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1. Introduction. Kuratowski [2] and Mil gram [3] have given procedures for

avoiding the use of transfinite numbers in the proofs of many theorems. The

procedure of Kuratowski is based on results of Hessenberg [1] concerning the

existence of well-ordered subsets of ordered sets, and Milgram's is based on

a similar theorem [3, p. 23, Th. 1']. Although Milgram's theorem does not strictly

include Hessenberg's results, his procedure is more generally applicable than

is Kuratowski's. Milgram has given two proofs of his theorem, of which the

first (and simpler) utilizes transfinite numbers; the second, like Hessenberg's,

avoids their use by methods similar to those used by Zermelo in his second

proof of the well ordering theorem [6] Szele [4] has given a proof, patterned on

Zermelo's first proof of the well ordering theorem [5], that Zorn's lemma is a

consequence of the axiom of choice.

The purpose of this note is to show that Szele's proof can be modified in

such a way as to prove a common generalization (Theorem 1) of the theorems of

Hessenberg and Milgram. The proof is as simple as Milgram's first but, like his

second, makes no use of ordinal numbers. Furthermore, it can be arranged in

such a manner that Szele's theorem appears as an intermediate result almost as

simply as in [4].

2. A general result. We shall use the following notations. The relation <

orders M if it is transitive: a < b and b < c=>a < c; n is an upper (lower)

bound oi N \i p <_ n (n <_ p) for every p C N; n is a greatest ( least) mem-

ber of N if it is an upper (lower) bound of N and belongs to N; m is a maximal

member of M if m < n=ϊ>n < m for every n C M; a subset of M will be said to

be bounded if it has an upper bound; the symbol 'C* will denote proper in-

clusion, and Άf will denote the empty set.

The relation < well orders N if every nonempty subset of N has a unique

least member. If this is the case then < is transitive, antisymmetric: a < b and

b < a = > a - by and connected: a Φ b = > a < b or b < a, on N If n C /V
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then Nn = {x \ x £ N and n < x \, and if n is not the greatest member of N then

n+ is the least member of \ x \ x £ N and x <_ ft }. The greatest member of Nn+ is

n.

THEOREM 1. Let M be ordered by <, a ζiU, and u a function which assigns

an upper bound to every bounded subset of M in such a way that: if N, P ζ^ M and

have a common greatest member then u(N) = u(P); while if Λ C N> P C, M, and

neither has a greatest member but both have the same nonempty set of upper

bounds, then u(N)=u(P); and, finally, u(Λ) = α. Let \i be the class of all

sets N C M each of which is well ordered by < and has the property that, for

every n £ N, we have n - u(Nn ). Let P be the class of all sets P C M each

of which has the property that, for every bounded set N C_P which contains no

upper bound of P, we have u(N) £ P, while if N C P and contains an upper

bound m of P, we have u{N) <^ m. Then the greatest member of ϊl and the least

member 0/P exist and are the same set, M(u). The least member of M(u) is a,

and if M(u) is bounded it has a greatest member m, and u(M (u)) <_m. A neces-

sary and sufficient condition that an m £ M(u) be the greatest member of M(u)

is that u({m\) < m.

REMARKS. If < is antisymmetric then r is the class of all sets P C_ M such

that, for each bounded set N C P, we have ι*(/V)£ P.Under the same hypothesis

we have: If M{u) is bounded, then u[M(u)] is its greatest member; and an

m £ M(u) is its greatest member if and only if u{\ m \) = m.

Milgram's theorem is a consequence of the theorem obtained from the above

by requiring that < be irreflexive and that u(N) = u(P) whenever N and P have

the same nonempty set of upper bounds, and by removing the requirement that

w(Λ) = α Theorem 1 then generalizes only the special case of Milgram's the-

orem which is obtained by adjoining 'u(A) = a* to the hypotheses of the latter.

However, this normalization places no restriction on the applicability of Theorem

1 and is introduced merely to simplify the statement and proof of this theorem.

Hessenberg's results follow from the special case of Theorem 1 which is ob-

tained by requiring that < be reflexive and antisymmetric, that if Λ C N C_ M

then sup W exists, and that there is a transformation f oί M in itself such that

for every m £ M we have m < f(m), and in terms of which u is defined as fol-

lows: For each N C M which has a greatest member n we have u(N) = f(n),

while if Λ C N C M and N has no greatest member, then u {N) = sup N.

3. Proof of Theorem 1. There exist nonempty sets which are members of

H, for example { a}, and a is the least member of every such set. If N9 P £ H

then one is a segment of the other. For if Nn = Pp is a common proper segment

of N and P then n = u(Nn) = u(Pp ) = p, and Nn u { n \ = Pp u { p } is a larger



WELL-ORDERED SUBSETS AND MAXIMAL MEMBERS OF ORDERED SETS 4 0 9

common segment of N and P. Hence the greatest common segment of N and P

(which exists, since it is merely the join of all common segments) is not a

proper segment of both of them and so must be either /V or P. It follows that the

join, M(u), of all members of ϊi is a member of H. If M(u) is bounded and

u [ M { u ) ] € . M ( u ) t h e n u [ M ( u ) ] i s t h e g r e a t e s t m e m b e r o f M. I f u[M ( u ) ] ψ

M(u) then M(u) u { u[M(u)] \ ft. ft. This can only be because, for some m G

M(u), we have u[M(u)] ^_m. Since < is transitive, m is the greatest member

of M.

If m G M(u) and is not the greatest member of M(u) then, since m is the

g r e a t e s t member o f M ( u ) m + , w e h a v e u({ m \) = u [ M { u ) m + ] - m + { m.

Suppose N C^M(u) and is bounded. Then N has an upper bound in M(u).

For if this were not the case then every upper bound of N would be an upper

bound of M(u) and the latter would have an upper bound, and consequently a

greatest member, contradicting the assumption that N has no upper bound in

M(u).

Now l e t n b e t h e l e a s t u p p e r b o u n d of N in M(u). If n G N t h e n e i t h e r n i s

t h e g r e a t e s t m e m b e r of M( u) a n d u(N) = u(M(u)) <_ n, or u(N) = u(M(u)Λ+) =

n+C M(u). If n ζj/ί N then either N = Λ and u(N) = a G M{u), or Λ C N and

neither N nor M(u)n has a greatest member but both have the same upper bounds

and u(N) = u[M(u)n] = n CM(u). Hence M(u) G P.

Finally, if P G P then M{u) C P. For suppose that m G M(u) such that

M(u)m C^P. Then M(u)m cannot contain an upper bound of P. For if n were

such an upper bound then, since P G P, it would follow that m = z*[M(zOm] <̂  n,

contradicting the fact that, since n G M(u)m, we have m %_ n. Hence if

MU)m ^ ^ t h e n w β " [ Λ ί ( t t ) m ] CP. It follows by induction that M(u) C^P.

4. Corollaries. We note the following results.

COROLLARY I. Let u satisfy the additional restriction that any m G M

which is not maximal satisfies u ({ m \) s_ m. If M(u) is bounded, then u[M (u ) ]

is a maximal member of M.

Proof. If M(u) is bounded then, by the final result of first paragraph of the

preceding proof, it has a greatest member m, and u(\m\) _< m. The restr ict ion

on u then requires that m be maximal. But m <_ u[M(u)], so that u[M(u)] i s

a lso maximal.

COROLLARY 2. Let M have the property that if A C N C M, and N is

bounded, then N has a least upper bound; and let u satisfy the additional re-

strictions that if A C V̂ C^M, and N is bounded but has no greatest member, then

u(N) is a least upper bound of N; and that if m, nζLM and m < n then u (\ m}) £
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u(\n\). If there exists a p C M such that a <^ p and u(\p\) £ p then M{u)

is bounded and u[M(u)] is a least such p (cf. [2, p . 83. Th. I I " ] ) .

Proof, Suppose a <_ p and u(\p\) <_ p . If m £1 M(u), not the greatest,

and m <_ p, then m+ - u({ m\) <_ u({ p}) <^p. If m £. M (u) and has no immedi-

ate predecessor in M(u), and p is an upper bound of M(u)m, then m = u(M(u)m)

£ p. Hence, by induction, p i s an upper bound of M(u). Hence M(u) has a

greatest member m9 with u(M(u)) <_ m <^p and u(\ u[M(u)]\) <^w({m}) £

m <_ u[M(u)] Consequently, u[M(u)] is a least such p.

5. On Zorn's lemma. We give now an alternative proof of Sze le ' s resul t :

THEOREM 2. The axiom of choice implies Zorn's lemma.

Proof. Let M be ordered by <, a £ M, and / a choice-function for the set

of all nonempty subsets of M. Define g as follows: g(M)-a; if N C M and

either has no least member or coincides with the set of its least members then

g(N) - f{N); if N C M and has a least member but does not coincide with the

set No of its least members then g(N) = f(N - iV0). Define u as follows:

u(N) = g(\x\x C M and (y) (y £ N = > y < *)}) . Then a ( Λ ) = α and if

yV, P C_ M and have the same nonempty set of upper bounds then u(N) - u(P).

If m is a nonmaximal member of M then the set of upper bounds of { m \ has a

least member m, but does not coincide with the set of its least members. Hence

u(\m\) is not a least upper bound of { m}, and u(\m\) jfc m. Since the hy-

potheses of Theorem 1 and Corollary 1 are satisfied, we see that if M(u) is

bounded then u[ώf ( u ) ] is a maximal member of M, and a _< u[M(u)].

From this, one obtains Zorn's lemma in the strong form (cf. [3, p 27, Th. 9]):

// M is ordered by <, and every subset of M which is well-ordered by < has an

upper bound, then for each a C M, there is a maximal member m of M such that

a £ m.

6. Remarks. Note that only the first paragraph of the proof of Theorem 1

is appealed to in the proof of Theorem 2, and that for this application the hy-

potheses on u can be simplified to the requirements that u(A) = a and that if

Λ/ and P have the same nonempty set of upper bounds then u(N) = u(P).

It may also be worthy of note that, in the first paragraph of the proof of

Theorem 1, the transitivity of < was used only in the last sentence. If < is

assumed to be antisymmetric (but not necessarily transitive) this sentence

might be replaced by: Since < is antisymmetric, we have m = u[M(u)~\ Up to

this point the only properties of u that have been used are that u(Λ) = a and

that u(N) is an upper bound of N. Appealing to the hypothesis that if N and P



WELL-ORDERED SUBSETS AND MAXIMAL MEMBERS OF ORDERED SETS 4 1 1

have a common greatest member then u(N) = u(P), we can conclude that

u({u[M(u)]\) = u(M{u)).

Now let an m G M be called 'weakly maximal' when, for every n C M, it

satisfies the following condition: if p _£ m = > p < n for every p ζl M, then

n < m. Clearly, a maximal member of Λί is weakly maximal, and if < is transitive

then the converse also holds. If < is antisymmetric then the phrase 'n < m'

can be replaced by 'n = mf . If, in Corollary 1, 'maximal' is replaced by

'weakly maximal' then the resulting statement is true not only if < is transi-

tive but also if it is assumed only to be antisymmetric.

Using the axiom of choice, one can define a function u which satisfies the

four conditions referred to in the two preceding paragraphs, as follows: u{A) — a;

if N has a greatest member m which is not weakly maximal then

u ( N ) = f ( \ x \x C M a n d x £ m a n d ( y ) ( ( y C M a n d y < m ) = > y < x ) \ ) ;

if N has a greatest member m which is weakly maximal then u (N) = m; if N is

bounded and nonempty and has no greatest member then

u(N) = f(\x\x C M a n d ( y ) (y € N = 4 > y < x)\).

Hence we have the following analogue of Zorn's lemma:

If < is an antisymmetric relation defined on M, and every subset of M which

is well-ordered by < has an upper bound, then, for each a £ M, there is a weakly

maximal member m of M such that a <_ m; that is, a £ m, and \{ n Φ m then

there is a p such that p _£ m and p f n.

7. Addendum. After this paper was submitted to the editors it was brought

to the author's attention that certain results similar to those stated in Theorem

1 had recently been published by Bourbaki [7]. He assumes that a set E is

given on which there is a transitive and antisymmetric relation £ and a trans-

formation / of E into itself such that: x £ f(x) for every x C E. In addition

a d E, His theorem asserts the existence of a set A which is the least of the

sets P C E such that a £ P; if x C P then f(x) C P; if Λ C N C P and N

has a least upper bound then this least upper bound belongs to E. The theorem

also asserts that _£ is connected on A. Bourbaki later proves that A is well

ordered by £ , and that A has a greatest member if and only if it has a least

upper bound.

It is interesting to note that Bourbaki's results follow from Theorem 1. For

the proof, let α^ be anything not in Ey and let M be E u {α^ }. Extend the re-

lation _£ and the function / to M by requiring that x < a^ for every x £1 £, and

that /(αfco ) = αoo. Define u as follows: u(A) = α; if Λ C N C_ Λί and is bounded,
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there are three cases: If N has a least upper bound m but no greatest member,

then u(N)=m; if N has a greatest member n then u(N) = f(n); if N has no

least upper bound then u(N) = α<χ,. With this definition it is easily shown that

M(u) - {cioo } is the desired set A.
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