7, .8, —.527103, .250811, —.099487, .035692, — .012050,
.063%04, —.001227, .000377,

and we have
ot 2v —2v2™ + v2(92 — 272 1 1
y (mp BIRETA A2 L, L
i 2% — 2 + (2 — 272) 4~ 2000

Thus the Green’s function F(z,t) of an ellipse whose major axis is not even twice
as long as its minor axis takes negative values when the arguments z and ¢ are
sufficiently near the vertices.

Finally, keeping z = cosh o, but setting ¢ = ¢ sinh o, we have

oo} .
M(z, t)= lim 2/312 Z (_l)z/+1 . (21/ l)(smh 20‘)
rso, r<o = sinh (4v —2)o + (2v —1) sinh 20
sinh (2v — 1) r cosh(2v—1) r
sinh r \ cosh r
= 9202 z (_1)1, [ . (2v — 1) sinh 20 ]
=1 sinh (4v = 2)o + (2v — 1) sinh 20

Therefore to obtain M(z,t) > 0 in this case, we take o = (1/2) log 2 and prove the
elementary inequality
- 2v—1)°7
(1 >
2Tl — "W 4 2v —1)(2-27Y)

0.

v=1

Indeed, the first ten terms of this series are
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—.333333, .727272, —.633413, .353811, —.154139, .058610,

—.020580, .006862, —.002204, .000688,

and

i (—1)¥ (2v—1)? 3

>
=1 271 — omWHL 4 (99 —1)(2 — 2°1) T 1000

<

8. On Friedrichs’ functions. Bergman and Schiffer [4] have introduced the

class $t of biharmonic functions zf(z) + g(z) in D with a finite square integral
ffD Zf(2) + g(2)[? do .
They construct from a complete orthonormal system §2f,(2) + gv(z)} in I,

_/]D'['z'f,,(z) + g»(2)] [zm + gu(z)ldo = &, ,

the kernel function

[o4]

(2, t) = Z (7f(2) + el {tf(t) + g (t)},

and prove that this kernel is given by

2 9*H(z, t)

67) N(z, t) ;1- 322972

b

where H(z,t) is, again, the Green’s function of the elasticity equation. We leave

to the reader the derivation of the inverse formula

H(z,

“t‘__
2 do(w)
t—w

L g

— N(w Qdo(w) do(l)

DZ

which is based on considerations similar to those leading up to (20) and (29).

Likewise, we leave to the reader a discussion, to be modeled on § 2, of the kernel
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Ny(z,t) of the norm
I 12(2) + (2)|? p(z)do
D
with weight o ; the kernel is given by the relation

2 34Hp(z, t)
Wp(z)p(t) 92201 2 ’

Np(z, t) = —

where Hp(z, t) is the Green’s function of the equation

? 1 @
9z 2 ; 322 1 T 0
with energy integral
1]9%u
D; 3,2 do .,

We show here how the kernel N(z,t) can be constructed in terms of Friedrichs’

eigenfunctions {i,(z)}. In §5, we introduced the associated eigenfunctions

(23) Up(w) = [g {vdn(z) — o (2)} zdjw
We have, by (22),

jJ.BUk aUz

0w OJw

v €D,

Il

do

2w ff e pido = 72w fff Y brdo
D D

~ 72y ffl}k?zdo + 72 [ Yryido
D

= w2 {l= ui S .
But since Uy(z) = 0 for z€ C,we can apply Green’s theorem to obtain

A, dU; 320,
—~ — 4o =-[flv
'gl;aw ow v ‘” kawaw

aUk aUz
=.[f o = il = wtéer
0w OJw )

and thus the system of biharmonic functions

[ L aUk('”)] E=2,3, 00,
m(l—w)*  duw ’
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is orthogonal in the class M. Note that

0l 5 i) + )

with analytic Fj(w), and

23y,
Jwdy 2

Furthermore, we have once more from Green’s theorem
W, —— AP
M=, dwdo == [fu) 5 do =0

for each analytic function ¢€ (). Thus for simply connected regions D) the func-
tions aUk/aw generate the subclass of biharmonic functions in M which are
orthogonal to the analytic functions of class ().

We now recognize that for a simply connected domain D the system

[ .2 )

7(1= p)* Ow

is complete and orthonormal in ft. We have therefore

o ) 1 1 dUw(z) OU(2)
k§l¢’k(z)\/fk(t) +t—F X T~ 2 37

k=2

(38)  N(z, t)

1 2 1 U U
ko) + L 5 k(2) kgt) ’
m? T, 1—wpd 9z 9%

where k(z, ¢) is the kernel of the class 0 with weight function p(z) = 1. This can
also be written, according to (10) and (37),

1 QUk(z) QU(t)
1—u? 9z ¥t

m 9223t w9t 7?5,

Formula (39) can be integrated with respect to z and 7 in such a manner that each

term has zero boundary values on C, and thus

O%H(z, t) 1 & Uk(2) Ue(t)

= g(z,t) —7— X

(40) -
9291t 2m 2, 1= pi
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We have here an interesting relation between the biharmonic eigenfunctions U} and
the Green’s functions g and H of the Laplace and elasticity equations.

One consequence of (40) is found when we apply Schwarz’s inequality to the
kernel series on the right, thus obtaining inequalities between g and // (cf. $4).

The simplest inequality of this form,

92 H(z, t)
PRI
[g ) 9z 90t 2=t =
comes from setting z = ¢ and yields an estimate of the logarithmic capacity in

terms of the biharmonic Green’s function H(z,t). Furthermore, if we differentiate

(40) with respect to z and ¢, we find

l [e9)
Mz 1) = k(t,2) +— 3 —— 2%
(£ 2) m? E2l—pk2 9z 9t

a formula equivalent to (34). Thus it is apparent that (40) is the most fundamental
formula of this type so far developed.

These relations are easily generalized to the case of multiply connected re-
gions D by introducing a modified biharmonic Green’s function /(z,t) with zero
normal derivatives, but with boundary values which are merely constant on each
component of C. We are led to adjoin to our previous orthonormal system for Il a
set of (orthonormalized) second derivatives d2W /93z? of biharmonic functions
W (z) with zero normal derivatives and constant boundary values on each component
of C. For higher connectivity, the functions W play the role of generalized harmonic
measures.

We turn next to the discussion of our results when D is the ellipse

X2 y 2
2 t T
cosh” o sinh* o

<1

of §56 and 7. In this case the Yy(z) are given in terms of the Chebyshev poly-

nomials

k -k -1
NEREEE LA S

’

by the relations

VDV St L
Yr(z) = L i (z) = pr (=t Pr _('ﬂsinh 2ko )
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From the general formula

Up(z) = _ﬂpkfl//k(z)dz + 1Z2Yr(z) + 7F(2)
with F;(z) analytic but unknown, we verify that in the ellipse we have

sinh 20

F
Up(z) =7pe |= ———— 1(3) + — 11
k(z) Pr Y k(Z) : 1y (2)
sinh (2k —2)o cosh 20
1 - — T} .
winh 20 M) =S T ‘(Z)J

Indeed, this expression vanishes identically on the boundary C of the ellipse. We

have discovered, then, a new orthogonality property of the combination

1 oU z sinh (2k — 2) 0o cosh 20
- Tk(z)__
Jdz k

Ti(z) ———— Ti-1(2)

sinh 2ko k—1

7Pk

of Chebyshev polynomials in M. We now rewrite (40) here to obtain

2 © -1 =
(@) 9%H(z, t) = (e t) = 3 k sh 2ko [_ sh 20 ch (k ch™!32)

29t =, sh?2ko — k?sh?20 sh 2k o

_sh(kch™2z) sh(2k —2)c
3 _
sh (ch™12) sh2ko

ch (kch™! 2)

— ch2o

sh((k = 1) ch™'z) _sh2o ch(k ch™!¢)
sh (ch™1z) sh 2ko

sh (kch't) sh (2k—2)o
sh (ch™! %) sh 2k o

+ t Ch (k Ch_l ?)

sh ((k —1) cb™'%) |
— ch 20 sh (ch-17) ] .

We remark that differentiation of (41) with respect to ¢ yields an explicit formu-
la for
IAH QA H

282 ez, t) = 5 Lay
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Taking real and imaginary parts and integrating, respectively, with regard to x and
y, we can derive a formula for A; H (z,¢). Once in possession of this quantity, we
can solve the boundary value problem for the elastic plate explicitly by means of

the Green’s formula. For z = x real, we obtain

¢ —
(42)  AH(x, t) = 4 log E
t —cho
y—2 (sh 20 ch 2z% sho) + 8 i .
s ocho — o) +
R sh 20 £ . sh2ko + k sh 20
Rk R™? 1
l: + - —} ch ((k +1) ch™! x)
2k(k +1) 2(k+1) 2k
B"2k B2 1
—[ - +—i‘ch ((k—=1) ch™!x)
2k(k — 1) 2(k —1) 2k
R*| R £!
- - + (sh 2ko +k sh 20)
2k Lk—1 k+1
§Rsh(kch"t) , Re o .
sh (ch™! t)

9. An inequality. We remark at this point that the application of Green’s theo-

rem in §8 leading to the orthogonality of the functions

120

(43)
7 Ow

= B W) + W)
was not rigorous,since we did not prove that these functions are square integrable
over D. We justify the formal manipulations here, thus proving (40) in all detail,
and we derive further an extremal property of the eigenfunctions wy) + F'.

We assume, for the sake of simplicity, that D is simply connected, and we as-
sume that C is an analytic curve. We show first that to each square integrable
function Y (2)E () there corresponds an analytic function F(z) in D with

(44) ffD;zW(z) +F'(z)|*do < A f{lk//(z)l"’da ,
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where 4 is a constant independent of . This result is remarkable chiefly because
the function i '(z) itself need not be square integrable.

Let z(¢) be a conformal mapping of the unit circle £ in the t-plane upon D.
Then by the analyticity of C, z(¢) is analytic in the closed unit circle and

o]
AY

2(t) = X aut", @ =0("), p<1.
m=0

In order to prove (44), it is evidently sufficient to show that there is a constant B
such that

— dy dF |? )

() -+ | doy gBijl\/fl do, .

at

1

By direct computation we obtain

—n ik k—m+1 2 m?
JI |tnth — ————— tk"| do = , k> om,
E k+1 (m+k+1)(k +1)2 -
I |5m ek 2do = —— | k<.
E m+k +1
If
© k
bp-1 t
Y(t) = ¥ ——— , l[t] <1,
k=0 R
so that
v 1o = 3 el <
k2(k +1) ’

then we obtain

dy ® k—m +1 2
m - by ————— k=m d
A 2 7 k1 7
S k—m+1 2
by th — by —— tF | do
f{ Z ,Em k+1
m=1 |bk|2 © m2
= _— 2 < 2 2d .
TS mtk 41 Wk‘:v‘mlb"l (m+k+1)(k+1)2 - " A1 2do
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Ilence we make the definition
dF & k—m+1

— = = Z a’lL z k - tk—m ’

dt m= k=m k+1

so that dF/dt is clearly analytic in £, and we have

d dF |2
-0 + &
E dt d
o k—m+1 ,_ 2
:f z Z amf bkt Z z A by ¢t do
E|{n=0 z=0 n=0 k=g k+1

C o k—mn+1
HI bt b
Z k= 2 by k1

m=0 n=0

IN
m§
e A,
™Ms
&
M s
B
i
E

N
Ry
Q

k=m

IN

S ol ¥ w2 lanl ] 14 [2do .

m=9 m=0

Thus (44) is proved.

We now choose Fj, so that
_/fl z l/lf: (z) + F};(z) ]2 do = minimum,
D

and we obtain

.[f 7Yy + F/l¢do =0, PpE€Q,
Hence, by the usual argument, the function
) == ff ) RGN S vED,
has continuous boundary values 0 on C. But
2?2y, _ W\/’;;(w) :82Uk ’

Quwow
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and therefore Iy, = Uy, since Uy — V} is harmonic in 0) and zero on C.

If p,(2) is a polynomial with
‘”1; [ (2) = pul2) |2do < €,
then by (44) there is an analytic function B, (z) such that

f() |2y (2) + F/(2) —3p'(2) —P/(2)|*do < A€

By Green’s theorem, we have, rigorously,

U, ; ) ' ol ——
S5 i) + PG} do = = [ U b (:)do=[{)~a—z’ pn(2)do,

and, as € — 0, we obtain the desired relation

oU; aUk aUl aak 2
— T do = = do = 1-— Skl .
j{ 3, oz %° f{ > 3, o =71 LEY Sk

It is now evident that the functions y,(z) and F,(z) solve the extremal problem
min ” |z’ (2) + F'(z) |2 do
F D
S [ 9(2) |2 do

among all pairs Y € () and F with

ffD¢da=ff¢l¢da =0.

(45) N

minimum ,

D
For if
o8]
l/l = Z ap ltbk:
k=2
then
o8]
2 lae [P(1— mi?)
k=2

[e9)
2 far]?
k=2
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Thus we see that the |y, are the eigenfunctions and the
AN = 1— i

are the eigenvalues for the eigenvalue problem (45). Therefore (45) is dual to
Friedrichs’ original eigenvalue problem, and we have, corresponding to his basic

inequality

|f£¢’2d0|§#2 ffD|¢|2da, [[ydo = 0,1, <1,
D

the inequality

46) N, JI |¢|2do < Jf |2y + F'|*do,  [fydo =0, Ay, >0,
D D

D
with the sharp estimates i, and A, connected by the relation

(47) ANy, =1 -—,ug .
While for

[{;NJPdU l,f‘{;l,de'zo,

we should expect
ﬂ' |zy’ + F'|*do
D

to be positive, the inequality (46) states that there is a positive uniform lower
bound A\, for this integral which depends only upon the geometry of the domain D.

In summary, we have shown all the following eigenvalue problems to be related.

lfz)‘sbzdal

(a) M= —2—————— = max., with 9y/9z =0 in D;

/"{ |y |2do

[/'uzda

(b) l+pL_ D

= = max., with uy =vy, vy =—uy in D;
1—pu vido J
V)
dm | 2
ff —| do
p|9z
(c) 1—u? = ; = min., with 02 m/9z%= 0 in D;
/]‘ ?i@ do
pl10Z
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1)

(d) I U

max., with U = 0 on C;

(e) 32y 22U _ ) B
,uazaz +a_52 =0, withU=0onC .

The eigenfunctions yj; of (a) are obviously [7] connected with the eigenfunctions
uk, v of (b) by the relation yy; = uy + ivy. Problem (c) is merely a restatement
of (45), and (d) is the Euler problem immediately associated with (e) by the Dirichlet

principle. We have, in fact

(55) e
2|

772/]0' (prp— e )?do = mup(ud — 1),

I

do

W2f£'#k$k—¢kl2d‘7 =7 H1—ud).

Thus one of our leading results is the relation between the extremal problems (a)
and (c) with differential side conditions and the extremal problem (d) with a bound-
ary condition., The free boundary problems (a) and (c) naturally replace the clas-

sical problem (d) in our present discussion of the existence of solutions of (e).
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