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1. Introduction. Let R be an /z-dimensional, orientable, infinitely differenti-

able Riemannian space such that the group G of isometric transformations S of

R onto R constitutes a Lie group transitive on R Consider a temporally homoge-

neous Markoff process in A, and let P (t, x, E) be the transition probability that

the point x £ R is, by this process, transferred into a Borel set E C R after the

lapse of t units of time, t > 0. We assume that P (t, x, E) is, for fixed (ί, x),

countably additive for Borel sets E and, for fixed {t, E), Borel measurable in x.

Then we must have the probability condition

(1.1) P(t,x,E) > 0 , P(t,x,R) = 1,

and Smoluchowski's equation

(1.2) P(t + s,x,E) = fRP(t,x,dy) P(s,y,E) (t, s > 0).

We further assume that the process is spatially homogeneous:

(1.3) P (ί, x, E) = P (ί, S*x, S*£) for every S* C G.

The purpose of the present note is to prove the following:

THEOREM 1, Let x0 be any point of R and assume that the Lie subgroup

{S* G G; S*x0 - χQ\ of G is compact1. Let us denote by d(xf y) the distance of

two points x, y ζl R. Then the continuity condition:

1 f
(1.4) lim — J P (ί, x, dy) = 0 for any 6 > 0,

£ - 0 + t d (x, y) > β

implies the condition of Lindeberg's type:

At first, this condition was overlooked. Mr. Seizo Ito kindly remarked that this
condition is necessary for the convergence of the integral (2.11) below.
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1 r d(x,γ)2

(1.5) h m " JR " 7 ΓJ P(t,x,dy)

From this theorem we may deduce:

THEOREM 2. The finite limits {x = ( x 1 , x 2 , . . . , xn))

(1.6) α* (*) = Hm - / (y* - %') P (ί, %, rfy),
ί -* 0+ £ d (%, y) < €

— /(1.7) 61'' (*) = lim — / (yι - %') (γi - *>> P (ί, x, dy)
ί-»0+ ί rf(x,y)<6

exists independently of the sufficiently small € > 0. Moreover, if a real-valued

function fo(x) be such that fo(x), dfo/dxι, d2fQ/dxιdx] are bounded and uni-

formly continuous on R, then

(1.8) lim 1 ( ί fQ (y) P (t, x, dy) - fQ (x)) = a1 (*) ψr + W (x) - ^ j
t->0+ t R ox dxι dxJ

REMARK. In the literature [4; 2; 6], (1.8) is derived by assuming the con-

dition of Lindeberg's type:

(1.5)' l i m ( ί ' d ( x , y ) 3 P ( t , x , dy)/ f d ( x , y ) 2 P ( t , x , d γ ) ) = 0
ί 0+ R K» 0+

and some differentiability hypothesis concerning P (t, x, E). Considering the

Brownian motion on the real line, Seizδ Itδ raised the question whether, under

the condition of the spatial homogeneity (1.3), "the (almost sure) continuity of

the sample motions of the temporally homogeneous Markoff process" which is

equivalent to the continuity condition (1.4), would be sufficient to derive Theo-

rem 2. And he proved Theorem 2 in the special case where R = G and G is a

maximally almost periodic Lie group. The present note gives an extension of his

result to general homogeneous space, without the hypothesis of the maximal

almost periodicity of the group G of motions of the space R. Thus we may define

the Brownian motions in a homogeneous Riemannian space R as temporally and

spatially homogeneous Markoff processes satisfying the condition (1.4) of conti-

nuity.

2. Preliminaries. Let us denote by C (R) the totality of real-valued bounded

functions f(x) on R which are uniformly continuous on /?. The space C(R) is a

Banach space by the norm
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( 2 . D 11/11 = sup \f(χ)\.
X

We define, for any / C C{R),

(2.2) (7ίf)(*)= fR P(t,x,dγ)f(y);

then we have, by (1.1),

(2.3) s u p \ { T t f ) (x)\ < s u p \ f ( x ) \ .
X X

We have, by (1.3),

(2.3) (Ttf) (S**) = ΓP(t, S*x, dy) f(y) = ί P[t, S* xf d(S*y)] f{S* y)
R R

= JΓ P(t,x,dy)f(S*γ),

and hence the commutativity

(2.4) TtS = STt9

where S is defined by

(2.5) {Sf) {%) = f(S*x), S*CG.

Thus, if S* C G be such that S*% = x\ we have

(2.6) (Ttf)(x) - (Ttf)(xΊ = σ,/)(*) ^ (STtf)(x) = Tt(f-Sf){x).

By the uniform continuity of /(%), and by (2.3) and (2.6), we see that (Ttf)(x) is

bounded and uniformly continuous in x. Hence Tt defines a bounded linear trans-

formation on C (R) into C {R) such that

(2-7) | | Γ t | | = sup | | Γ t / | | = 1.
||/ lί — A

We have, from (1.2),

(2.8) Tt + S = Tt Ts (t,s > 0 ) .

We have also, from (1.1),

(Ttf) (x) -fix)' LP (ί, *, dy) [/(y) - / ( * ) ]
R

S P(t,x,dy)[f(γ) -f{x)]+ S P(t,x,dy)[f(y)-f{x)}.
d(x,y)<€ d(x,y)>e
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Thus, in view of conditions (1.4) and (1.1), and the uniform continuity of f(x)9

we have

(2.9) lim (Ttf) (x) = f(χ) boundedly in*.
t-> o +

Hence Tt is weakly continuous in ί, and therefore, by (2.8) and N. Dunford's

theorem [l], Tt is strongly continuous in t and

(2.9)' strong lim Ttf « /; that is, lim | | Ttf-f\\ = 0.
ί ~ » o + t-+ o +

Therefore we may apply the theory [3; 5] of one-parameter semigroups of

bounded linear operators to the semigroup {Tt\. In particular, we have the result:

(2.10) strong lim (Ttf-f)/t = Af exists, for those / which constitute a

linear subset D (A) of C {R) which is dense in C{R). Moreover, A is a

closed linear operator defined on D (A) C C (R) with values in C (/?).

LEMMA. Let g(x) £ C(R) vanish outside a compact set. Then the convolu-
tion

(2.1D (/ ® g) (*) = JΓ f{S*x) g(S*xo)dy

belongs to D{A) if f belongs to D{A). Here S^ is a general element of G, dy is

a right invariant Haar measure of G, and x0 is any fixed point of R.

Proof. The integral may be approximated by the Riemann sum

(2.12) T /(S* x)ci
i = 1

uniformly in x. This we see by the uniform continuity of f(x) and the fact that

g{x) vanishes outside a compact set. We know, from (2.4), that A is commutative

with every Sy\

(2.13) f€D(A) implies Syf£D(A) and SyAf=ASyf.

Hence (2.12) belongs to D (A), and we have

771 ΪTV Π l

(2.14) A ( Y f(St x ) c i ) = A { Y (Sγ f) { x ) a ) = V ( S y h) ( x ) c i t

1 = 1 1 = 1 1 = 1

where h = Af. Therefore, since h £ C(R), we see that (2.14) converges, when
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m—>oo, to a function £ C (R) uniformly in x. Since A is a closed operator, we

must have (f ® g) (x) £ D (A).

COROLLARY 1. The convolution (f ® g) (x) is infinitely differentiable if

g{x) is infinitely differentiable.

Proof. It is possible, for sufficiently small d{x, x0), to choose S* (x) £G

such that

(2.15) S*(x)x = x0 and S* (x)x0 depends analytically on a1, . . . , xn .

This we see from the fact that the set {Sί £ G; Stx = xo\ forms an analytic

submanifold of G; it is one of the cosets of G with respect to the Lie subgroup

{Sy £ G; SyX0 ~ x0}. Hence, by the right invariance of dy, we have

(2.16) (f® g) U) = j£ f(S*S*{x)x) (g(S*yS*(x)x0)dy

= fGf(S*yχ0)g(S*yS*{χ)χ0)dy

The right side is infinitely differentiable in the vicinity of x0, and

a + + n
dHl Hn (f ® g) (x)

(2.17) 1
^ q

= JG f(Syx0)
( ι

belongs to C(/?)

COROLLARY 2. (i) There exist infinitely differentiable functions Fι(x),

F2 (%), , Fn (x) £ D (A) such that the Jacobian

(9^o^ d(Fι(x), ... ,Fn(x))
\ΛΛo) _ _ ^ _ _ _ ^ _ _ _ does not vanish at x — x0 .

(ii) There exists an infinitely differentiable function Fo (x) £ D (A) such that

() u £ 4 ) ( > 4 ) d Σ ( ' 4 ) 2

44 Σ 4
dxι

0 d xJ

0 i - l

Proof. In (2.16),/belongs to D (A), which is dense in C(R); andg(*) £ C (R)
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is arbitrary except that g(x) must vanish outside a compact set. Thus, by taking

F {%) - (f ® g) (x) suitably, we may prove (i) and (ii).

3. Proof of Theorem 1. Because of their functional independence, we may

take Fι (x), ••• ,Fn{x) as local coordinates of the points x which satisfy

d(x, x0) < € for sufficiently small £ > 0. Since Fι (x) C D (A),

l r -
(3.1) a finite limit — J (Fι (x) - Fι (x0)) P (ί, x0, dx) exists (i = 1, . , τι).

t -> o+ t R

Because of (1.4), this limit is equal to

(3 .1) ' lim 1 / (Fί(x)~Fi(x0))P(t,x,dx),
' - 0 + ί d(x,xΌ)<€

independently of the positive constant 6. We shall denote these new local co-

ordinates Fι(x), F2(x), ••• , Fn(x) by the letters xι, x2, . . . , * \ Then

(3.1) r / lim — / (xι - xι

0) P {t, x, dx) = aι(xQ) exists

(£ = 1, ••• , n),

independently of 6 > 0. The function F0(x) belongs to D(A); hence, by (1.4),

(3.2) U F 0 ) ( * 0 ) = lim - / {F0(x)-F0{xQ))P{t,x09dx)f

* - o + t d(x, xo)<e

independently of 6 > 0. This limit is equal to

lim — J {xι - xι

0) , P(t, x0, dx)
d {x, xQ) < € dxι

0

/ U ι 4 ) ( ^ 4 ) ( Θ.F° ) P(t,xo,dx),
td(x,xo)<6 \dxl dx]jx =XQ + θ(χ -χ0) J

0 < θ < 1.

The first term in [] has the limit
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and hence the second term has a limit. Thus, by virtue of (1.1) and (2.19),

1 /. "
(3.3) lim — J £ (xi-xlo)2P{t,xo,dx)<n.

| - ° + ' d(x,χo)<e f = ι

Hence, by (1.1) and Schwarz's inequality,

1 r . . . .
(3.4) — J (xι - % Q ) (χJ ~*o) PU* *o> dx) is bounded in t > 0.

t d(χ, xQ) < e

Therefore, by (1.4), we obtain (1.5).

4. Proof of Theorem 2. Since cij(e) is of order 6, we have

(4.1) = - / (*ι-xι

0)PU,x0,dx) —
t ι d(χ, χo)<e ()x0

+ - / (%ι'-χ£) (χi-χi0) P(t,xo,dx) ^
1
- UVΛ, * 0 ; x c ΘXQ ΘXJ

0

, f ( γ*'• __ γi \ ( J __ J ) r . . ( f) P (f γ Jγ)
+ " — J \ X XQ ) \X X0 I Cιj \^f ί \ ί , XQ , LLX)

t d{x, xQ) < £

+ — / (fo(x) - fo(xQ)) P(t, x0, dx)
1 d(x,xo)>β

Now

(4.2) lim / t (ί, 6) = a ' ( x 0 ) -̂ by (3.1)"; lim /3(ί, e) = 0 by (3.4);

lim I4(t, e) = 0 by (1.4).

On the other hand, by (1.4) and (3.4), the finite limits

J _ ς i i\ j j ) ij

1 . . . . .

/ -*o+ ί d(x, x0) < e
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exist and are independent of 6 > 0. Let us , in place of fo(x), take F0(x) of

the form (f Θ g) (x). We may choose F0(x) such that dF0/dxι

0 dx^0 assumes

values arbitrarily near to given constants CCjy (i, / = 1, ••• , n). Thus, by (4.1)

and (4.2) and the fact F0(x) G D (Λ)9 we see that bι^{x0) must be equal to

blj (χo)» Hence (1.7) is proved.

Therefore, by (1.4), ( 3 . 1 ) " , and (4.2), we obtain (1.8).
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